

REVIEW

OPEN ACCESS

Adipokines in glucose and lipid metabolism

Xueqing Wang , Siwen Zhang, and Zhuo Li

Department of Endocrinology, The First Hospital of Jilin University, Jilin, China

ABSTRACT

Adipokines are proteins secreted by adipose tissue to regulate glucolipid metabolism and play vital roles in our body. Different adipokines have more than one endocrine function and be divided into several different categories according to their functions, including adipokines involved in glucolipid metabolism, the inflammatory response, insulin action, activation of brown adipose tissue (BAT) and appetite regulation. Multiple adipokines interact with each other to regulate metabolic processes. Based on the recent progress of adipokine research, this article discusses the role and mechanism of various adipokines in glucolipid metabolism, which may provide new ideas for understanding the pathogenesis and improving the treatment of various metabolic diseases.

ARTICLE HISTORY

Received 14 October 2022

Revised 18 February 2023

Accepted 12 April 2023

KEYWORDS

Insulin resistance; appetite; inflammation; adiponectin; leptin

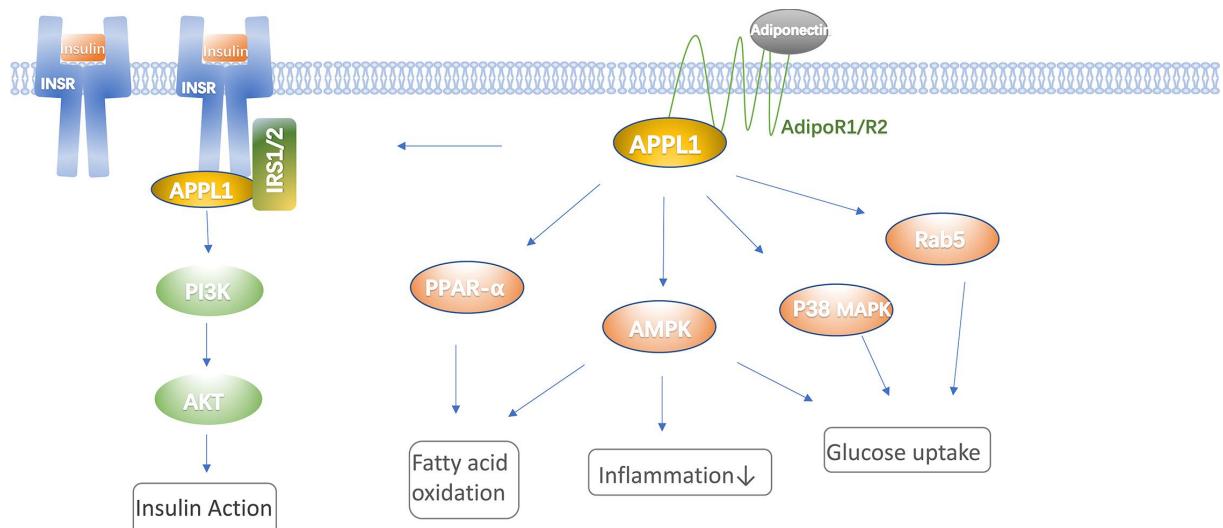
Introduction

In 1987, Bruce Spiegelman, a professor at the Dana-Farber Cancer Institute and Harvard Medical School, first discovered the adipokine adiponectin [1]. By 1994, the discovery of leptin further changed the traditional view of adipose tissue as an energy storage organ for many years and opened a new era in human research on adipose tissue. In the past several decades, with the societal development, the morbidity rate of obesity has increased, arousing global health concerns including insulin resistance, type 2 diabetes, and metabolic – associated fatty liver disease (MAFLD). With an increasing number of studies focusing on adipose tissue, it is now clear that adipose tissue has a complex and active metabolic endocrine function, that secretes a variety of adipokines, such as leptin and adiponectin, which act locally in adipose tissue (paracrine or autocrine) or via blood circulation to distant target organs. The abnormal secretion or action of these adipokines directly or indirectly leads to metabolic disorders, such as obesity, diabetes, hyperlipidaemia, and other metabolic syndromes. At present, although the understanding of adipokines has improved, there are still vast unknowns that need to be further explored. To better understand the role of adipose tissue and the effects of different adipokines on glucolipid metabolism, this paper presents a systematic review of the more studied adipokines in recent years, with the aim of providing an overview of the relevant studies in this field and suggesting possible research directions in the diagnosis and treatment of metabolic syndrome diseases.

Effects of adipokines on glucose metabolism

Glucose enters cells in various ways, including passive diffusion, facilitated diffusion and active transport, with GLUT4-mediated facilitated diffusion being the main mode in muscle and adipocytes. Glucose utilization occurs mainly through glycolysis, aerobic oxidation, and glycogen synthesis. Multiple adipokines are involved in the process of glucose metabolism and exert different functions. Adipsin, adiponectin, C1q/TNF-related proteins (CTRPs), fibroblast growth factor-21 (FGF21), leptin, and insulin-like growth factor binding protein-2 (IGFBP2) promote glucose metabolism and lower blood glucose levels. In contrast, resistin has a blood glucose-raising effect.

Adipsin, the first described adipokine, is a member of the serine protease family found in 3T3 adipocytes. Later studies found that adipsin was identified as complement factor D, which participates in an alternative pathway of the complement system [2]. A study showed that long-term chronic supplementation of adipsin in db/db mice ameliorates hyperglycaemia and increases insulin levels while preserving beta cells by blocking dedifferentiation and death [3]. Type 2 diabetes mellitus (T2DM) patients with β cell failure are deficient in adipsin. Adipsin catalyses the release of complement factor C3a, which has been shown to stimulate insulin production in pancreatic β cells [4]. A clinical study of the relationship between serum adipsin and the first phase of glucose-stimulated insulin secretion in individuals with different glucose


tolerances showed that serum adipsin levels were lower in patients with T2DM and impaired glucose tolerance (IGT) and were positively correlated with the first phase of insulin secretion [5]. Furthermore, adipsin facilitates glucose uptake, increases triglyceride synthesis in adipocytes and inhibits lipolysis [6]. Taken together, these recent findings suggest that adipsin plays an important role in maintaining the homoeostasis of adipose tissue and pancreatic β cell function.

Adiponectin is a secreted protein encoded by the *apM1* gene. The biological function of adiponectin is mainly mediated by adiponectin receptor 1 and adiponectin receptor 2 (AdipoR1/R2), which have seven transmembrane domains, with their N-terminus inside the cell and the C-terminus facing outwards. This topology is opposite to all-known G-protein coupled receptors [7]. In addition to AdipoR1/R2, T-cadherin is another receptor that is highly expressed in the cardiovascular system. Adiponectin/T-cadherin plays a role in reducing atherosclerosis and protecting the cardiovascular system, and mammalian cell-based studies have suggested that T-cadherin is the major binding partner of native adiponectin in serum [8,9]. Decreased adiponectin and receptor levels are present in adults with obesity and T2DM [10].

There is a highly conserved 13-residue fragment, ADP-1, in the collagen structural domain of adiponectin. ADP-1 activates AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK) in an adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1)-dependent pathway and stimulates basal glucose transporter type 4

(GLUT4) translocation and glucose uptake in rat skeletal muscle cells (L6 myotubes) [11,12]. In hippocampal neurons, adiponectin enhances glucose uptake, glycolytic rate, and ATP production in an AMPK-dependent manner [13]. Adiponectin stimulates the interaction between APPL1 and Rab5 (a small GTPase), leading to increased GLUT4 membrane translocation [14]. Rab5 plays a pivotal role in APPL1-mediated adiponectin signalling, and impaired GTPase Rab5 expression has been found in adipocytes in patients with obesity and T2DM [15,16] (Figure 1). Adiponectin is a kind of globular protein and has a similar structure to CTRPs. Specially, CTRP9 shows the highest degree of amino acid identity to adiponectin in its globular C1q domain (approximately 51%). The function of CTRP9 is to promote glucose metabolism, similar to adiponectin [17,18]. In contrast to the function of adiponectin, resistin inhibits glucose metabolism by inhibiting hexokinase activity and reducing glucose uptake into adipocytes, muscle cells and other tissues [13].

FGF21 is a metabolic hormone synthesized by various tissues; when secreted by adipose tissue it is called adipokine, by the liver it is called hepatokine, and by muscle it is called myokine. It was recently recognized as a metabolic regulator that exerts paracrine and endocrine control of many aspects of energy homoeostasis in multiple tissues. In the above, we described the role of adiponectin in glucose metabolism. Treatments with FGF21 enhanced both the expression and secretion of adiponectin in adipocytes, thereby increasing serum levels of adiponectin in mice [19]. This shows that FGF21, as an adipokine, regulates glucose homoeostasis and insulin sensitivity through adiponectin mediation

Figure 1. Adiponectin and insulin signalling. APPL1 interacts with AdipoR1 or AdipoR2 and mediates the activation of multiple pathways including PPAR- α , AMPK and p38 MAPK by adiponectin, then triggers a cascade of biological responses. Most of the metabolic effects of insulin are mediated by PI3K/AKT pathway. APPL1 enhances crosstalk between the insulin and adiponectin signalling pathways, by promoting the interaction of IRS1/2 and insulin receptor.

[19,20]. However, a 2017 study suggested that adiponectin is dispensable for the chronic effects of FGF21 on energy expenditure and insulin sensitivity [21]. FGF21 predominantly binds to the receptor FGFR1c, and this process requires the cofactor β -Klotho (KLB) to achieve ligand-receptor interactions [22]. Then, tyrosine kinase activity is initiated which further activates the MAPK pathway. MAPK activates extracellular signal-related kinase (ERK) 1 and ERK2, which enter the nucleus and stimulate the transcription of target genes [23,24]. In mice, selective ablation of β -klotho in adipocytes attenuates the acute but not chronic effects of FGF21 administration on glucose uptake and insulin sensitivity, suggesting that FGF21 exerts its metabolic actions through both adipose-dependent and adipose-independent mechanisms. Furthermore, this study also explored whether this effect was mediated through brown adipocytes [21]. In human adipose tissue, FGF21 also plays an important role in white adipose tissue (WAT) browning, brown adipocyte activation and lipolysis, as we will describe in the following sections.

Most FGF21 in the blood is secreted by the liver. FGF21 hepatokine responds to glucose response. In humans and mice, fructose induction increases FGF21 levels, and carbohydrate-responsive element-binding protein (CHREBP) is involved in this process. CHREBP deletion may blunt hepatic FGF21 transcription and secretion in response to glucose [25–28]. Single nucleotide polymorphisms (SNPs) in the FGF21 gene are associated with increased sweet taste preference [29]. Studies in rats, monkeys, and humans have shown that FGF21 moderates simple sugar intake and preferences for sweet foods by signalling with FGF21 receptors in the paraventricular nucleus of the hypothalamus [30,31]. The mechanism of FGF21 action and the tissues responsible for these actions have been controversial, but the important role of FGF21 in metabolism is clear.

