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Adipokines in glucose and lipid metabolism
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ABSTRACT
Adipokines are proteins secreted by adipose tissue to regulate glucolipid metabolism and play 
vital roles in our body. Different adipokines have more than one endocrine function and be 
divided into several different categories according to their functions, including adipokines 
involved in glucolipid metabolism, the inflammatory response, insulin action, activation of 
brown adipose tissue (BAT) and appetite regulation. Multiple adipokines interact with each 
other to regulate metabolic processes. Based on the recent progress of adipokine research, this 
article discusses the role and mechanism of various adipokines in glucolipid metabolism, which 
may provide new ideas for understanding the pathogenesis and improving the treatment of 
various metabolic diseases.
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Introduction

In 1987, Bruce Spiegelman, a professor at the Dana-Farber 
Cancer Institute and Harvard Medical School, first discov
ered the adipokine adipsin [1]. By 1994, the discovery of 
leptin further changed the traditional view of adipose tissue 
as an energy storage organ for many years and opened 
a new era in human research on adipose tissue. In the past 
several decades, with the societal development, the mor
bidity rate of obesity has increased, arousing global health 
concerns including insulin resistance, type 2 diabetes, and 
metabolic – associated fatty liver disease (MAFLD). With 
an increasing number of studies focusing on adipose tissue, 
it is now clear that adipose tissue has a complex and active 
metabolic endocrine function, that secretes a variety of 
adipokines, such as leptin and adiponectin, which act 
locally in adipose tissue (paracrine or autocrine) or via 
blood circulation to distant target organs. The abnormal 
secretion or action of these adipokines directly or indirectly 
leads to metabolic disorders, such as obesity, diabetes, 
hyperlipidaemia, and other metabolic syndromes. At pre
sent, although the understanding of adipokines has 
improved, there are still vast unknowns that need to be 
further explored. To better understand the role of adipose 
tissue and the effects of different adipokines on glucolipid 
metabolism, this paper presents a systematic review of the 
more studied adipokines in recent years, with the aim of 
providing an overview of the relevant studies in this field 
and suggesting possible research directions in the diagnosis 
and treatment of metabolic syndrome diseases.

Effects of adipokines on glucose metabolism

Glucose enters cells in various ways, including passive 
diffusion, facilitated diffusion and active transport, with 
glut4-mediated facilitated diffusion being the main 
mode in muscle and adipocytes. Glucose utilization 
occurs mainly through glycolysis, aerobic oxidation, 
and glycogen synthesis. Multiple adipokines are 
involved in the process of glucose metabolism and 
exert different functions. Adipsin, adiponectin, C1q/ 
TNF-related proteins (CTRPs), fibroblast growth fac
tor-21 (FGF21), leptin, and insulin-like growth factor 
binding protein-2 (IGFBP2) promote glucose metabo
lism and lower blood glucose levels. In contrast, resistin 
has a blood glucose-raising effect.

Adipsin, the first described adipokine, is a member of 
the serine protease family found in 3T3 adipocytes. Later 
studies found that adipsin was identified as complement 
factor D, which participates in an alternative pathway of 
the complement system [2]. A study showed that long- 
term chronic supplementation of adipsin in db/db mice 
ameliorates hyperglycaemia and increases insulin levels 
while preserving beta cells by blocking dedifferentiation 
and death [3]. Type 2 diabetes mellitus (T2DM) patients 
with β cell failure are deficient in adipsin. Adipsin cata
lyses the release of complement factor C3a, which has 
been shown to stimulate insulin production in pancrea
tic β cells [4]. A clinical study of the relationship between 
serum adipsin and the first phase of glucose-stimulated 
insulin secretion in individuals with different glucose 
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tolerances showed that serum adipsin levels were lower 
in patients with T2DM and impaired glucose tolerance 
(IGT) and were positively correlated with the first phase 
of insulin secretion [5]. Furthermore, adipsin facilitates 
glucose uptake, increases triglyceride synthesis in adipo
cytes and inhibits lipolysis [6]. Taken together, these 
recent findings suggest that adipsin plays an important 
role in maintaining the homoeostasis of adipose tissue 
and pancreatic β cell function.

