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ABSTRACT

Mitochondria are the main source of reactive oxygen species (ROS) in cells. Early studies have shown
that mitochondrial reactive oxygen species (mROS) are related to the occurrence and adverse
outcomes of many diseases, and are thus regarded as an important risk factor that threaten
human health. Recently, increasing evidence has shown that mROS are very important for an
organism’s homeostasis. mMROS can regulate a variety of signaling pathways and activate the
adaptation and protection behaviors of an organism under stress. In addition, mROS also regulate
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important physiological processes, such as cell proliferation, differentiation, aging, and apoptosis.
Herein, we review the mechanisms of production, transformation, and clearance of mROS and

their biological roles in different physiological processes.

Introduction

Reactive oxygen species (ROS) are by-products of cell aerobic
respiration. There are many kinds of ROS, including superox-
ide anion (Oy), hydrogen peroxide (H,0,), hydroxyl radical
(HO-) and nitric oxide (NO), et al. NO also belongs to the
RNS category. At present, the researches mainly focus on
H,0, and O;. However, HO- produced by H,O, and Fe?*
through the Fenton reaction is also an important type of
ROS. ROS are generally regarded as toxic metabolites [1],
and one of the driving factors of cancer [2-5], diabetes [6—
8], and cardiovascular diseases [9,10]. However, ROS has
been proposed as an active factor regulating many kinds of
life activities since the 1990s. For example, cytokines,
insulin, growth factors, AP-1, and NF-KB signals all require
H,0; [11]. Subsequent studies have shown that ROS play an
important role in a wide range of physiological processes
such as cell proliferation and differentiation, gene expression,
post-translational protein modification, homeostasis and
hypoxia adaptation [12-18]. Therefore, in the normal physio-
logical state, cells maintain a certain level of ROS to ensure
homeostasis [19] Figure 1.

Mitochondria are the main location of aerobic respiration to
supply energy and are the main source of ROS in cells [20-22].
The initial conception that mitochondrial ROS are essentially
undesirable metabolites generated by the cellular respiratory
chain has changed. A large body of experimental evidence
indicates that mitochondrial reactive oxygen species (mROS)
production is a continuous and tightly regulated process
required for the regulation of many life activities [23]. mROS
have been proven to be involved in the regulation of many
physiological processes, such as cell differentiation, senes-
cence, signal transduction, hypoxic adaptation [13-18,24-26].
For example, Liu et al. [27] showed that mROS can regulate
the release of cytochrome ¢ and thus mediate apoptosis.

Chandel et al. [24] revealed that in the hypoxic environment,
mROS can promote the production of hypoxia inducible
factors (HIFs) by regulating the expression of multiple func-
tional genes, to initiate a protective mechanism of cells
against hypoxia, thus playing an important role in the regu-
lation of hypoxia homeostasis. Subsequently, it was found
that H,O, released by mitochondria can activate signal
factors such as c-Jun amino-terminal kinase 1 (JNK1), p53,
and nuclear factor kappa B (NF- kB) [25,26].

The production of mROS

In the 1970s, researchers first found that isolated mitochon-
dria could produce superoxide and H,0, [28-32]. Since
then, the production of mROS and its role in diseases have
been studied in detail. The generation of mROS is mainly
caused by the leakage of electrons in the electron transport
chain (ETC) [33,34]. Under physiological conditions, 0.2-2%
of the electrons in the ETC cannot be transferred normally,
but leak out from ETC and interact with oxygen to form super-
oxide or H,0, [28-32]. The ETC is composed of transmem-
brane protein complex (I-1V) in the mitochondrial crest, the
free-moving electron transfer vector ubiquinone (UQ) and
cytochrome c [34]. Together with F1FO ATP synthetase
(complex V), they become the basis of ATP production in oxi-
dative phosphorylation (OXPHOS) [35,36].