Regulation of glucose metabolism by leptin is mediated both centrally and via peripheral tissues and is influenced by the activation status of insulin signalling pathways. The central nervous system (CNS) is currently considered the primary site of leptin activity. Leptin receptors (LEPRs) are expressed primarily in gamma-aminobutyric acid (GABA) neurons in the hypothalamus. Additionally, in other regions of the hypothalamus, including the ventral medial hypothalamic nucleus (VMH) and the arcuate nucleus of the hypothalamus (ARC), the expression levels are low [32,33]. Perry et al. found that leptin deficiency activated the hypothalamic-pituitary-adrenal (HPA) axis, causing elevated blood glucose and even diabetic ketoacidosis (DKA). Leptin acutely suppresses lipolysis and

hepatic glucose production (HGP) and reverses DKA in an insulin-independent manner by suppressing the HPA axis [34]. In addition, leptin is involved in glucose sensing in the hypothalamus. In short-term high-fat fed or uncontrolled diabetic mice, hypothalamic leptin infusion was found to enhance hypothalamic glucose sensing and restore glucose homoeostasis. It activates PI3K and/or STAT3 and enhances lactate metabolism to regulate glucose homoeostasis, but the underlying mechanisms require future investigation [35]. For the peripheral tissues, leptin inhibits hepatic gluconeogenesis, increases insulin sensitivity in the liver and promotes glucose uptake and utilization in skeletal and cardiac muscle [36–38]. Leptin can also mediate a glucose-fatty acid cycle to maintain glucose homoeostasis in starvation. In 48-hr fasted rats, physiologic leptin replacement suppresses lipolysis and reduces plasma glucose, but supraphysiologic leptin stimulates lipolysis and increases plasma glucose [39]. In addition, leptin is involved in the regulation of insulin-regulated intercellular signalling pathways. Leptin deficiency affects glucose homoeostasis [40]. In addition, it plays an important role in the regulation of appetite, as we will elaborate in the following sections.

The regulation of blood glucose by leptin can also be mediated by IGFBP [41]. IGFBP2 is a binding protein synthesized during adipogenesis that has been demonstrated to promote glucose uptake by myotubular cells [42]. However, the mechanism of IGFBP2 action still needs further investigation.

Adipokines in lipid metabolism

Fatty acid oxidation is an important source of energy in the body and is most active in the liver and muscle. Many adipokines such as FGF21, adiponectin, FABP4, IGFBP2 and CTRPs, are involved in this process, regulating lipid metabolism and energy production and consumption.

Peroxisome proliferator-activated receptor (PPAR) α is a nuclear receptor activated by fatty acids and is required for the normal adaptive response to starvation. PPAR α is highly expressed in tissues associated with fatty acid oxidation (e.g. liver and skeletal muscle), and its activation reduces plasma triglyceride (TG) and increases high-density lipoprotein (HDL) levels [26,43]. Mice lacking PPAR α accumulate hepatic triglycerides and become hypoketonemic during fasting and starvation [44,45]. Drugs targeting this mechanism have been used in the clinic. For example, the lipid-lowering drug fibrates are PPAR- α activators, and the glucose-lowering drug thiazolidinediones are PPAR- γ agonists [43,46]. Adiponectin greatly increases the

expression and activity of PPAR- α and upregulates acetyl coenzyme A oxidase and uncoupling protein (UCP), thereby promoting fatty acid oxidation and energy expenditure [11,47]. In a clinical study, it was found that HDL-C was independently correlated with adiponectin in nondiabetic men and women [48]. The mechanism may be that adiponectin enhances the secretion of apolipoprotein A-I (apo-AI), which is the major apolipoprotein of HDL, and the expression of ATP-binding cassette transporter A1 (A-BCA1), which induces HDL assembly through reverse cholesterol transport in hepatic cells [49,50]. In addition, many previous studies have demonstrated that circulating adiponectin is negatively correlated with TG and very low-density lipoprotein (VLDL) [51,52]. A possible explanation is the regulation of lipoprotein lipase (LPL) activity by adiponectin, resulting in increased TG catabolism [47]. As mentioned earlier, the adipokine FGF21 induces adiponectin; thus, it plays a similar role to adiponectin. FGF21, as a hepatokine also plays an important role in FFA transport and lipolysis, which will not be discussed here [53].

Fatty acid transport requires the involvement of fatty acid-binding protein 4(FABP4), a class of intracellular lipid chaperone proteins that are abundantly expressed in macrophages and adipocytes. FABP4 maintains adipocyte homoeostasis and regulates lipolysis and lipogenesis by interacting with hormone-sensitive lipases (HSL) and PPAR- γ [54]. Dou et al. reported that exogenous injection of FABP4 into mice significantly reduced intracellular triglyceride content; decreased the expression of the lipogenic markers PPAR- γ , CCAAT/enhancer binding protein α (C/EBP α), intracellular FABP4 and adiponectin; interfered with adipocyte differentiation; promoted lipolysis in adipocytes involved in p38 MAPK and induced adipocyte inflammation in 3T3-L1 cells [55,56]. In addition, FABP4 plays a very important role in the regulation of energy storage and glucose homoeostasis [54,57].

The CTRP family is a superfamily of aliphatic factors secreted mainly by adipose tissue with similar structural characteristics. Its biological functions are mainly related to anti-inflammation, metabolism, and immunity. Some CTRP subtypes enhance fatty acid oxidation in muscle cells and regulate lipid metabolism. CTRP6 plays an essential regulatory role in fat development, promoting the expression of adipogenic genes, reducing the expression of lipolytic genes and decreasing the activation of p38MAPK. Knockdown of CTRP6 reduces the deposition of fat in pigs [58,59]. Another subtype, CTRP3, negatively regulates lipid metabolism during adipocyte differentiation. It has been reported that CTRP3-treated rats have reduced hepatic fatty acid

synthesis and attenuated hepatic steatosis, but the mechanism is not clear [60]. Among young children (aged 7–10 years) total CTRP3 concentration was positively correlated with HDL but negatively correlated with TG and VLDL [61]. In women with gestational diabetes mellitus (GDM), fasting serum CTRP3 was positively correlated with HDL-C and HOMA- β , which may reveal the protective role of CTRP3 in the development of GDM [62,63].

In addition, IGFBP-2 can inhibit human visceral adipogenesis and lipogenesis and may have a limiting role on excess visceral fat, but not subcutaneous adipocytes [64,65]. In a population-based cross-sectional study, IGFBP2 was negatively associated with VLDL and TG levels but not with HDL [66]. After one year of lifestyle and diet changes, elevated IGFBP2 levels were strongly associated with lower low-density lipoprotein (LDL) and apo B (the major apolipoprotein of LDL) concentrations [67]. Stable isotope-labelled leucine-based tracers for lipoprotein kinetic assays suggest that the negative correlation between plasma IGFBP-2 levels and TG concentrations may be due to impaired clearance of VLDL and IDL particles by apo B-100 and increased production of coeliac particles by apo B-48, but additional studies are necessary to investigate the mechanisms [68].

Insulin resistance

The insulin signalling pathway is triggered by the binding of insulin to transmembrane insulin receptors (INSRs), followed by the activation of insulin receptor substrates (IRSs) and the downstream PI3K-AKT signalling pathway (Figure 1), resulting in increased protein synthesis, lipogenesis, glucose uptake and utilization, glycogen synthesis, and reduced lipolysis and gluconeogenesis [69]. Many factors can inhibit this pathway and lead to insulin resistance, such as chronic inflammation, cellular nutrient stress, and lipid factors [70,71].

Multiple adipokines have been reported to be involved in insulin resistance. Retinol binding protein 4 (RBP4) is a member of the lipocalin family and the major transport protein of retinol. RBP4 is the most highly expressed adipokine in liver, followed by adipose tissue [72,73], and it is elevated in the serum of people with obesity and/or T2DM [74,75]. In experiments with mice, RBP4 activates both CD4-positive T cells and macrophages through Toll-like receptor 4 (TLR4, major receptor mediating the endotoxin-induced inflammatory response)- and c-Jun N-terminal kinase (JNK)-dependent pathways, resulting in the upregulation of proinflammatory cytokines [76,77]. These inflammatory factors increase lipolysis and promote insulin resistance

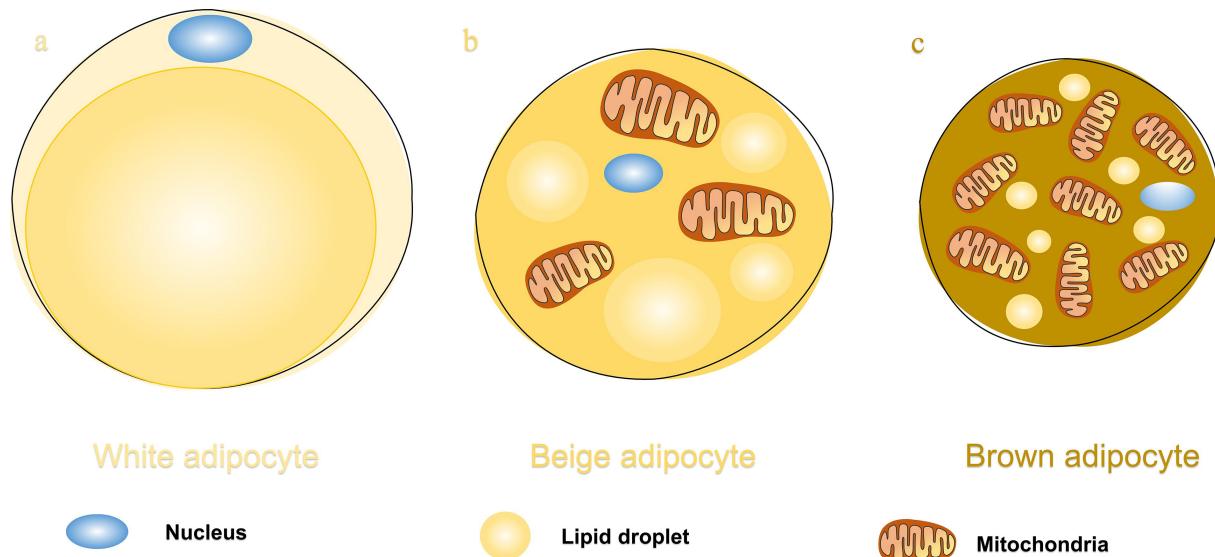
[78]. However, finding in the clinic have been inconsistent as several clinical studies have found that insulin resistance is not associated with circulating levels of RBP4 [79–81].