Adiponectin is a secreted protein encoded by the 
apM1 gene. The biological function of adiponectin is 
mainly mediated by adiponectin receptor 1 and adipo
nectin receptor 2(AdipoR1/R2), which have seven 
transmembrane domains, with their N-terminus inside 
the cell and the C-terminus facing outwards. This 
topology is opposite to all-known G-protein coupled 
receptors [7]. In addition to AdipoR1/R2, T-cadherin is 
another receptor that is highly expressed in the cardi
ovascular system. Adiponectin/T-cadherin plays a role 
in reducing atherosclerosis and protecting the cardio
vascular system, and mammalian cell-based studies 
have suggested that T-cadherin is the major binding 
partner of native adiponectin in serum [8,9]. Decreased 
adiponectin and receptor levels are present in adults 
with obesity and T2DM [10].

There is a highly conserved 13-residue fragment, ADP- 
1, in the collagen structural domain of adiponectin. ADP- 
1 activates AMP-activated protein kinase (AMPK) and 
p38 mitogen-activated protein kinase (MAPK) in an 
adaptor protein, phosphotyrosine interacting with PH 
domain and leucine zipper 1 (APPL1)-dependent path
way and stimulates basal glucose transporter type 4 

(GLUT4) translocation and glucose uptake in rat skeletal 
muscle cells (L6 myotubes) [11,12]. In hippocampal neu
rons, adiponectin enhances glucose uptake, glycolytic 
rate, and ATP production in an AMPK-dependent man
ner [13]. Adiponectin stimulates the interaction between 
APPL1 and Rab5 (a small GTPase), leading to increased 
GLUT4 membrane translocation [14]. Rab5 plays 
a pivotal role in APPL1-mediated adiponectin signalling, 
and impaired GTPase Rab5 expression has been found in 
adipocytes in patients with obesity and T2DM [15,16] 
(Figure 1). Adiponectin is a kind of globular protein and 
has a similar structure to CTRPs. Specially, CTRP9 shows 
the highest degree of amino acid identity to adiponectin 
in its globular C1q domain (approximately 51%). The 
function of CTRP9 is to promote glucose metabolism, 
similar to adiponectin [17,18]. In contrast to the function 
of adiponectin, resistin inhibits glucose metabolism by 
inhibiting hexokinase activity and reducing glucose 
uptake into adipocytes, muscle cells and other tissues [13].

FGF21 is a metabolic hormone synthesized by var
ious tissues; when secreted by adipose tissue it is called 
adipokine, by the liver it is called hepatokine, and by 
muscle it is called myokine. It was recently recognized 
as a metabolic regulator that exerts paracrine and endo
crine control of many aspects of energy homoeostasis 
in multiple tissues. In the above, we described the role 
of adiponectin in glucose metabolism. Treatments with 
FGF21 enhanced both the expression and secretion of 
adiponectin in adipocytes, thereby increasing serum 
levels of adiponectin in mice [19]. This shows that 
FGF21, as an adipokine, regulates glucose homoeostasis 
and insulin sensitivity through adiponectin mediation 

Figure 1. Adiponectin and insulin signalling. APPL1 interacts with AdipoR1 or AdipoR2 and mediates the activation of multiple 
pathways including PPAR-α, AMPK and p38 MAPK by adiponectin, then triggers a cascade of biological responses. Most of the 
metabolic effects of insulin are mediated by PI3K/AKT pathway. APPL1 enhances crosstalk between the insulin and adiponectin 
signalling pathways, by promoting the interaction of IRS1/2 and insulin receptor.
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[19,20]. However, a 2017 study suggested that adipo
nectin is dispensable for the chronic effects of FGF21 
on energy expenditure and insulin sensitivity [21]. 
FGF21 predominantly binds to the receptor FGFR1c, 
and this process requires the cofactor β-Klotho (KLB) to 
achieve ligand-receptor interactions [22]. Then, tyrosine 
kinase activity is initiated which further activates the 
MAPK pathway. MAPK activates extracellular signal- 
related kinase (ERK) 1 and ERK2, which enter the nucleus 
and stimulate the transcription of target genes [23,24]. In 
mice, selective ablation of β- klotho in adipocytes attenu
ates the acute but not chronic effects of FGF21 adminis
tration on glucose uptake and insulin sensitivity, 
suggesting that FGF21 exerts its metabolic actions 
through both adipose- dependent and adipose- indepen
dent mechanisms. Furthermore, this study also explored 
whether this effect was mediated through brown adipo
cytes [21]. In human adipose tissue, FGF21 also plays an 
important role in white adipose tissue (WAT) browning, 
brown adipocyte activation and lipolysis, as we will 
describe in the following sections.