Up to now, 11 mROS production sites have been found in
mammalian mitochondria, which are related to substrate cat-
abolism, electron transport, and OXPHOS. Six sites work at the
redox potential of the NADH/NAD™ isopotential pool; and five
sites work at the redox potential of the UQH,/UQ isopotential
pool (Figure 1) [16,37]. The former is composed of a flavin-
dependent dehydrogenase that reduces or oxidizes nicotina-
mide, mainly including a-ketoglutarate dehydrogenase
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Figure 1. mROS production sites and mitochondrial electron transfer process. The mROS generation sites can be divided into two categories, namely NADH/
NAD™ equipotential group (yellow) and the UQH,/UQ equipotential group (blue). The NADH/NAD™ group consists of KGDH, PDH, BCKDH, OADH, and complex
1. The UQH,/UQ isopotential group is made up of complex Il, PRODH, DHODH, ETFQO, and complex Ill. Complex | uses two equipotential groups to form reactive
oxygen species. The red line indicates the electron transfer process of the mitochondria. mROS, mitochondrial reactive oxygen species; UQH,, ubisemiquinone; UQ,
ubiquinone; KGDH, a-ketoglutarate dehydrogenase; PDH, pyruvate dehydrogenase; BCKDH, branched chain keto acid dehydrogenase; OADH, 2-oxoadipate dehy-
drogenase; PRODH, proline dehydrogenase; DHODH, dihydroorotate dehydrogenase; and ETFQO, electron transferring flavoprotein ubiquinone oxidoreductase.

(KGDH), pyruvate dehydrogenase (PDH), branched chain keto
acid dehydrogenase (BCKDH), and 2-oxoadipate dehydrogen-
ase (OADH), as well as the flavin mononucleotide group of
complex I. The latter is composed of enzymes that directly
oxidize or reduce mitochondrial UQ to produce ROS, includ-
ing complex |, complex I, complex lll, sn-glyceral-3-phos-
phate dehydrogenase (G3PDH), proline dehydrogenase
(PRODH), dihydroorotate dehydrogenase (DHODH), and elec-
tron transferring flavoprotein ubiquinone oxidoreductase
(ETFQO) [38].

Regulation of mROS

The in vivo level of mROS is related closely to their character-
istics and physiological functions (Figure 2); therefore, there
is a precise control system for mROS to maintain the balance

between its production and elimination. mROS scavenging
system can reduce oxidative stress damage [39]. This system
mainly includes enzymatic and non-enzymatic parts. The
non-enzymatic part of the system mainly consists of hydrophi-
lic and lipophilic antioxidants, such as tocopherol, ascorbic
acid, reducing coenzyme Q10 and glutathione. The antioxi-
dant enzymes in cells mainly include superoxide dismutase
(SOD), glutathione peroxidases (GPXs), peroxiredoxins (PRXs)
and catalase (CAT). ROS, including mROS, can be efficiently
eliminated, collectively referred to as the protective enzyme
system. First, when the intracellular ROS concentration is
high, the antioxidant defense system equipped by mitochon-
dria can reduce the cytotoxicity caused by ROS. For example,
05 can be efficiently dismutated to H,0, by Mn?*-dependent
superoxide dismutase (Mn-SOD) [40]. Then H,0, is removed
by PRXs and GPXs [28-32,41], which can be regenerated by

Figure 2. Regulation of mROS. The level of mROS determines mitochondrial function and physiological outcomes. The organism needs low levels of mROS to
maintain homeostasis, and when mROS rise to higher levels, cells can adapt to stress in a variety of ways. When the mROS level accumulates to a very high level,
oxidative stress and damage occurs. SOD can convert O; into H,0,. The generated H,0, can be further converted into H,0 by PRXs and GPXs. mROS, mitochondrial
reactive oxygen species; SOD, superoxide dismutase; PRX, peroxiredoxin; GPX, glutathione peroxidase; TRXr/o, reduced/oxidized thioredoxin; GSH/GSSG, reduced/
oxidized glutathione; TR, thioredoxin reductase; GR, glutathione reductase.



glutathione (GSH) and thioredoxin (TRX) [42,43] (Figure 2).
Mammals express six PRX isoforms, including PRX5 and PRX;
in mitochondria [41]. H,O, oxidizes the active cysteine
residue of PRXs and itself is reduced to H,O. The oxidized
active cysteine residue can be reduced by TRX, thioredoxin
reductase (TR), and NADPH for recycling; therefore, it can sig-
nificantly reduce peroxide levels. GPXs exist widely in vivo and
can catalyze the reaction between peroxide and glutathione
(GSH), which protects the structure and function of cells
from the interference and damage of oxides. CAT mainly
exists in the peroxisome of cells, and its main role is to
promote the decomposition of H,0, into O, and H,0. These
antioxidant enzymes all play a key role in the biological
defense system, but there are some differences in their func-
tional processes. These differences come from the reaction
rate (rate constant) at which they react with the substrate, as
well as the concentration of substrate and enzyme [44]. In
general, PRXs have a high rate constant and high abundance
and therefore can eliminate nanomolar ROS related to signal
transmission. GPXs have a similar rate constant to PRXs, but
are less abundant, so can only act at higher H,0, concen-
tration, such as hypoxia, hunger and other stressful environ-
ment [44]. Thus, PRXs might be the key to turning off ROS
signals, while GPXs might be the key to buffering high levels
of ROS. The combined effect of the two enzymes can regulate
the level of ROS precisely to ensure that cells can not only
escape damage, but also initiate a signal stress response,
which is crucial to maintain the homeostasis [41]. In structu-
rally and functionally intact mitochondria, the antioxidant
capacity can maintain the balance of mROS, and the
reduced antioxidant capacity is one of the reasons for the
increase of mROS levels and the occurrence of oxidative
stress. Notably, in addition to scavenging excess ROS, the
protein repair and degradation are both important defense
mechanisms against ROS induced damages.