Fetuin-A (FetA) is a glycoprotein that is secreted by the liver and adipose tissue [82,83]. It activates macrophages to induce inflammation and causes insulin resistance. Blocking certain inflammatory signalling pathways can protect mice from FetA-mediated insulin resistance and partially restore insulin secretion [84–86]. As the function of FetA is gradually clarified, it is considered a potential biological indicator of insulin resistance [87,88].

There is broad consensus that adiponectin is an anti-insulin resistance adipokine. As previously described, APPL1 interacts with adiponectin receptors and multiple pathways [12,16]. APPL1 forms a complex with IRS1/2, and this complex is then recruited to INSR and enhances insulin signal transduction. High-fat diet and obese mice have reduced adiponectin levels and AdipoR2 expression, impairing adiponectin signalling and causing insulin resistance [89,90]. In addition, a high level of resistin is positively associated with insulin resistance in obese and T2DM patients [91], which does not exist in healthy people [91,92]. Resistin induces an inflammatory response through the TLR4 signalling pathway, leading to insulin resistance [93,94].

Since IGFBP-2 is structurally similar to insulin, it is associated with insulin resistance and negatively correlated with weight and metabolic dysfunction indicators. Serum IGFBP-2 levels were significantly lower in overweight or obese children than in controls and circulating IGFBP-2 levels in overweight or obese children were positively correlated with insulin sensitivity [95,96]. These results suggested that IGFBP-2 might be a promising marker for the early recognition of insulin resistance, especially in overweight or obese children [95–97]. Many other adipokines are closely related to insulin resistance, which is negatively correlated with FGF21, leptin and omentin-1 concentrations [98–100] and positively correlated with CTRP9 and vaspin [101,102]. Although an increasing number of biomarkers have been developed for the prediction of insulin sensitivity [103], their accuracy and efficacy are still unsatisfactory for the early detection and treatment of insulin resistance.

Function of adipokines during white fat conversion into brown


It has long been thought that there are two different adipocytes in mammals – white and brown adipocytes, whereas white adipocytes contain large unilocular lipid

droplets and few mitochondria, and their main function is to store energy. Brown adipocytes contain multilocular lipid droplets and many mitochondria expressing UCP1, which converts energy into heat. While recent studies have demonstrated the existence of UCP1-independent thermogenic pathways [104], UCP1 is still the main regulator of thermogenesis in BAT, as numerous studies have revealed. In recent years, a new type of adipose adipocyte has been discovered, beige adipocytes [105]. In response to stimulation by cold, catecholamines, exercise, and thiazolidinediones (TZDs), white adipocytes turn brown and produce heat-producing adipocytes, also known as beige adipocytes. Beige adipocytes are intermediates in the transformation of white adipocytes to brown adipocytes, and their morphology and function are similar to those of brown adipocytes [106,107] (Figure 2).

Glycogen is a major mechanism of energy storage and utilization [108]. A research team found that glycogen (PTG)-knockout (KO) mice have reduced UCP1 expression and energy expenditure [109]. In addition, the expression of glycogen metabolism genes in adipose tissue was negatively associated with obesity in two independent populations [109]. Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes, which provides a new concept of white fat conversion into brown fat.

White adipocytes produce large amounts of adipokines including leptin, adiponectin, omentin, FABP4 and inflammatory factors. The effect of adipokines secreted by WAT on glycolipid metabolism has been described in other chapters.

Brown and beige adipose tissues are known principally for their thermogenic effects. However, in recent years, it has been discovered that, similar to WAT, brown and beige adipose tissues also play an important role in the regulation of metabolic health through the secretion of various adipokines, called batokines, including vascular endothelial growth factor A (VEGFA), chemokine C-X-C motif chemokine ligand-14 (CXCL14), FGF21, bone morphogenetic proteins (BMPs), interleukin(IL)-6, and neuregulin 4 (NRG4) [110–112]. These adipokines, which act in a paracrine or autocrine manner, play a vital role in glucolipid metabolism and the transformation of adipose tissue types. For example, BAT-mediated secretion of vascular endothelial growth factor A (VEGFA) can promote vascularization of BAT itself, and increase thermogenesis [111]. Chemokine C-X-C motif chemokine ligand-14 (CXCL14) is a novel regulatory factor secreted by BAT in response to thermogenic activation. CXCL14 promotes adaptive thermogenesis via M2

Figure 2. a. White adipocytes contain large unilocular lipid droplets and few mitochondria, and their main function is to store energy. In humans, WAT is mainly found in visceral adipose tissue and abdominal subcutaneous adipose tissue; b. Beige adipocytes contain moderate amounts of lipid droplets and mitochondria, which can express UCP1 thermogenesis, but it's reversible; c. Brown adipocytes contain multilocular lipid droplets and many mitochondria expressing UCP1, which can burn fat and produces heat. BAT is mainly found in the interscapular and subclavian.

macrophage recruitment, BAT activation and the browning of white fat [113,114].

In mice exposed to cold β -adrenergic stimulation, causes a significant induction of FGF21 mRNA levels in BAT, and FGF21 increases glucose uptake in adipocytes [115,116]. FGF21 induces browning of WAT and activation of brown adipocytes in mice [117,118]. Adipose-specific deletion of the FGF21 coreceptor KLB renders mice unresponsive to β -adrenergic stimulation. In contrast, mice with liver-specific ablation of FGF21 show no change [119,120]. Combined, these results indicate the autocrine role of FGF21 in adipocytes. In obese and type 2 diabetic mice, reduced levels of KLB decreased the thermogenic responsiveness of adipose tissue to cold exposure. These impairments in obese mice can be reversed by exercise, which sensitizes the action of FGF21 in adipose tissue and maintains metabolic homoeostasis [120,121].

BMPs also play an important role in the differentiation of adipogenesis. It is believed that BMP4 can trigger the commitment of stem cells to the white adipocyte lineage [122]. BMP7 promotes the formation of brown fat in mice [123]. Activation of BAT requires the involvement of the regulators PRDM16 and PGC-1 α (PPAR- γ coactivator-1 α), and BMP7 induces this process and increases the expression of UCP1 and C/EBP α , thereby promoting BAT formation [123,124]. However, there is evidence of differences between mice and humans. In humans, both BMP4 and BMP7 act in adipogenesis and WAT to BAT conversion

[125,126]. However, BAT activation by BMP7 is temperature-dependent, and it increases BAT volume, activity, and total energy expenditure only at subthermoneutrality, suggesting that intact sympathetic activation is a prerequisite for the effects of BMP7 on BAT [127].

Regulation of adipokines in chronic inflammation

Obesity can induce chronic low-grade inflammation [128], which leads to insulin resistance and diabetes-related vascular complications. Obesity increases lipopolysaccharide (LPS) in the intestinal flora, which initiates the inflammatory cascade by activating pattern recognition TLR4 and leads to insulin resistance [129,130]. WAT secretes anti-inflammatory and proinflammatory factors. Adipose tissue inflammation is initiated and sustained by dysfunctional adipocytes secreting inflammatory adipokines and infiltration of myelo-derived inflammatory cells [131]. In this process, macrophages regulate inflammatory signalling cascades in the tissue. A study in obese mice showed that obesity induces the local expansion of resident intraislet macrophages, which may contribute to the restriction of insulin secretion and impairment of islet cell function [132,133]. In addition, glycogen metabolism is also involved in the regulation of macrophage-mediated acute inflammatory responses.

C-reactive protein (CRP), tumour necrosis factor- α (TNF- α) and interleukin-6 (IL-6) are typical proinflammatory cytokines that destroy islet cell cells and weaken

insulin sensitivity. Adiponectin is negatively correlated with the inflammatory factors CRP and IL-6 and inhibits TNF- α production. M1 macrophages stimulate proinflammatory factors and induce insulin resistance, while M2 macrophages block the inflammatory response and promote oxidative metabolism. Adiponectin exerts anti-inflammatory effects by inhibiting M1 and stimulating M2 macrophages. In addition, adiponectin induces IL-10 and reduces proinflammatory cytokines in human macrophages [134–136]. CTRPs are structurally similar to adiponectin and thus harbour a similar function [18,137,138]. Omentin-1 also inhibits the expression of LPS-induced inflammatory factors in macrophages, and it exerts anti-inflammatory effects through the p38, JNK, ERK, and nuclear factor kappa B (NF- κ b) signalling pathways [100,139]. However, the underlying mechanism needs further investigation.

In addition, angiotensin- [1–7] (Ang1–7) and BMP7 [140,141] also exert anti-inflammatory effects by inhibiting oxidative and various inflammatory signalling pathways, such as p38 and p44/42 MAPK. These studies provide more possibilities for the treatment of diabetes complications (such as diabetic nephropathy, diabetic retinopathy, and atherosclerosis).

Adipokines and appetite

Obesity has become a worldwide problem, and a strong appetite is an important cause of obesity. Studies of appetite-suppressing factors and appetite-promoting factors have provided new ideas for the clinical treatment of obesity and anorexia.

Leptin suppresses appetite by acting on the hypothalamus. Leptin binds to pro-opiomelanocortin (POMC) neuronal surface receptors and stimulates the release of alpha-melanocyte-stimulating hormone (α -MSH). Then, α -MSH binds to the melanocortin-4 receptor (MC4R) and sends signals to the paraventricular nucleus (PVN), thereby suppressing appetite and reducing energy intake, and disruption of the PVN can lead to binge eating [142–144]. As early as 1999, a study showed that exogenous leptin administration resulted in weight loss in adults [145]. However, the leptin levels of most obese people are significantly higher than those of normal people, and they usually show leptin resistance because of high-fat diet-induced obesity disrupting multiple regions of the hypothalamus and affecting melanocortin signalling [146]. In brain tissue, once the leptin receptor is activated, it recruits the tyrosine kinase JNK-2 and phosphorylates tyrosine residues, resulting in the activation of extracellular signal regulation and recruitment of SOCS-3, which inhibits leptin

signalling. As such, hyperleptinemia in obese patients may trigger brain leptin resistance via activation of SOCS-3 [35]. Signal transducer and activator of transcription (STAT) 3 is a key factor in the anorexic effect of leptin. ERK, STAT5 and PI3K are also involved in the regulation of hypothalamic appetite, while SOCS3 and protein tyrosine phosphatase-1B (PTP1B) are negative regulators of leptin signalling [147,148]. Deficiency of PTP1B signalling also increases leptin sensitivity and reduces obesity [149]. Many other mechanisms contribute to leptin resistance, such as impaired blood-brain barrier transport, competitive leptin inhibition, endoplasmic reticulum stress, and impaired ERK signalling [150,151]. In this case, a decrease in plasma leptin levels restores hypothalamic leptin sensitivity and leads to reduced food intake, increased energy expenditure and improved insulin sensitivity [152].