Most FGF21 in the blood is secreted by the liver. 
FGF21 hepatokine responds to glucose response. In 
humans and mice, fructose induction increases FGF21 
levels, and carbohydrate-responsive element-binding 
protein (CHREBP) is involved in this process. 
CHREBP deletion may blunt hepatic FGF21 transcrip
tion and secretion in response to glucose [25–28]. 
Single nucleotide polymorphisms (SNPs) in the 
FGF21 gene are associated with increased sweet taste 
preference [29]. Studies in rats, monkeys, and humans 
have shown that FGF21 moderates simple sugar intake 
and preferences for sweet foods by signalling with 
FGF21 receptors in the paraventricular nucleus of the 
hypothalamus [30,31]. The mechanism of FGF21 action 
and the tissues responsible for these actions have been 
controversial, but the important role of FGF21 in meta
bolism is clear.

Regulation of glucose metabolism by leptin is 
mediated both centrally and via peripheral tissues and 
is influenced by the activation status of insulin signal
ling pathways. The central nervous system (CNS)is 
currently considered the primary site of leptin activity. 
Leptin receptors (LEPRs) are expressed primarily in 
gamma-aminobutyric acid (GABA) neurons in the 
hypothalamus. Additionally, in other regions of the 
hypothalamus, including the ventral medial hypothala
mic nucleus (VMH) and the arcuate nucleus of the 
hypothalamus (ARC), the expression levels are low 
[32,33]. Perry et al. found that leptin deficiency acti
vated the hypothalamic-pituitary-adrenal (HPA) axis, 
causing elevated blood glucose and even diabetic ketoa
cidosis (DKA). Leptin acutely suppresses lipolysis and 

hepatic glucose production(HGP) and reverses DKA in 
an insulin-independent manner by suppressing the 
HPA axis [34]. In addition, leptin is involved in glucose 
sensing in the hypothalamus. In short-term high-fat fed 
or uncontrolled diabetic mice, hypothalamic leptin 
infusion was found to enhance hypothalamic glucose 
sensing and restore glucose homoeostasis. It activates 
PI3K and/or STAT3 and enhances lactate metabolism 
to regulate glucose homoeostasis, but the underlying 
mechanisms require future investigation [35]. For the 
peripheral tissues, leptin inhibits hepatic gluconeogen
esis, increases insulin sensitivity in the liver and pro
motes glucose uptake and utilization in skeletal and 
cardiac muscle [36–38]. Leptin can also mediate 
a glucose-fatty acid cycle to maintain glucose homo
eostasis in starvation. In 48-hr fasted rats, physiologic 
leptin replacement suppresses lipolysis and reduces 
plasma glucose, but supraphysiologic leptin stimulates 
lipolysis and increases plasma glucose [39]. In addition, 
leptin is involved in the regulation of insulin-regulated 
intercellular signalling pathways. Leptin deficiency 
affects glucose homoeostasis [40]. In addition, it plays 
an important role in the regulation of appetite, as we 
will elaborate in the following sections.

The regulation of blood glucose by leptin can also be 
mediated by IGFBP [41]. IGFBP2 is a binding protein 
synthesized during adipogenesis that has been demon
strated to promote glucose uptake by myotubular cells 
[42]. However, the mechanism of IGFBP2 action still 
needs further investigation.

Adipokines in lipid metabolism

Fatty acid oxidation is an important source of energy in 
the body and is most active in the liver and muscle. 
Many adipokines such as FGF21, adiponectin, FABP4, 
IGFBP2 and CTRPs, are involved in this process, reg
ulating lipid metabolism and energy production and 
consumption.