The cells also regulate the production of mROS to control
their levels. However, the current understanding of this aspect
is only based on experimental studies of mitochondria and
cells in vitro, and the mechanism controlling the production
of mROS in vivo has not yet been determined [45]. According
to existing results, there are two determining factors that
affect the production of mROS. One is the redox state of the
ETC. Inhibition of ETC electronic carriers will increase the possi-
bility of superoxide production. The second is the proton
motive force (PMF). When the PMF increases, enhanced mROS
production is observed [46]. Another study showed that the
number of mitochondria also affects the production of mROS,
but because of the presence of peroxisome proliferator-acti-
vated receptor gamma coactivator 1 alpha (PGC-1a), which
regulates mitochondrial production and thus inhibits the pro-
duction of mROS, the number of mitochondria is not necessarily
proportional to the amount of mROS [47].

In addition, the signaling capacity of mMROS might be altered
by the mitochondria’s location. ROS are generally short-lived
molecules; therefore, the coexistence of their production
sites and signal functional sites may increase their efficiency.

Physiological roles of mROS
mROS and signal transduction

To date, many studies have shown that ROS can activate
signal transduction. One of the mechanisms is ROS-mediated
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oxidation of amino acid residues on a target protein. These
amino acid residues mainly include cysteine residues and
methionine residues [48]. Phosphatase-containing active
cysteine residues are one of the most studied oxidative
modification sites. ROS have been proven to inhibit the activi-
ties of many phosphatases, such as angiotensin homologous
enzyme and mitogen activated protein kinase. The kelch-like
ECH-associated protein 1 (Keap1)/nuclear factor E2-related
factor 2 (Nrf2) signaling system is one of the main signaling
pathways activated by ROS via the above mechanisms. The
destruction of Keap1 by ROS leads to the dissociation of the
Nrf2-Keap1 complex and the activation of Nrf2.

Low doses of H,0, can induce calcium signaling [49-51].
For example, mROS plays an important role in central
nervous signal transaction. H,O, produced by monoamine
oxidase (MAO), an effective pharmacological target of the
central nervous system, can stimulate lipid peroxidation, acti-
vate phospholipase C (PLC), and induce inositol 1,4,5-trispho-
sphate (IP3)-dependent calcium signaling. The calcium signal
produced by dopamine in astrocytes is also induced by H,0,
produced by MAO [52]. It can be inferred that the activation
of signal transduction by this mechanism might be a
common phenomenon in nerve cells; however, further
studies are needed to prove this hypothesis. ROS play an
important role in the regulation of various ion channels. On
the one hand, the redox environment in the cell can regulate
the gated characteristics of ion channels and their activities.
On the other hand, mROS can regulate the activity of
amino acid residues of different channels or receptor proteins
[53-55], thus mROS can control a variety of signaling path-
ways through the regulation of ion channels.