Some factors can influence eating by modulating leptin. Agouti-related peptide (AgRP) is a neuropeptide produced in the brain by AgRP/neuropeptide Y (NPY) neurons. It acts as an antagonist of MC4R that promotes feeding and obesity. Under starvation, circulating leptin and insulin levels decrease, and sustained NPY signalling enables AgRP neurons to drive feeding [146,153]. Hypothalamic T-cell protein tyrosine phosphatase (TCPTP) is induced by fasting and is broken down after feeding. TCPTP controls insulin receptor signalling in AgRP neurons in response to feeding and glucose uptake [154]. TCPTP and PTP1B inhibitors may improve leptin sensitivity and reduce obesity [149,155]. Ghrelin is a brain-gut peptide that promotes growth hormone secretion and enhances appetite, and targeting it may benefit patients with depression and anorexia nervosa [156].

Conclusion and further perspectives

Disorders of glucolipid metabolism are closely related to obesity and insulin resistance, and the underlying mechanisms include inflammation, appetite, and white fat browning, with multiple adipokines involved in this process. In this review, we summarized the regulation of glucolipid metabolism and the role of several major adipokines (Table 1), and a better understanding the role of adipokines in endocrine metabolism is necessary.

In addition to these peptide adipokines, adipose tissue also secretes nonpeptide secreted factors, which are disseminated in the blood, called lipokines, such as lysophosphatidic acid (LPA) and palmitoleic acid. Such factors are also closely related to insulin resistance, insulin sensitivity, fat metabolism and energy expenditure.

Table 1. A summary of the role of adipokines on glycolipid metabolism.

Adipokines	Roles and Mechanisms in Glycolipid Metabolism
Adiponectin	Activate AMPK and MAPK, stimulate GLUT4 translocation and glucose uptake [11][V]. Positive correlation with HDL [48][III], negative correlation with TG and VLDL [52][III]. Increases HDL assembly and accelerates reverse cholesterol transport [50][V]. APPL1 binds AdipoR1/R2 to activate downstream signalling pathways including glucose uptake, fatty acid oxidation, and insulin signalling [14][V].
FGF21	Inhibit M1 and stimulate M2 macrophages [136][V]; Induce IL-10 and reduce pro-inflammatory cytokines in human macrophages [135][V]. Increase adiponectin levels to regulate glycolipid metabolism [19][V]. Induce browning of WAT and activate brown adipocytes [117][V]. Moderate simple sugar intake and preferences for sweet foods via signalling with FGF21 receptors in the paraventricular nucleus of the hypothalamus [31][I].
Leptin	Inhibit hepatic gluconeogenesis and promote glucose uptake [37][V]; Increase insulin sensitivity and improve glucose utilization [38][V]. Physiologic leptin replacement suppresses lipolysis and reduces plasma glucose, but supraphysiologic leptin stimulates lipolysis and increases plasma glucose [39][V]. Exogenous leptin administration resulted in weight loss in adults [145][I]. Appetite control by the leptin-POMC pathway [144][V].
CTRPs	CTRP9 is structurally similar to adiponectin and exerts similar effects as adiponectin [17][V]. CTRP6 regulates adipocyte proliferation and differentiation [58][V]. Knockdown of CTRP6 reduces the deposition of fatty tissue [59][V]. CTRP3 concentration was positively correlated with HDL, but negatively with TG and VLDL [61][V].
BMPs	BMP4 is capable of triggering commitment of stem cells to the white adipocyte lineage [122][V]. BMP7 promotes the formation of brown fat in mice [123][V].
Adipsin	In humans, both BMP4 and BMP7 act in adipogenesis and WAT to BAT conversion [125][V]. Preserve beta cells and ameliorate hyperglycaemia in diabetic mice [3][V].
Resistin	Increases triglyceride synthesis in adipocytes and inhibit lipolysis [6][III].
IGFBP2	Inhibits hexokinase activity and reduces glucose uptake [13][V]. Induces an inflammatory response through the TLR4 signalling pathway, leading to insulin resistance [93][V]. Induce GLUT-4 translocation and glucose uptake [42][V]. Inhibit human visceral adipogenesis and lipogenesis [64] [V]. Negatively correlated with VLDL and TG levels [66][III].

Abbreviations: AMPK, AMP-activated protein kinase; MAPK, mitogen-activated protein kinase; GLUT4, glucose transporter type 4; HDL, high-density lipoprotein; TG, triglyceride; VLDL, very low-density lipoprotein; APPL1, adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1; AdipoR1/R2, adiponectin receptor 1 and adiponectin receptor 2; M1, M1 macrophages; M2, M2 macrophages; IL-10, interleukin-10; WAT, white adipose tissue; FGF21, fibroblast growth factor-21; POMC, pro-opiomelanocortin; CTRP, C1q/TNF-related protein; BMP, bone morphogenetic protein; BAT, brown adipose tissue; TLR4, toll-like receptors 4; IGFBP-2, insulin-like growth factor binding protein-2. I-V are graded according to the rank of Evidence-Based Medicine (EBM). I: systematic reviews, meta analyses, randomized control trials; II: cohort studies; III: case control studies; case reports; IV: ideas, expert opinions; V: animals researches, in vitro experiments.

Increasing research on adipokines is expected to make them valuable in disease prediction, therapeutic targeting, and prognostic assessment. However, the current studies on adipokines are not sufficient, and there are still many shortcomings in the study of adipokine production, secretion, interaction and mechanisms of metabolic regulation; more unknowns are waiting to be discovered. In the future, adipokine-based drugs may become potentially novel and innovative therapeutic approaches for the treatment of metabolic diseases.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Natural Science Foundation of China (82070871, 82100909).

ORCID

Xueqing Wang <http://orcid.org/0000-0002-6083-0749>

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

- Cook KS, Min HY, Johnson D, et al. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. *Science*. 1987;237(4813):402–405. Epub 1987/07/24. [10.1126/science.3299705](https://doi.org/10.1126/science.3299705)
- Cook KS, Groves DL, Min HY, et al. A developmentally regulated mRNA from 3t3 adipocytes encodes a novel serine protease homologue. *Proc Natl Acad Sci U S A*. 1985;82(19):6480–6484. Epub 1985/10/01 DOI:[10.1073/pnas.82.19.6480](https://doi.org/10.1073/pnas.82.19.6480).
- Gómez-Banoy N, Guseh JS, Li G, et al. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. *Nat Med*. 2019;25(11):1739–1747. Epub 2019/11/09. DOI:[10.1038/s41591-019-0610-4](https://doi.org/10.1038/s41591-019-0610-4).
- Lo JC, Ljubicic S, Leibiger B, et al. Adipsin is an adipokine that improves B cell function in diabetes. *Cell*. 2014;158(1):41–53. Epub 2014/07/06. [10.1016/j.cell.2014.06.005](https://doi.org/10.1016/j.cell.2014.06.005)

[5] Zhou Q, Ge Q, Ding Y, et al. Relationship between serum adiponectin and the first phase of glucose-stimulated insulin secretion in individuals with different glucose tolerance. *J Diabetes Investig.* 2018;9(5):1128–1134. Epub 2018/02/13. DOI:[10.1111/jdi.12819](https://doi.org/10.1111/jdi.12819).

[6] Milek M, Moulla Y, Kern M, et al. Adipsin serum concentrations and adipose tissue expression in people with obesity and type 2 diabetes. *Int J Mol Sci.* 2022;23(4):2222. Epub 2022/02/27. DOI:[10.3390/ijms23042222](https://doi.org/10.3390/ijms23042222)

[7] Wang ZV, Scherer PE. Adiponectin, the past two decades. *J Mol Cell Biol.* 2016;8(2):93–100. Epub 2016/03/20 DOI:[10.1093/jmcb/mjw011](https://doi.org/10.1093/jmcb/mjw011).

[8] Kita S, Fukuda S, Maeda N, et al. Native adiponectin in serum binds to mammalian cells expressing T-Cadherin, but not adiponectin or calreticulin. *Elife.* 2019;8. Epub 2019/10/28. DOI:[10.7554/elife.48675](https://doi.org/10.7554/elife.48675).

[9] Maeda N, Funahashi T, Matsuzawa Y, et al. Adiponectin, a unique adipocyte-derived factor beyond hormones. *Atherosclerosis.* 2020;292:1–9. Epub 2019/11/16. DOI:[10.1016/j.atherosclerosis.2019.10.021](https://doi.org/10.1016/j.atherosclerosis.2019.10.021).

[10] Rasmussen MS, Lihn AS, Pedersen SB, et al. Adiponectin receptors in human adipose tissue: effects of obesity, weight loss, and fat depots. *Obesity (Silver Spring).* 2006;14(1):28–35. Epub 2006/02/24. DOI:[10.1038/oby.2006.5](https://doi.org/10.1038/oby.2006.5).

[11] Sayeed M, Gautam S, Verma DP, et al. A collagen domain-derived short adiponectin peptide activates Appl1 and Ampk signaling pathways and improves glucose and fatty acid metabolisms. *J Biol Chem.* 2018;293(35):13509–13523. Epub 2018/07/12. DOI:[10.1074/jbc.RA118.001801](https://doi.org/10.1074/jbc.RA118.001801).

[12] Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. *J Mol Cell Biol.* 2016;8(2):101–109. Epub 2016/03/20 DOI:[10.1093/jmcb/mjw014](https://doi.org/10.1093/jmcb/mjw014).

[13] Cisternas P, Martinez M, Ahima RS, et al. Modulation of glucose metabolism in hippocampal neurons by adiponectin and resistin. *Mol Neurobiol.* 2019;56(4):3024–3037. Epub 2018/08/05 DOI:[10.1007/s12035-018-1271-x](https://doi.org/10.1007/s12035-018-1271-x).

[14] Mao X, Kikani CK, Riojas RA, et al. Appl1 binds to adiponectin receptors and mediates adiponectin signaling and function. *Nat Cell Biol.* 2006;8(5):516–523. Epub 2006/04/20. DOI:[10.1038/ncb1404](https://doi.org/10.1038/ncb1404).

[15] Karvela A, Kostopoulou E, Rojas Gil AP, et al. Adiponectin signaling and impaired gtpase Rab5 expression in adipocytes of adolescents with obesity. *Horm Res Paediatr.* 2020;93(5):287–296. Epub 2020/10/20. DOI:[10.1159/000510851](https://doi.org/10.1159/000510851).