Peroxisome proliferator-activated receptor (PPAR) α 
is a nuclear receptor activated by fatty acids and is 
required for the normal adaptive response to starvation. 
PPARα is highly expressed in tissues associated with 
fatty acid oxidation (e.g. liver and skeletal muscle), and 
its activation reduces plasma triglyceride (TG) and 
increases high-density lipoprotein (HDL) levels 
[26,43]. Mice lacking PPARα accumulate hepatic trigly
cerides and become hypoketonemic during fasting and 
starvation [44,45]. Drugs targeting this mechanism 
have been used in the clinic. For example, the lipid- 
lowering drug fibrates are PPAR-α activators, and the 
glucose-lowering drug thiazolidinediones are PPAR-γ 
agonists [43,46]. Adiponectin greatly increases the 
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expression and activity of PPAR-α and upregulates 
acetyl coenzyme A oxidase and uncoupling protein 
(UCP), thereby promoting fatty acid oxidation and 
energy expenditure [11,47]. In a clinical study, it was 
found that HDL-C was independently correlated with 
adiponectin in nondiabetic men and women [48]. The 
mechanism may be that adiponectin enhances the 
secretion of apolipoprotein A-I (apo-AI), which is the 
major apolipoprotein of HDL, and the expression of 
ATP-binding cassette transporter A1 (A-BCA1), which 
induces HDL assembly through reverse cholesterol 
transport in hepatic cells [49,50]. In addition, many 
previous studies have demonstrated that circulating 
adiponectin is negatively correlated with TG and very 
low-density lipoprotein (VLDL) [51,52]. A possible 
explanation is the regulation of lipoprotein lipase 
(LPL) activity by adiponectin, resulting in increased 
TG catabolism [47]. As mentioned earlier, the adipo
kine FGF21 induces adiponectin; thus, it plays a similar 
role to adiponectin. FGF21, as a hepatokine also plays 
an important role in FFA transport and lipolysis, which 
will not be discussed here [53].

Fatty acid transport requires the involvement of fatty 
acid-binding protein 4(FABP4), a class of intracellular 
lipid chaperone proteins that are abundantly expressed 
in macrophages and adipocytes. FABP4 maintains adi
pocyte homoeostasis and regulates lipolysis and lipo
genesis by interacting with hormone-sensitive lipases 
(HSL) and PPAR-γ [54]. Dou et al. reported that exo
genous injection of FABP4 into mice significantly 
reduced intracellular triglyceride content; decreased 
the expression of the lipogenic markers PPAR-γ, 
CCAAT/enhancer binding protein α(C/EBPα), intracel
lular FABP4 and adiponectin; interfered with adipocyte 
differentiation; promoted lipolysis in adipocytes 
involved in p38 MAPK and induced adipocyte inflam
mation in 3T3-L1 cells [55,56]. In addition, FABP4 
plays a very important role in the regulation of energy 
storage and glucose homoeostasis [54,57].

The CTRP family is a superfamily of aliphatic factors 
secreted mainly by adipose tissue with similar structural 
characteristics. Its biological functions are mainly 
related to anti-inflammation, metabolism, and immu
nity. Some CTRP subtypes enhance fatty acid oxidation 
in muscle cells and regulate lipid metabolism. CTRP6 
plays an essential regulatory role in fat development, 
promoting the expression of adipogenic genes, redu
cing the expression of lipolytic genes and decreasing 
the activation of p38MAPK. Knockdown of CTRP6 
reduces the deposition of fat in pigs [58,59]. Another 
subtype, CTRP3, negatively regulates lipid metabolism 
during adipocyte differentiation. It has been reported 
that CTRP3-treated rats have reduced hepatic fatty acid 

synthesis and attenuated hepatic steatosis, but the 
mechanism is not clear [60]. Among young children 
(aged 7–10 years) total CTRP3 concentration was posi
tively correlated with HDL but negatively correlated 
with TG and VLDL [61]. In women with gestational 
diabetes mellitus (GDM), fasting serum CTRP3 was 
positively correlated with HDL-C and HOMA-β, 
which may reveal the protective role of CTRP3 in the 
development of GDM [62,63].