mROS and aging

One of the most popular theories of aging is the ‘free radical
theory’ of aging proposed by Denham Harman in the 1950s,
which suggests that aging of organisms is caused by the
accumulation of free radicals in cells. Free radicals, as by-pro-
ducts of oxidative metabolism, can cause damage to cellular
proteins, lipids and DNA, resulting in the loss of the overall
ability to adapt over time. Experimental phenomena such
as free radical inhibitors and antioxidants can prolong the life-
span of animals or cells, and species with low free radical pro-
duction have longer lifespans have confirmed this
conception. However, several recent studies have shown
the opposite effect, for example, several in vivo studies
have shown that increasing the antioxidant capacity doesn’t
increase lifespan. For example, it has been reported that
the lifespan of C. elegans mutants lacking mitochondrial
SOD was not severely affected, while SOD2 single mutants
lived even longer than wild-type. After adding additional oxi-
dative stress (caused by paraquat), SOD mutants have a shor-
tened lifespan even much faster than killing the wild type
[56]. A reasonable explanation for these interesting obser-
vations is that, in the absence of additional oxidative stress,
moderate oxidative stress can induce sufficient adaptation
to protect these mutants from permanent damage caused
by endogenous ROS. Chen and Andziak et al. [57,58]
showed that the ROS expressed by long-lived species and
their accompanying oxidative damage were not always at a
low level. For example, ROS prolongs the lifespan of worms
[59,60]. In yeast, inhibition of target of rapamycin (TOR)
increased intracellular mROS and prolonged chromosome
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lifespan [61]; Caloric restriction (CR) prolonged the life span of
yeast by promoting the production of H,0, [62,63]. In
addition to the model organisms mentioned above, ROS
has been shown to prolong the life span of human fibroblasts
under hypoxia. These phenomena add more support to the
above argument, but do not mean that the ‘radical theory’
is wrong, they only suggest to us that any theory claims
ROS is the sole cause of biological aging is discredited. A
plausible concept is to explore the protective effects of ROS
on the aging of organisms [64].

Mitochondria are the main production sites of intracellular
ROS, and changes in mitochondria and their functions have
been regarded as the driving factors of aging. mROS can
induce permanent cell cycle arrest and play a very important
role in initiating and maintaining cell senescence [65,66].
However, some studies have also shown that mROS and
mMROS-induced mitochondrial damage can initiate signals
that activate multiple pathways that protect mitochondria
from stress, delay aging, and inhibit cell death. Therefore,
increasing mROS levels within a certain range can prolong life-
span [67-69]. For example, Stefanatos et al. showed that an
increase of MROS in the brain of mice prolonged their lifespan,
indicating that mROS may also protect brain signal pathways
[70]. In addition, some scholars believe that although high
levels of MROS play an important role in the occurrence of neu-
rodegenerative diseases, such as Parkinson’s disease, they are
not a direct cause of aging. The relationship between mROS
and aging requires further extensive verification.

mROS and stem cell differentiation

The abundance of mitochondria in stem cells is very low;
therefore, these cells rely mainly on glycolysis to obtain
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P

energy. However, the importance of mROS in regulating
stem cell activity and differentiation is often overlooked
[71]. In recent years, research on whether mROS is required
for stem cell differentiation has been carried out. Owusu-
Ansah et al. found that the elimination of ROS by enhancing
the expression of GTPx-1 could delay the differentiation of
Drosophila multipotent hematopoietic progenitor cells.
Increasing ROS by inducing the deletion of mitochondrial
complex | protein ND75 or SOD2 could promote differen-
tiation [72]. Tormos et al. showed that the differentiation of
human mesenchymal stem cells (MSCs) into adipocytes
could be inhibited by either knocking out the complex llI
protein complex Il protein Rieske Iron-Sulfur Protein or
using mitochondria targeted antioxidants to reduce mROS
levels [73]. In addition, a study by Hamanaka et al.
confirmed that mROS are important regulators of epidermal
differentiation [74]. Bigarella et al. showed that mROS are
also important for the differentiation of neural stem cells
(NSCs) [75].

Mitochondrial activity significantly affects the function and
differentiation of stem cells. Stem cells initially prioritize gly-
colysis over oxidative phosphorylation; therefore, they
exhibit lower mitochondrial activity, which limits electron
flux, inhibits mMROS production, and maintains their regenera-
tive potential. When metabolism is converted to oxidative
phosphorylation, mitochondrial activity increases, which pro-
motes the production of mROS and reduces stem cells’ regen-
erative potential [76,77]. These results indicate that the
regenerative potential of stem cells is closely related to the
level of mROS and the redox status in vivo. Lower mROS
levels can maintain the balance between cell quiescent differ-
entiation and self-renewal [78-80]. However, when mROS are
lower than the basal level, a significant decrease in
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Figure 3. mROS levels affect stem cell function and fate. The level of mROS is closely related to the fate and function of stem cells. Stem cells maintain basic
ROS levels to balance self-renewal and differentiation. When mROS levels are below the baseline, stem cell function is impaired and metabolic capacity is reduced.
When mROS accumulate to an intermediate level, loss of immobility and the induction of senescence occur. Further accumulation of mROS to a high level leads to

cell death. mROS, mitochondrial reactive oxygen species.