[16] Fang H, Judd RL. Adiponectin regulation and function. *Compr Physiol.* 2018;8(3):1031–1063. Epub 2018/07/07 DOI:[10.1002/cphy.c170046](https://doi.org/10.1002/cphy.c170046).

[17] Wong GW, Krawczyk SA, Kitidis-Mitrokostas C, et al. Identification and characterization of Ctrp9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin. *Faseb J.* 2009;23(1):241–258. Epub 2008/09/13. DOI:[10.1096/fj.08-114991](https://doi.org/10.1096/fj.08-114991).

[18] Seldin MM, Tan SY, Wong GW. Metabolic function of the Ctrp family of hormones. *Rev Endocr Metab Disord.* 2014;15(2):111–123. Epub 2013/08/22 DOI:[10.1007/s11154-013-9255-7](https://doi.org/10.1007/s11154-013-9255-7).

[19] Lin Z, Tian H, Lam KS, et al. Adiponectin mediates the metabolic effects of Fgf21 on glucose homeostasis and insulin sensitivity in mice. *Cell Metab.* 2013;17(5):779–789. Epub 2013/05/15. DOI:[10.1016/j.cmet.2013.04.005](https://doi.org/10.1016/j.cmet.2013.04.005).

[20] Holland WL, Adams AC, Brozinick JT, et al. An Fgf21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. *Cell Metab.* 2013;17(5):790–797. Epub 2013/05/15. DOI:[10.1016/j.cmet.2013.03.019](https://doi.org/10.1016/j.cmet.2013.03.019).

[21] BonDurant LD, Ameka M, Naber MC, et al. Fgf21 regulates metabolism through adipose-dependent and -independent mechanisms. *Cell Metab.* 2017;25(4):935–44.e4. Epub 2017/04/06. DOI:[10.1016/j.cmet.2017.03.005](https://doi.org/10.1016/j.cmet.2017.03.005).

[22] Suzuki M, Uehara Y, Motomura-Matsuzaka K, et al. Betaklotho is required for fibroblast growth factor (Fgf) 21 signaling through fgf receptor (Fgfr) 1c and Fgfr3c. *Mol Endocrinol.* 2008;22(4):1006–1014. Epub 2008/01/12. DOI:[10.1210/me.2007-0313](https://doi.org/10.1210/me.2007-0313).

[23] Szczepańska E, Gietka-Czernel M. Fgf21: a novel regulator of glucose and lipid metabolism and whole-body energy balance. *Horm Metab Res.* 2022;54(4):203–211. Epub 2022/04/13 DOI:[10.1055/a-1778-4159](https://doi.org/10.1055/a-1778-4159).

[24] Yie J, Wang W, Deng L, et al. Understanding the physical interactions in the Fgf21/Fgfr/B-Klotho complex: structural requirements and implications in Fgf21 signaling. *Chem Biol Drug Des.* 2012;79(4):398–410. Epub 2012/01/18. DOI:[10.1111/j.1747-0285.2012.01325.x](https://doi.org/10.1111/j.1747-0285.2012.01325.x).

[25] Iroz A, Montagner A, Benhamed F, et al. A specific chrebp and ppara cross-talk is required for the glucose-mediated Fgf21 response. *Cell Rep.* 2017;21(2):403–416. Epub 2017/10/12. DOI:[10.1016/j.celrep.2017.09.065](https://doi.org/10.1016/j.celrep.2017.09.065).

[26] Nakagawa Y, Shimano H. Crebh regulates systemic glucose and lipid metabolism. *Int J Mol Sci.* 2018;19(5):1396. Epub 2018/05/09. DOI:[10.3390/ijms19051396](https://doi.org/10.3390/ijms19051396).

[27] Fisher FM, Kim M, Doridot L, et al. A critical role for chrebp-mediated Fgf21 secretion in hepatic fructose metabolism. *Mol Metab.* 2017;6(1):14–21. Epub 2017/01/27. DOI:[10.1016/j.molmet.2016.11.008](https://doi.org/10.1016/j.molmet.2016.11.008).

[28] Postic C, Dentin R, Denechaud PD, et al. Chrebp, a transcriptional regulator of glucose and lipid metabolism. *Annu Rev Nutr.* 2007;27:179–192. Epub 2007/04/13. DOI:[10.1146/annurev.nutr.27.061406.093618](https://doi.org/10.1146/annurev.nutr.27.061406.093618).

[29] BonDurant LD, Potthoff MJ. Fibroblast growth factor 21: a versatile regulator of metabolic homeostasis. *Annu Rev Nutr.* 2018;38:173–196. Epub 2018/05/05. DOI:[10.1146/annurev-nutr-071816-064800](https://doi.org/10.1146/annurev-nutr-071816-064800).

[30] de Oliveira Dos Santos AR, de Oliveira Zanuso B, Miola VFB, et al. Adipokines, myokines, and hepatokines: crosstalk and metabolic repercussions. *Int J Mol Sci.* 2021;22(5):2639. Epub 2021/04/04. DOI:[10.3390/ijms22052639](https://doi.org/10.3390/ijms22052639).

[31] Søberg S, Sandholt CH, Jespersen NZ, et al. Fgf21 is a sugar-induced hormone associated with sweet intake and preference in humans. *Cell Metab.* 2017;25(5):1045–1053.e6. Epub 2017/05/04. DOI:[10.1016/j.cmet.2017.04.009](https://doi.org/10.1016/j.cmet.2017.04.009).

[32] D’Souza AM, Neumann UH, Glavas MM, et al. The glucoregulatory actions of leptin. *Mol Metab.* 2017;6

(9):1052–1065. Epub 2017/09/28 DOI:[10.1016/j.molmet.2017.04.011](https://doi.org/10.1016/j.molmet.2017.04.011).

[33] Xu J, Bartolome CL, Low CS, et al. Genetic identification of leptin neural circuits in energy and glucose homeostases. *Nature*. 2018;556(7702):505–509. Epub 2018/04/20. DOI:[10.1038/s41586-018-0049-7](https://doi.org/10.1038/s41586-018-0049-7).

[34] Perry RJ, Peng L, Abulizi A, et al. Mechanism for leptin's acute insulin-independent effect to reverse diabetic ketoacidosis. *J Clin Invest*. 2017;127(2):657–669. Epub 2017/01/24 DOI:[10.1172/jci88477](https://doi.org/10.1172/jci88477).

[35] RJW L, Zhang SY, Lam TKT. Interaction of glucose sensing and leptin action in the brain. *Mol Metab*. 2020;39:101011. Epub 2020/05/18. DOI:[10.1016/j.molmet.2020.101011](https://doi.org/10.1016/j.molmet.2020.101011).

[36] Pereira S, Cline DL, Glavas MM, et al. Tissue-specific effects of leptin on glucose and lipid metabolism. *Endocr Rev*. 2021;42(1):1–28. Epub 2020/11/06 DOI:[10.1210/endrev/bnaa027](https://doi.org/10.1210/endrev/bnaa027).

[37] Kamohara S, Burcelin R, Halaas JL, et al. Acute stimulation of glucose metabolism in mice by leptin treatment. *Nature*. 1997;389(6649):374–377. Epub 1997/10/06. DOI:[10.1038/38717](https://doi.org/10.1038/38717).

[38] Rouru J, Cusin I, Zakrzewska KE, et al. Effects of intravenously infused leptin on insulin sensitivity and on the expression of uncoupling proteins in brown adipose tissue. *Endocrinology*. 1999;140(8):3688–3692. Epub 1999/08/05 DOI:[10.1210/endo.140.8.6890](https://doi.org/10.1210/endo.140.8.6890).

[39] Perry RJ, Wang Y, Cline GW, et al. Leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation. *Cell*. 2018;172(1–2):234–48.e17. Epub 2018/01/09. DOI:[10.1016/j.cell.2017.12.001](https://doi.org/10.1016/j.cell.2017.12.001).

[40] He J, Ding Y, Nowik N, et al. Leptin deficiency affects glucose homeostasis and results in adiposity in zebrafish. *J Endocrinol*. 2021;249(2):125–134. Epub 2021/03/12. DOI:[10.1530/joe-20-0437](https://doi.org/10.1530/joe-20-0437).

[41] Hedbacher K, Birsoy K, Wysocki RW, et al. Antidiabetic effects of Igfbp2, a leptin-regulated gene. *Cell Metab*. 2010;11(1):11–22. Epub 2010/01/16. DOI:[10.1016/j.cmet.2009.11.007](https://doi.org/10.1016/j.cmet.2009.11.007).

[42] Assefa B, Mahmoud AM, Pfeiffer AFH, et al. Insulin-like growth factor (Igf) binding protein-2, independently of Igf-1, induces Glut-4 translocation and glucose uptake in 3t3-L1 adipocytes. *Oxid Med Cell Longev*. 2017;2017(2017):3035184. Epub 2018/02/10. DOI:[10.1155/2017/3035184](https://doi.org/10.1155/2017/3035184).

[43] Mirza AZ, Althagafi II, Shamshad H. Role of ppar receptor in different diseases and their ligands: physiological importance and clinical implications. *Eur J Med Chem*. 2019;166:502–513. Epub 2019/02/12. DOI:[10.1016/j.ejmech.2019.01.067](https://doi.org/10.1016/j.ejmech.2019.01.067).

[44] Kersten S, Seydoux J, Peters JM, et al. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. *J Clin Invest*. 1999;103(11):1489–1498. Epub 1999/06/08 DOI:[10.1172/jci6223](https://doi.org/10.1172/jci6223).

[45] Cotter DG, Ercal B, d'Avignon DA, et al. Impairments of hepatic gluconeogenesis and ketogenesis in ppar-deficient neonatal mice. *Am J Physiol Endocrinol Metab*. 2014;307(2):E176–85. Epub 2014/05/29 DOI:[10.1152/ajpendo.00087.2014](https://doi.org/10.1152/ajpendo.00087.2014).

[46] Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. *Nutr J*. 2014;13:17. Epub 2014/02/15. DOI:[10.1186/1475-2891-13-17](https://doi.org/10.1186/1475-2891-13-17).

[47] Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. *Int J Mol Sci*. 2017;18(6):1321. Epub 2017/06/22. DOI:[10.3390/ijms18061321](https://doi.org/10.3390/ijms18061321).

[48] Tomono Y, Hiraishi C, Yoshida H. Age and sex differences in serum adiponectin and its association with lipoprotein fractions. *Ann Clin Biochem*. 2018;55(1):165–171. Epub 2017/05/16 DOI:[10.1177/0004563217699233](https://doi.org/10.1177/0004563217699233).