In addition, IGFBP-2 can inhibit human visceral 
adipogenesis and lipogenesis and may have a limiting 
role on excess visceral fat, but not subcutaneous adipo
cytes [64,65]. In a population-based cross-sectional 
study, IGFBP2 was negatively associated with VLDL 
and TG levels but not with HDL [66]. After one year 
of lifestyle and diet changes, elevated IGFBP2 levels 
were strongly associated with lower low-density lipo
protein (LDL) and apo B (the major apolipoprotein of 
LDL) concentrations [67]. Stable isotope-labelled leu
cine-based tracers for lipoprotein kinetic assays suggest 
that the negative correlation between plasma IGFBP-2 
levels and TG concentrations may be due to impaired 
clearance of VLDL and IDL particles by apo B −100 
and increased production of coeliac particles by apo 
B −48, but additional studies are necessary to investi
gate the mechanisms [68].

Insulin resistance

The insulin signalling pathway is triggered by the bind
ing of insulin to transmembrane insulin receptors 
(INSRs), followed by the activation of insulin receptor 
substrates (IRSs) and the downstream PI3K-AKT signal
ling pathway (Figure 1), resulting in increased protein 
synthesis, lipogenesis, glucose uptake and utilization, 
glycogen synthesis, and reduced lipolysis and gluconeo
genesis [69]. Many factors can inhibit this pathway and 
lead to insulin resistance, such as chronic inflammation, 
cellular nutrient stress, and lipid factors [70,71].

Multiple adipokines have been reported to be 
involved in insulin resistance. Retinol binding protein 4 
(RBP4) is a member of the lipocalin family and the 
major transport protein of retinol. RBP4 is the most 
highly expressed adipokine in liver, followed by adipose 
tissue [72,73], and it is elevated in the serum of people 
with obesity and/or T2DM [74,75]. In experiments with 
mice, RBP4 activates both CD4-positive T cells and 
macrophages through Toll-like receptor 4 (TLR4, 
major receptor mediating the endotoxin-induced inflam
matory response)- and c-Jun N-terminal kinase (JNK)- 
dependent pathways, resulting in the upregulation of 
proinflammatory cytokines [76,77]. These inflammatory 
factors increase lipolysis and promote insulin resistance 

4 X. WANG ET AL.



[78]. However, finding in the clinic have been inconsis
tent as several clinical studies have found that insulin 
resistance is not associated with circulating levels of 
RBP4 [79–81].

Fetuin-A (FetA) is a glycoprotein that is secreted by 
the liver and adipose tissue [82,83]. It activates macro
phages to induce inflammation and causes insulin resis
tance. Blocking certain inflammatory signalling 
pathways can protect mice from FetA-mediated insulin 
resistance and partially restore insulin secretion [84– 
86]. As the function of FetA is gradually clarified, it is 
considered a potential biological indicator of insulin 
resistance [87,88].

There is broad consensus that adiponectin is an anti- 
insulin resistance adipokine. As previously described, 
APPL1 interacts with adiponectin receptors and multi
ple pathways [12,16]. APPL1 forms a complex with 
IRS1/2, and this complex is then recruited to INSR 
and enhances insulin signal transduction. High-fat 
diet and obese mice have reduced adiponectin levels 
and AdipoR2 expression, impairing adiponectin signal
ling and causing insulin resistance [89,90]. In addition, 
a high level of resistin is positively associated with 
insulin resistance in obese and T2DM patients [91], 
which does not exist in healthy people [91,92]. 
Resistin induces an inflammatory response through 
the TLR4 signalling pathway, leading to insulin resis
tance [93,94].

Since IGFBP-2 is structurally similar to insulin, it is 
associated with insulin resistance and negatively corre
lated with weight and metabolic dysfunction indicators. 
Serum IGFBP-2 levels were significantly lower in over
weight or obese children than in controls and circulating 
IGFBP-2 levels in overweight or obese children were 
positively correlated with insulin sensitivity [95,96]. 
These results suggested that IGFBP-2 might be 
a promising marker for the early recognition of insulin 
resistance, especially in overweight or obese children [95– 
97]. Many other adipokines are closely related to insulin 
resistance, which is negatively correlated with FGF21, 
leptin and omentin-1 concentrations [98–100] and posi
tively correlated with CTRP9 and vaspin [101,102]. 
Although an increasing number of biomarkers have 
been developed for the prediction of insulin sensitivity 
[103], their accuracy and efficacy are still un satisfactory 
for the early detection and treatment of insulin resistance.