[49] Oku H, Matsuura F, Koseki M, et al. Adiponectin deficiency suppresses Abca1 expression and Apoa-I synthesis in the liver. *FEBS Lett*. 2007;581(26):5029–5033. Epub 2007/10/16. DOI:[10.1016/j.febslet.2007.09.038](https://doi.org/10.1016/j.febslet.2007.09.038).

[50] Matsuura F, Oku H, Koseki M, et al. Adiponectin accelerates reverse cholesterol transport by increasing high density lipoprotein assembly in the liver. *Biochem Biophys Res Commun*. 2007;358(4):1091–1095. Epub 2007/05/25. DOI:[10.1016/j.bbrc.2007.05.040](https://doi.org/10.1016/j.bbrc.2007.05.040).

[51] Kangas-Kontio T, Huotari A, Ruotsalainen H, et al. Genetic and environmental determinants of total and high-molecular weight adiponectin in families with low Hdl-cholesterol and early onset coronary heart disease. *Atherosclerosis*. 2010;210(2):479–485. Epub 2010/01/09. DOI:[10.1016/j.atherosclerosis.2009.12.022](https://doi.org/10.1016/j.atherosclerosis.2009.12.022).

[52] Okada T, Saito E, Kuromori Y, et al. Relationship between serum adiponectin level and lipid composition in each lipoprotein fraction in adolescent children. *Atherosclerosis*. 2006;188(1):179–183. Epub 2005/11/26. DOI:[10.1016/j.atherosclerosis.2005.10.030](https://doi.org/10.1016/j.atherosclerosis.2005.10.030).

[53] Itoh N. Fgf21 as a hepatokine, adipokine, and myokine in metabolism and diseases. *Front Endocrinol*. 2014;5:107. Epub 2014/07/30. DOI:[10.3389/fendo.2014.00107](https://doi.org/10.3389/fendo.2014.00107).

[54] Prentice KJ, Saksi J, Hotamisligil GS. Adipokine Fabp4 integrates energy stores and counterregulatory metabolic responses. *J Lipid Res*. 2019;60(4):734–740. Epub 2019/02/02 DOI:[10.1194/jlr.S091793](https://doi.org/10.1194/jlr.S091793).

[55] Dou HX, Wang T, Su HX, et al. Exogenous Fabp4 interferes with differentiation, promotes lipolysis and inflammation in adipocytes. *Endocrine*. 2020;67(3):587–596. Epub 2019/12/18. DOI:[10.1007/s12020-019-02157-8](https://doi.org/10.1007/s12020-019-02157-8).

[56] Furuhashi M. Fatty acid-binding protein 4 in cardiovascular and metabolic diseases. *J Atheroscler Thromb*. 2019;26(3):216–232. Epub 2019/02/07 DOI:[10.5551/jat.48710](https://doi.org/10.5551/jat.48710).

[57] Ron I, Lerner RK, Rathaus M, et al. The adipokine Fabp4 is a key regulator of neonatal glucose homeostasis. *JCI Insight*. 2021;6(20):Epub 2021/10/23. doi:[10.1172/jci.insight.138288](https://doi.org/10.1172/jci.insight.138288).

[58] Wu W, Zhang J, Zhao C, et al. Ctrp6 regulates porcine adipocyte proliferation and differentiation by the Adipor1/Mapk signaling pathway. *J Agric Food Chem*. 2017;65(27):5512–5522. Epub 2017/05/26 DOI:[10.1021/acs.jafc.7b00594](https://doi.org/10.1021/acs.jafc.7b00594).

[59] Wu W, Ji M, Xu K, et al. Knockdown of Ctrp6 reduces the deposition of intramuscular and subcutaneous fat in pigs via different signaling pathways. *Biochim Biophys Acta, Mol Cell Biol Lipids*. 2020;1865

(8):158729. Epub 2020/05/04. DOI:[10.1016/j.bbali.2020.158729](https://doi.org/10.1016/j.bbali.2020.158729).

[60] Peterson JM, Seldin MM, Wei Z, et al. Ctrp3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism. *Am J Physiol Gastrointest Liver Physiol.* **2013**;305(3):G214–24. Epub 2013/06/08 DOI:[10.1152/ajpgi.00102.2013](https://doi.org/10.1152/ajpgi.00102.2013).

[61] Alamian A, Marrs JA, Clark WA, et al. Ctrp3 and serum triglycerides in children aged 7–10 years. *PLoS ONE.* **2020**;15(12):e0241813. Epub 2020/12/04 DOI:[10.1371/journal.pone.0241813](https://doi.org/10.1371/journal.pone.0241813).

[62] Li JY, Wu GM, Hou Z, et al. Expression of C1q/Tnf-related protein-3 (Ctrp3) in serum of patients with gestational diabetes mellitus and its relationship with insulin resistance. *Eur Rev Med Pharmacol Sci.* **2017**;21(24):5702–5710. Epub 2017/12/23 DOI:[10.26355/eurrev_201712_14016](https://doi.org/10.26355/eurrev_201712_14016).

[63] Xia L, Zhang H, Shi Q, et al. Protective role of Ctrp3 and Ctrp9 in the development of gestational diabetes mellitus. *Clin Lab.* **2020**; 66(11):Epub 2020/11/13. DOI:[10.7754/Clin.Lab.2020.200247](https://doi.org/10.7754/Clin.Lab.2020.200247).

[64] Yau SW, Russo VC, Clarke IJ, et al. Igfbp-2 inhibits adipogenesis and lipogenesis in human visceral, but not subcutaneous, adipocytes. *Int J Obes (Lond).* **2015**;39(5):770–781. Epub 2014/11/06 DOI:[10.1038/ijo.2014.192](https://doi.org/10.1038/ijo.2014.192).

[65] Alfares MN, Perks CM, Hamilton-Shield JP, et al. Insulin-like growth factor-II in adipocyte regulation: depot-specific actions suggest a potential role limiting excess visceral adiposity. *Am J Physiol Endocrinol Metab.* **2018**;315(6):E1098–e107. Epub 2018/07/25 DOI:[10.1152/ajpendo.00409.2017](https://doi.org/10.1152/ajpendo.00409.2017).

[66] Carter S, Li Z, Lemieux I, et al. Circulating Igfbp-2 levels are incrementally linked to correlates of the metabolic syndrome and independently associated with Vldl triglycerides. *Atherosclerosis.* **2014**;237(2):645–651. Epub 2014/12/03. DOI:[10.1016/j.atherosclerosis.2014.09.022](https://doi.org/10.1016/j.atherosclerosis.2014.09.022).

[67] Carter S, Lemieux I, Li Z, et al. Changes in Igfbp-2 levels following a one-year lifestyle modification program are independently related to improvements in plasma Apo B and Ldl Apo B levels. *Atherosclerosis.* Epub 2019/01/19 **2019**;281: 89–97. doi: [10.1016/j.atherosclerosis.2018.12.016](https://doi.org/10.1016/j.atherosclerosis.2018.12.016)

[68] Rauzier C, Lamarche B, Tremblay AJ, et al. Associations between insulin-like growth factor binding protein-2 and lipoprotein kinetics in men. *J Lipid Res.* **2022**;63(10):100269. Epub 2022/08/29 DOI:[10.1016/j.jlr.2022.100269](https://doi.org/10.1016/j.jlr.2022.100269).

[69] White MF, Kahn CR. Insulin action at a molecular level – 100 years of progress. *Mol Metab.* **2021**;52:101304. Epub 2021/07/19. DOI:[10.1016/j.molmet.2021.101304](https://doi.org/10.1016/j.molmet.2021.101304).

[70] Yaribeygi H, Farrokhi FR, Butler AE, et al. Insulin resistance: review of the underlying molecular mechanisms. *J Cell Physiol.* **2019**;234(6):8152–8161. Epub 2018/10/15 DOI:[10.1002/jcp.27603](https://doi.org/10.1002/jcp.27603).

[71] Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. *Physiol Rev.* **2018**;98(4):2133–2223. Epub 2018/08/02 DOI:[10.1152/physrev.00063.2017](https://doi.org/10.1152/physrev.00063.2017).

[72] Tsutsumi C, Okuno M, Tannous L, et al. Retinoids and retinoid-binding protein expression in rat adipocytes. *J Biol Chem.* **1992**;267(3):1805–1810. Epub 1992/01/25. DOI:[10.1016/S0021-9258\(18\)46017-6](https://doi.org/10.1016/S0021-9258(18)46017-6)

[73] Steinhoff JS, Lass A, Schupp M. Biological functions of Rbp4 and Its relevance for human diseases. *Front Physiol.* **2021**;12:659977. Epub 2021/04/02. DOI:[10.3389/fphys.2021.659977](https://doi.org/10.3389/fphys.2021.659977).

[74] Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. *Nature.* **2005**;436(7049):356–362. Epub 2005/07/22. DOI:[10.1038/nature03711](https://doi.org/10.1038/nature03711)

[75] Graham TE, Yang Q, Blüher M, et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. *N Engl J Med.* **2006**;354(24):2552–2563. Epub 2006/06/16. DOI:[10.1056/NEJMoa054862](https://doi.org/10.1056/NEJMoa054862).

[76] Moraes-Vieira PM, Yore MM, Dwyer PM, et al. Rbp4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. *Cell Metab.* **2014**;19(3):512–526. Epub 2014/03/13 DOI:[10.1016/j.cmet.2014.01.018](https://doi.org/10.1016/j.cmet.2014.01.018).

[77] Norseen J, Hosooka T, Hammarstedt A, et al. Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a C-Jun N-Terminal kinase- and toll-like receptor 4-dependent and retinol-independent mechanism. *Mol Cell Biol.* **2012**;32(10):2010–2019. Epub 2012/03/21. DOI:[10.1128/mcb.06193-11](https://doi.org/10.1128/mcb.06193-11).

[78] Kilicarslan M, de Weijer BA, Simonyté Sjödin K, et al. Rbp4 increases lipolysis in human adipocytes and is associated with increased lipolysis and hepatic insulin resistance in obese women. *Faseb J.* **2020**;34(5):6099–6110. Epub 2020/03/14. DOI:[10.1096/fj.201901979RR](https://doi.org/10.1096/fj.201901979RR).

[79] Promintzer M, Krebs M, Todoric J, et al. Insulin resistance is unrelated to circulating retinol binding protein and protein C inhibitor. *J Clin Endocrinol Metab.* **2007**;92(11):4306–4312. Epub 2007/08/30. DOI:[10.1210/jc.2006-2522](https://doi.org/10.1210/jc.2006-2522).

[80] Korek E, Gibas-Dorna M, Chęcińska-Maciejewska Z, et al. Serum Rbp4 positively correlates with triglyceride level but not with bmi, fat mass and insulin resistance in healthy obese and non-obese individuals. *Biomarkers.* **2018**;23(7):683–688. Epub 2018/05/23. DOI:[10.1080/1354750x.2018.1479770](https://doi.org/10.1080/1354750x.2018.1479770)

[81] Ulgen F, Herder C, Kühn MC, et al. Association of serum levels of retinol-binding protein 4 with male sex but not with insulin resistance in obese patients. *Arch Physiol Biochem.* **2010**;116(2):57–62. Epub 2010/03/13. DOI:[10.3109/13813451003631421](https://doi.org/10.3109/13813451003631421).

[82] Trepanowski JF, Mey J, Varady KA. Fetuin-A: a novel link between obesity and related complications. *Int J Obes (Lond).* **2015**;39(5):734–741. Epub 2014/12/04 DOI:[10.1038/ijo.2014.203](https://doi.org/10.1038/ijo.2014.203).

[83] Jialal I, Pahwa R. Fetuin-a is also an adipokine. *Lipids Health Dis.* **2019**;18(1):73. Epub 2019/03/29 DOI:[10.1186/s12944-019-1021-8](https://doi.org/10.1186/s12944-019-1021-8).

[84] Mukhuty A, Fouzder C, Kundu R. Fetuin-a secretion from B-cells leads to accumulation of macrophages in islets, aggravates inflammation and impairs insulin secretion. *J Cell Sci.* **2021**; 134(21):Epub 2021/10/14. DOI:[10.1242/jcs.258507](https://doi.org/10.1242/jcs.258507).

[85] Mukhuty A, Fouzder C, Kundu R. Blocking Tlr4-NF- κ B pathway protects mouse islets from the combinatorial impact of high fat and fetuin-a mediated dysfunction and restores ability for insulin secretion. *Mol Cell Endocrinol.* 2021;532:111314. Epub 2021/05/15. DOI:10.1016/j.mce.2021.111314.

[86] Chattopadhyay D, Das S, Guria S, et al. Fetuin-a regulates adipose tissue macrophage content and activation in insulin resistant mice through Mcp-1 and Inos: involvement of Ifny-Jak2-Stat1pathway. *Biochem J.* 2021;478(22):4027–4043. Epub 2021/11/02 DOI:10.1042/bcj20210442.

[87] Shim YS, Kang MJ, Oh YJ, et al. Fetuin-a as an alternative marker for insulin resistance and cardiovascular risk in prepubertal children. *J Atheroscler Thromb.* 2017;24(10):1031–1038. Epub 2017/02/06 DOI:10.5551/jat.38323.

[88] Ü G S, Doğan M, Hatipoğlu N, et al. Can fetuin-a Be a marker for insulin resistance and poor glycemic control in children with type 1 diabetes mellitus? *J Clin Res Pediatr Endocrinol.* 2017;9(4):293–299. Epub 2017/05/23 DOI:10.4274/jcrpe.4532.

[89] Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipodystrophy and obesity. *Nat Med.* 2001;7(8):941–946. Epub 2001/08/02. DOI:10.1038/90984.

[90] Engin A. Adiponectin-resistance in obesity. *Adv Exp Med Biol.* 2017;960:415–441. Epub 2017/06/07. DOI:10.1007/978-3-319-48382-5_18.

[91] Su KZ, Li YR, Zhang D, et al. Relation of circulating resistin to insulin resistance in type 2 diabetes and obesity: a systematic review and meta-analysis. *Front Physiol.* 2019;10:1399. Epub 2019/12/06. DOI:10.3389/fphys.2019.01399.

[92] Pastusiak K, Kregielska-Narozna M, Bogdanski P. Resistin is not a useful insulin resistance marker for non-obese patients. *J Physiol Pharmacol.* 2020; 71(3): Epub 2020/09/30. DOI:10.26402/jpp.2020.3.06.

[93] Jiang Y, Lu L, Hu Y, et al. Resistin induces hypertension and insulin resistance in mice via a Tlr4-dependent pathway. *Sci Rep.* 2016;6:22193. Epub 2016/02/27. DOI:10.1038/srep22193.

[94] Benomar Y, Taouis M. Molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance: pivotal role of resistin/Tlr4 pathways. *Front Endocrinol.* 2019;10:140. Epub 2019/03/25. DOI:10.3389/fendo.2019.00140.

[95] Yau SW, Harcourt BE, Kao KT, et al. Serum Igfbp-2 levels are associated with reduced insulin sensitivity in obese children. *Clin Obes.* 2018;8(3):184–190. Epub 2018/03/02. DOI:10.1111/cob.12245.

[96] Ko JM, Park HK, Yang S, et al. Association between insulin-like growth factor binding protein-2 levels and cardiovascular risk factors in Korean children. *Endocr J.* 2012;59(4):335–343. Epub 2012/02/02 DOI:10.1507/endocrj.ej11-0358.

[97] Boughanem H, Yubero-Serrano EM, López-Miranda J, et al. Potential role of insulin growth-factor-binding protein 2 as therapeutic target for obesity-related insulin resistance. *Int J Mol Sci.* 2021;22(3):1133. Epub 2021/01/28. DOI:10.3390/ijms22031133.

[98] Yau SW, Henry BA, Russo VC, et al. Leptin enhances insulin sensitivity by direct and sympathetic nervous system regulation of muscle Igfbp-2 expression: evidence from nonrodent models. *Endocrinology.* 2014;155(6):2133–2143. Epub 2014/03/25. DOI:10.1210/en.2013-2099.

[99] Zengi S, Zengi O, Kirankaya A, et al. Serum omentin-1 levels in obese children. *J Pediatr Endocrinol Metab.* 2019;32(3):247–251. Epub 2019/03/01 DOI:10.1515/jpem-2018-0231.

[100] Watanabe T, Watanabe-Kominato K, Takahashi Y, et al. Adipose tissue-derived omentin-1 function and regulation. *Compr Physiol.* 2017;7(3):765–781. Epub 2017/06/24 DOI:10.1002/cphy.c160043.

[101] Jia Y, Luo X, Ji Y, et al. Circulating Ctrp9 levels are increased in patients with newly diagnosed type 2 diabetes and correlated with insulin resistance. *Diabet Res Clin Pract.* 2017;131:116–123. Epub 2017/07/26. DOI:10.1016/j.diabres.2017.07.003.

[102] Escoté X, Gómez-Zorita S, López-Yoldi M, et al. Role of omentin, vaspin, cardiotrophin-1, tweak and Nov/Ccn3 in obesity and diabetes development. *Int J Mol Sci.* 2017;18(8):1770. Epub 2017/08/16. DOI:10.3390/ijms18081770.

[103] Park SE, Park CY, Sweeney G. Biomarkers of insulin sensitivity and insulin resistance: past, present and future. *Crit Rev Clin Lab Sci.* 2015;52(4):180–190. Epub 2015/06/05 DOI:10.3109/10408363.2015.1023429.

[104] Ikeda K, Kang Q, Yoneshiro T, et al. Ucp1-independent signaling involving Serca2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. *Nat Med.* 2017;23(12):1454–1465. Epub 2017/11/14. DOI:10.1038/nm.4429.

[105] Wu J, Boström P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. *Cell.* 2012;150(2):366–376. Epub 2012/07/17. DOI:10.1016/j.cell.2012.05.016.

[106] Ikeda K, Maretich P, Kajimura S. The common and distinct features of brown and beige adipocytes. *Trends Endocrinol Metab.* 2018;29(3):191–200. Epub 2018/01/26 DOI:10.1016/j.tem.2018.01.001.

[107] Cheng L, Wang J, Dai H, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. *Adipocyte.* 2021;10(1):48–65. Epub 2021/01/07. DOI:10.1080/21623945.2020.1870060.

[108] Roach PJ, Depaoli-Roach AA, Hurley TD, et al. Glycogen and its metabolism: some new developments and old themes. *Biochem J.* 2012;441(3):763–787. Epub 2012/01/18 DOI:10.1042/bj20111416.

[109] Keinan O, Valentine JM, Xiao H, et al. Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. *Nature.* 2021;599(7884):296–301. Epub 2021/10/29. DOI:10.1038/s41586-021-04019-8.

[110] Villarroya F, Gavaldà-Navarro A, Peyrou M, et al. The lives and times of brown adipokines. *Trends Endocrinol Metab.* 2017;28(12):855–867. Epub 2017/11/09 DOI:10.1016/j.tem.2017.10.005.

[111] Villarroya F, Cereijo R, Villarroya J, et al. Brown adipose tissue as a secretory organ. *Nat Rev Endocrinol.* 2017;13(1):26–35. Epub 2016/11/04 DOI:10.1038/nrendo.2016.136.

[112] Ahmad B, Vohra MS, Saleemi MA, et al. Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: the batokines. *Biochimie*. 2021;184:26–39. Epub 2021/02/07. DOI:10.1016/j.biochi.2021.01.015.

[113] Cereijo R, Gavaldà-Navarro A, Cairó M, et al. Cxcl14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. *Cell Metab*. 2018;28(5):750–63.e6. Epub 2018/08/21. DOI:10.1016/j.cmet.2018.07.015.

[114] Villarroya J, Cereijo R, Gavaldà-Navarro A, et al. New insights into the secretory functions of brown adipose tissue. *J Endocrinol*. 2019;243(2):R19–r27. Epub 2019/08/17 DOI:10.1530/joe-19-0295.

[115] Chartoumpakis DV, Habeos IG, Ziros PG, et al. Brown adipose tissue responds to cold and adrenergic stimulation by induction of Fgf21. *Mol Med*. 2011;17(7–8):736–740. Epub 2011/03/05 DOI:10.2119/molmed.2011.00075.

[116] Justesen S, Haugegaard KV, Hansen JB, et al. The autocrine role of Fgf21 in cultured adipocytes. *Biochem J*. 2020;477(13):2477–2487. Epub 2020/07/11 DOI:10.1042/bcj20200220.

[117] Schlessinger K, Li W, Tan Y, et al. Gene expression in white fat from healthy humans and monkeys correlates with Fgf21-induced browning of white fat in mice. *Obesity (Silver Spring)*. 2015;23(9):1818–1829. Epub 2015/08/27. DOI:10.1002/oby.21153.

[118] Lee P, Linderman JD, Smith S, et al. Irisin and Fgf21 are cold-induced endocrine activators of brown fat function in humans. *Cell Metab*. 2014;19(2):302–309. Epub 2014/02/11. DOI:10.1016/j.cmet.2013.12.017.