Function of adipokines during white fat conversion 
into brown

It has long been thought that there are two different 
adipocytes in mammals – white and brown adipocytes, 
whereas white adipocytes contain large unilocular lipid 

droplets and few mitochondria, and their main func
tion is to store energy. Brown adipocytes contain multi
locular lipid droplets and many mitochondria 
expressing UCP1, which converts energy into heat. 
While recent studies have demonstrated the existence 
of UCP1-independent thermogenic pathways [104], 
UCP1 is still the main regulator of thermogenesis in 
BAT, as numerous studies have revealed. In recent 
years, a new type of adipose adipocyte has been dis
covered, beige adipocytes [105]. In response to stimula
tion by cold, catecholamines, exercise, and 
thiazolidinediones (TZDs), white adipocytes turn 
brown and produce heat-producing adipocytes, also 
known as beige adipocytes. Beige adipocytes are inter
mediates in the transformation of white adipocytes to 
brown adipocytes, and their morphology and function 
are similar to those of brown adipocytes [106,107] 
(Figure 2).

Glycogen is a major mechanism of energy storage 
and utilization [108]. A research team found that gly
cogen (PTG) -knockout (KO) mice have reduced UCP1 
expression and energy expenditure [109]. In addition, 
the expression of glycogen metabolism genes in adipose 
tissue was negatively associated with obesity in two 
independent populations [109]. Glycogen metabolism 
links glucose homoeostasis to thermogenesis in adipo
cytes, which provides a new concept of white fat con
version into brown fat.

White adipocytes produce large amounts of adipo
kines including leptin, adiponectin, omentin, FABP4 
and inflammatory factors. The effect of adipokines 
secreted by WAT on glycolipid metabolism has been 
described in other chapters.

Brown and beige adipose tissues are known princi
pally for their thermogenic effects. However, in recent 
years, it has been discovered that, similar to WAT, 
brown and beige adipose tissues also play an important 
role in the regulation of metabolic health through the 
secretion of various adipokines, called batokines, 
including vascular endothelial growth factor 
A (VEGFA), chemokine C-X-C motif chemokine 
ligand-14 (CXCL14), FGF21, bone morphogenetic pro
teins (BMPs), interleukin(IL)-6, and neuregulin 4 
(NRG4) [110–112]. These adipokines, which act in 
a paracrine or autocrine manner, play a vital role in 
glucolipid metabolism and the transformation of adi
pose tissue types. For example, BAT-mediated secretion 
of vascular endothelial growth factor A (VEGFA) can 
promote vascularization of BAT itself, and increase 
thermogenesis [111]. Chemokine C-X-C motif chemo
kine ligand-14 (CXCL14) is a novel regulatory factor 
secreted by BAT in response to thermogenic activation. 
CXCL14 promotes adaptive thermogenesis via M2 
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macrophage recruitment, BAT activation and the 
browning of white fat [113,114].

In mice exposed to cold β-adrenergic stimulation, 
causes a significant induction of FGF21 mRNA levels in 
BAT, and FGF21 increases glucose uptake in adipocytes 
[115,116]. FGF21 induces browning of WAT and acti
vation of brown adipocytes in mice [117,118]. Adipose- 
specific deletion of the FGF21 coreceptor KLB renders 
mice unresponsive to β-adrenergic stimulation. In con
trast, mice with liver-specific ablation of FGF21 show 
no change [119,120]. Combined, these results indicate 
the autocrine role of FGF21 in adipocytes. In obese and 
type 2 diabetic mice, reduced levels of KLB decreased 
the thermogenic responsiveness of adipose tissue to 
cold exposure. These impairments in obese mice can 
be reversed by exercise, which sensitizes the action of 
FGF21 in adipose tissue and maintains metabolic 
homoeostasis [120,121].

BMPs also play an important role in the differentia
tion of adipogenesis. It is believed that BMP4 can 
trigger the commitment of stem cells to the white 
adipocyte lineage [122]. BMP7 promotes the formation 
of brown fat in mice [123]. Activation of BAT requires 
the involvement of the regulators PRDM16 and PGC- 
1α (PPAR-γ coactivator-1α), and BMP7 induces this 
process and increases the expression of UCP1 and C/ 
EBPα, thereby promoting BAT formation [123,124]. 
However, there is evidence of differences between 
mice and humans. In humans, both BMP4 and BMP7 
act in adipogenesis and WAT to BAT conversion 

[125,126]. However, BAT activation by BMP7 is tem
perature-dependent, and it increases BAT volume, 
activity, and total energy expenditure only at subther
moneutrality, suggesting that intact sympathetic activa
tion is a prerequisite for the effects of BMP7 on 
BAT [127].

Regulation of adipokines in chronic inflammation

Obesity can induce chronic low-grade inflammation 
[128], which leads to insulin resistance and diabetes- 
related vascular complications. Obesity increases lipopo
lysaccharide (LPS) in the intestinal flora, which initiates 
the inflammatory cascade by activating pattern recogni
tion TLR4 and leads to insulin resistance [129,130]. 
WAT secretes anti-inflammatory and proinflammatory 
factors. Adipose tissue inflammation is initiated and 
sustained by dysfunctional adipocytes secreting inflam
matory adipokines and infiltration of myelo-derived 
inflammatory cells [131]. In this process, macrophages 
regulate inflammatory signalling cascades in the tissue. 
A study in obese mice showed that obesity induces the 
local expansion of resident intraislet macrophages, which 
may contribute to the restriction of insulin secretion and 
impairment of islet cell function [132,133]. In addition, 
glycogen metabolism is also involved in the regulation of 
macrophage-mediated acute inflammatory responses.

C-reactive protein (CRP), tumour necrosis factor-α 
(TNF-α) and interleukin-6 (IL-6) are typical proinflam
matory cytokines that destroy islet cell cells and weaken 

Figure 2. a. White adipocytes contain large unilocular lipid droplets and few mitochondria, and their main function is to store 
energy. In humans, WAT is mainly found in visceral adipose tissue and abdominal subcutaneous adipose tissue; b. Beige adipocytes 
contain moderate amounts of lipid droplets and mitochondria, which can express UCP1 thermogenesis, but it’s reversible; c. Brown 
adipocytes contain multilocular lipid droplets and many mitochondria expressing UCP1, which can burn fat and produces heat. BAT 
is mainly found in the interscapular and subclavian.
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insulin sensitivity. Adiponectin is negatively correlated 
with the inflammatory factors CRP and IL-6 and inhi
bits TNF-α production. M1 macrophages stimulate 
proinflammatory factors and induce insulin resistance, 
while M2 macrophages block the inflammatory 
response and promote oxidative metabolism. 
Adiponectin exerts anti-inflammatory effects by inhi
biting M1 and stimulating M2 macrophages. In addi
tion, adiponectin induces IL-10 and reduces 
proinflammatory cytokines in human macrophages 
[134–136]. CTRPs are structurally similar to adiponec
tin and thus harbour a similar function [18,137,138]. 
Omentin-1 also inhibits the expression of LPS-induced 
inflammatory factors in macrophages, and it exerts 
anti-inflammatory effects through the p38, JNK, ERK, 
and nuclear factor kappa B (NF-κb) signalling pathways 
[100,139]. However, the underlying mechanism needs 
further investigation.

In addition, angiotensin- [1–7] (Ang1–7) and BMP7 
[140,141] also exert anti-inflammatory effects by inhi
biting oxidative and various inflammatory signalling 
pathways, such as p38 and p44/42 MAPK. These stu
dies provide more possibilities for the treatment of 
diabetes complications (such as diabetic nephropathy, 
diabetic retinopathy, and atherosclerosis).

Adipokines and appetite

Obesity has become a worldwide problem, and a strong 
appetite is an important cause of obesity. Studies of 
appetite-suppressing factors and appetite-promoting 
factors have provided new ideas for the clinical treat
ment of obesity and anorexia.