[119] Abu-Odeh M, Zhang Y, Reilly SM, et al. Fgf21 promotes thermogenic gene expression as an autocrine factor in adipocytes. *Cell Rep*. 2021;35(13):109331. Epub 2021/07/01. DOI:10.1016/j.celrep.2021.109331.

[120] Moure R, Cairó M, Morón-Ros S, et al. Levels of B-klotho determine the thermogenic responsiveness of adipose tissues: involvement of the autocrine action of Fgf21. *Am J Physiol Endocrinol Metab*. 2021;320(4):E822–e34. Epub 2021/02/23. DOI:10.1152/ajpendo.00270.2020.

[121] Geng L, Liao B, Jin L, et al. Exercise alleviates obesity-induced metabolic dysfunction via enhancing Fgf21 sensitivity in adipose tissues. *Cell Rep*. 2019;26(10):2738–52.e4. Epub 2019/03/07. DOI:10.1016/j.celrep.2019.02.014.

[122] Bowers RR, Kim JW, Otto TC, et al. Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the Bmp-4 gene. *Proc Natl Acad Sci U S A*. 2006;103(35):13022–13027. Epub 2006/08/19 DOI:10.1073/pnas.0605789103.

[123] Tseng YH, Kokkotou E, Schulz TJ, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. *Nature*. 2008;454(7207):1000–1004. Epub 2008/08/23. DOI:10.1038/nature07221.

[124] Rozenblit-Susan S, Chapnik N, Froy O. Serotonin prevents differentiation into brown adipocytes and induces transdifferentiation into white adipocytes. *Int J Obes (Lond)*. 2018;42(4):704–710. Epub 2017/10/31 DOI:10.1038/ijo.2017.261.

[125] Elsen M, Raschke S, Tennagels N, et al. Bmp4 and Bmp7 induce the white-to-brown transition of primary human adipose stem cells. *Am J Physiol Cell Physiol*. 2014;306(5):C431–40. Epub 2013/11/29. DOI:10.1152/ajpcell.00290.2013.

[126] Xue R, Wan Y, Zhang S, et al. Role of bone morphogenetic protein 4 in the differentiation of brown fat-like adipocytes. *Am J Physiol Endocrinol Metab*. 2014;306(4):E363–72. Epub 2013/12/19 DOI:10.1152/ajpendo.00119.2013.

[127] Boon MR, van den Berg SA, Wang Y, et al. Bmp7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. *PLoS ONE*. 2013;8(9):e74083. Epub 2013/09/26. DOI:10.1371/journal.pone.0074083.

[128] Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. *Annu Rev Immunol*. 2011;29:415–445. Epub 2011/01/12. DOI:10.1146/annurev-immunol-031210-101322.

[129] Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. *J Clin Invest*. 2017;127(1):1–4. Epub 2017/01/04 DOI:10.1172/jci92035.

[130] Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. *Physiology*. 2016;31(4):283–293. Epub 2016/06/03. DOI:10.1152/physiol.00041.2015.

[131] Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. *Am J Physiol Cell Physiol*. 2021;320(3):C375–c91. Epub 2020/12/29 DOI:10.1152/ajpcell.00379.2020.

[132] Ying W, Lee YS, Dong Y, et al. Expansion of islet-resident macrophages leads to inflammation affecting B cell proliferation and function in obesity. *Cell Metab*. 2019;29(2):457–74.e5. Epub 2019/01/01. DOI:10.1016/j.cmet.2018.12.003.

[133] Ying W, Fu W, Lee YS, et al. The role of macrophages in obesity-associated islet inflammation and B-cell abnormalities. *Nat Rev Endocrinol*. 2020;16(2):81–90. Epub 2019/12/15 DOI:10.1038/s41574-019-0286-3.

[134] Choi HM, Doss HM, Kim KS. Multifaceted physiological roles of adiponectin in inflammation and diseases. *Int J Mol Sci*. 2020;21(4):1219. Epub 2020/02/16. DOI:10.3390/ijms21041219.

[135] Wolf AM, Wolf D, Rumpold H, et al. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1ra in human leukocytes. *Biochem Biophys Res Commun*. 2004;323(2):630–635. Epub 2004/09/17 DOI:10.1016/j.bbrc.2004.08.145.

[136] Hui X, Gu P, Zhang J, et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. *Cell Metab*. 2015;22(2):279–290. Epub 2015/07/15. DOI:10.1016/j.cmet.2015.06.004.

[137] Zhang H, Gong X, Ni S, et al. C1q/tfn-related protein-9 attenuates atherosclerosis through Ampk-Nlrp3 inflammasome singling pathway. *Int Immunopharmacol*. 2019;77:105934. Epub 2019/11/16. DOI:10.1016/j.intimp.2019.105934.

[138] Moradi N, Fadaei R, Emamgholipour S, et al. Association of circulating Ctrp9 with soluble adhesion

molecules and inflammatory markers in patients with type 2 diabetes mellitus and coronary artery disease. *PLoS ONE*. 2018;13(1):e0192159. Epub 2018/01/31. [10.1371/journal.pone.0192159](https://doi.org/10.1371/journal.pone.0192159)

[139] Wang J, Gao Y, Lin F, et al. Omentin-1 attenuates lipopolysaccharide (Lps)-induced u937 macrophages activation by inhibiting the Tlr4/Myd88/Nf-Kb signaling. *Arch Biochem Biophys*. 2020;679:108187. Epub 2019/11/11. DOI:[10.1016/j.abb.2019.108187](https://doi.org/10.1016/j.abb.2019.108187).

[140] Lelis DF, Freitas DF, Machado AS, et al. Angiotensin-(1-7), adipokines and inflammation. *Metabolism*. 2019;95:36–45. Epub 2019/03/25. DOI:[10.1016/j.metabol.2019.03.006](https://doi.org/10.1016/j.metabol.2019.03.006).

[141] Li RX, Yiu WH, Wu HJ, et al. Bmp7 reduces inflammation and oxidative stress in diabetic tubulopathy. *Clin Sci (Lond)*. 2015;128(4):269–280. Epub 2014/09/10. DOI:[10.1042/cs20140401](https://doi.org/10.1042/cs20140401).

[142] Timper K, Brüning JC. Hypothalamic Circuits Regulating Appetite and Energy Homeostasis: pathways to Obesity. *Dis Model Mech*. 2017;10(6):679–689. Epub 2017/06/09. DOI:[10.1242/dmm.026609](https://doi.org/10.1242/dmm.026609)

[143] Leibowitz SF, Hammer NJ, Chang K. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. *Physiol Behav*. 1981;27(6):1031–1040. Epub 1981/12/01 DOI:[10.1016/0031-9384\(81\)90366-8](https://doi.org/10.1016/0031-9384(81)90366-8).

[144] Forbes S, Bui S, Robinson BR, et al. Integrated control of appetite and fat metabolism by the leptin-proopiomelanocortin pathway. *Proc Natl Acad Sci U S A*. 2001;98(7):4233–4237. Epub 2001/03/22 DOI:[10.1073/pnas.071054298](https://doi.org/10.1073/pnas.071054298).

[145] Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. *JAMA*. 1999;282(16):1568–1575. Epub 1999/11/05. [10.1001/jama.282.16.1568](https://doi.org/10.1001/jama.282.16.1568)

[146] Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. *J Endocrinol*. 2019;241(1):R1–r33. Epub 2019/02/28 DOI:[10.1530/joe-18-0596](https://doi.org/10.1530/joe-18-0596).

[147] Barrios-Correa AA, Estrada JA, Contreras I. Leptin signaling in the control of metabolism and appetite: lessons from animal models. *J Mol Neurosci*. 2018;66(3):390–402. Epub 2018/10/05 DOI:[10.1007/s12031-018-1185-0](https://doi.org/10.1007/s12031-018-1185-0).

[148] Crujeiras AB, Carreira MC, Cabia B, et al. Leptin resistance in obesity: an epigenetic landscape. *Life Sci*. 2015;140:57–63. Epub 2015/05/23. DOI:[10.1016/j.lfs.2015.05.003](https://doi.org/10.1016/j.lfs.2015.05.003).

[149] Dodd GT, Xirouchaki CE, Eramo M, et al. Intranasal targeting of hypothalamic Ptp1b and Tcptp reinstates leptin and insulin sensitivity and promotes weight loss in obesity. *Cell Rep*. 2019;28(11):2905–22.e5. Epub 2019/09/12. DOI:[10.1016/j.celrep.2019.08.019](https://doi.org/10.1016/j.celrep.2019.08.019).

[150] Liu J, Yang X, Yu S, et al. The leptin resistance. *Adv Exp Med Biol*. 2018;1090:145–163. Epub 2018/11/06. DOI:[10.1007/978-981-13-1286-1_8](https://doi.org/10.1007/978-981-13-1286-1_8).

[151] Izquierdo AG, Crujeiras AB, Casanueva FF, et al. Leptin, obesity, and leptin resistance: where are we 25 years later? *Nutrients*. 2019; 11(11):Epub 2019/11/14. DOI:[10.3390/nu11112704](https://doi.org/10.3390/nu11112704).

[152] Zhao S, Zhu Y, Schultz RD, et al. Partial leptin reduction as an insulin sensitization and weight loss strategy. *Cell Metab*. 2019;30(4):706–19.e6. Epub 2019/09/10. DOI:[10.1016/j.cmet.2019.08.005](https://doi.org/10.1016/j.cmet.2019.08.005).

[153] Chen Y, Essner RA, Kosar S, et al. Sustained Npy signaling enables Agrp neurons to drive feeding. *Elife*. Epub 2019/04/30 2019;8: 8.doi: [10.7554/elife.46348](https://doi.org/10.7554/elife.46348)

[154] Dodd GT, Lee-Young RS, Brüning JC, et al. Tcptp regulates insulin signaling in Agrp neurons to coordinate glucose metabolism with feeding. *Diabetes*. 2018;67(7):1246–1257. Epub 2018/05/02. DOI:[10.2337/db17-1485](https://doi.org/10.2337/db17-1485).

[155] Li X, Wang L, Shi D. The design strategy of selective Ptp1b inhibitors over Tcptp. *Bioorg Med Chem*. 2016;24(16):3343–3352. Epub 2016/06/30 DOI:[10.1016/j.bmc.2016.06.035](https://doi.org/10.1016/j.bmc.2016.06.035).

[156] Morin V, Hozer F, Costemale-Lacoste JF. The effects of ghrelin on sleep, appetite, and memory, and its possible role in depression: a review of the literature. *Encephale*. 2018;44(3):256–263. Epub 2018/02/06 DOI:[10.1016/j.encep.2017.10.012](https://doi.org/10.1016/j.encep.2017.10.012).