Leptin suppresses appetite by acting on the hypotha
lamus. Leptin binds to pro-opiomelanocortin (POMC) 
neuronal surface receptors and stimulates the release of 
alpha-melanocyte-stimulating hormone (α-MSH). 
Then, α-MSH binds to the melanocortin-4 receptor 
(MC4R) and sends signals to the paraventricular 
nucleus (PVN), thereby suppressing appetite and redu
cing energy intake, and disruption of the PVN can lead 
to binge eating [142–144]. As early as 1999, a study 
showed that exogenous leptin administration resulted 
in weight loss in adults [145]. However, the leptin levels 
of most obese people are significantly higher than those 
of normal people, and they usually show leptin resis
tance because of high-fat diet-induced obesity disrupt
ing multiple regions of the hypothalamus and affecting 
melanocortin signalling [146]. In brain tissue, once the 
leptin receptor is activated, it recruits the tyrosine 
kinase JNK-2 and phosphorylates tyrosine residues, 
resulting in the activation of extracellular signal regula
tion and recruitment of SOCS-3, which inhibits leptin 

signalling. As such, hyperleptinemia in obese patients 
may trigger brain leptin resistance via activation of 
SOCS-3 [35]. Signal transducer and activator of tran
scription (STAT) 3 is a key factor in the anorexic effect 
of leptin. ERK, STAT5 and PI3K are also involved in 
the regulation of hypothalamic appetite, while SOCS3 
and protein tyrosine phosphatase-1B (PTP1B) are 
negative regulators of leptin signalling [147,148]. 
Deficiency of PTP1B signalling also increases leptin 
sensitivity and reduces obesity [149]. Many other 
mechanisms contribute to leptin resistance, such as 
impaired blood-brain barrier transport, competitive 
leptin inhibition, endoplasmic reticulum stress, and 
impaired ERK signalling [150,151]. In this case, 
a decrease in plasma leptin levels restores hypothalamic 
leptin sensitivity and leads to reduced food intake, 
increased energy expenditure and improved insulin 
sensitivity [152].

Some factors can influence eating by modulating 
leptin. Agouti-related peptide (AgRP) is 
a neuropeptide produced in the brain by AgRP/neuro
peptide Y (NPY) neurons. It acts as an antagonist of 
MC4R that promotes feeding and obesity. Under star
vation, circulating leptin and insulin levels decrease, 
and sustained NPY signalling enables AgRP neurons 
to drive feeding [146,153]. Hypothalamic T-cell protein 
tyrosine phosphatase (TCPTP) is induced by fasting 
and is broken down after feeding. TCPTP controls 
insulin receptor signalling in AgRP neurons in response 
to feeding and glucose uptake [154]. TCPTP and 
PTP1B inhibitors may improve leptin sensitivity and 
reduce obesity [149,155]. Ghrelin is a brain-gut peptide 
that promotes growth hormone secretion and enhances 
appetite, and targeting it may benefit patients with 
depression and anorexia nervosa [156].

Conclusion and further perspectives

Disorders of glucolipid metabolism are closely related to 
obesity and insulin resistance, and the underlying 
mechanisms include inflammation, appetite, and white 
fat browning, with multiple adipokines involved in this 
process. In this review, we summarized the regulation of 
glucolipid metabolism and the role of several major 
adipokines (Table 1), and a better understanding the 
role of adipokines in endocrine metabolism is necessary.

In addition to these peptide adipokines, adipose 
tissue also secretes nonpeptide secreted factors, 
which are disseminated in the blood, called lipokines, 
such as lysophosphatidic acid (LPA) and palmitoleic 
acid. Such factors are also closely related to insulin 
resistance, insulin sensitivity, fat metabolism and 
energy expenditure.
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Increasing research on adipokines is expected to 
make them valuable in disease prediction, therapeutic 
targeting, and prognostic assessment. However, the 
current studies on adipokines are not sufficient, and 
there are still many shortcomings in the study of adi
pokine production, secretion, interaction and mechan
isms of metabolic regulation; more unknowns are 
waiting to be discovered. In the future, adipokine- 
based drugs may become potentially novel and innova
tive therapeutic approaches for the treatment of meta
bolic diseases.
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