regeneration ability will occur (Figure 3). For example, when
the levels of ROS in NSCs and hematopoietic stem cells
(HSCs) were lower than the basal level, their proliferation,
differentiation, and self-renewal abilities were decreased
[78,81,82]. In contrast, excess ROS is associated with
reduced stem cell function and regenerative potential
[48,78,83-90]. For example, the long-term accumulation of
ROS in HSCs severely impaired their reconstitution potential,
and the stem cell pool was depleted [78,86,87]. Notably,
further increases in ROS lead to cell death [91,92]. Therefore,
physiological levels of mROS are necessary for stem cells to
perform their normal physiological functions.

mROS and hypoxic adaptation

When the organisms face a hypoxic environment, it will
reduce oxygen consumption in various ways, and increase
the supply of oxygen at the same time. Ironically, most of
the adaptation pathways to hypoxia are mediated by mROS.

When cells are exposed to a low oxygen concentration for
a short period of time, adaptive responses can be induced
through the protein kinase pathway, which is activated by
adenosine monophosphate (AMP) to promote glycolysis
and increase the energy supply under hypoxic conditions.
However, when the cells is subjected to chronic hypoxia,
this protective measure is no longer effective, and instead,
it forms an adaptation to hypoxia by stimulating HIF
[93,94]. HIF is a heterodimeric transcription factor composed
of an oxygen-sensitive a subunit and a constitutively
expressed B subunit, and is a determinant of cell adaptation
to hypoxia [95]. Under normal oxygen conditions, HIF-a is
rapidly hydroxylated by prolyl hydroxylase 2 (PHD2), and
the hydroxylated HIF-a subunit is degraded by the Von
Hippel-Lindau tumor suppressor (VHL) [96]. In hypoxia,
PHD2 is inhibited by mROS and HIF-a does not undergo
hydroxylation, thus maintaining HIF homeostasis [97,98]. To
date, many studies have confirmed that inhibition of PHD2
is regulated by mROS. Chandel et al. showed that the cells
without mitochondrial DNA could not maintain the stability
of HIF, and could not initiate a variety of transcription path-
ways involving HIF. Therefore, it was speculated that the stab-
ility of HIF was related to the mitochondrial electron transport
chain. Subsequent studies found that the cells expressing
mutant cytochrome subunits could not consume oxygen
for oxidative phosphorylation, but could produce ROS and
inhibit HIF degradation, which further confirmed that mROS
were the main factors that stabilize HIF [99].

HIF activates the transcription of more than 70 genes in
vivo [1]. For example, when cells are exposed to hypoxia,
HIF can regulate the oxygen supply in the blood by control-
ling the transcription of several functional genes [100,101],
such as EPO [102] encoding erythropoietin and VEGF [100]
encoding vascular endothelial growth factor. HIF-1 also inhi-
bits the conversion of pyruvate by promoting the expression
of 3-phosphoinositide-dependent protein kinase-1 (PDK1)
and lactate dehydrogenase A (LDHA) in cells. At the same
time, acetyl-Coenzyme A promotes the conversion of pyru-
vate to lactic acid. The produced lactic acid can regenerate
coenzyme [?], so as to carry out continuous glycolysis to
provide enough energy [103-105]. HIF can also increase the
concentration of glucose transporters and key enzymes in
glycolysis to improve the rate of glycolysis and increase the
production of anaerobic energy [103]. In addition, HIF can
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also alleviate the damage caused by ROS. Studies have
shown that HIF protein can promote ROS clearance and
enhance the oxidative defense ability by upregulating the
levels of SOD2 and GSH under hypoxic conditions [106].

In addition to HIF-mediated transcriptional effects, there
are other non-transcriptional effects, including increasing
intracellular calcium storage, triggering the contraction of
pulmonary vasculature to divert blood from hypoxic lung
regions [107,108], the release of neurotransmitters by the
carotid body to increase the respiration rate, and the
reduction of ATP usage [41].

Conclusion

mROS are produced in large quantities under stress con-
ditions such as hypoxia, starvation, and pathogen infection,
and are regarded as a marker for changes in the internal
and external environment of the cell. The accumulation of
mROS can cause damage to DNA, proteins, and lipids, and
induces a variety of pathological processes. However, their
effects will change with environmental alterations; therefore,
antioxidants do not have a definite therapeutic effect. Physio-
logical levels of mMROS have dual functions of promoting cell
damage and cell adaptation, making them a potential thera-
peutic target. However, due to their complex regulatory
mechanisms and diverse biological functions in vivo, chal-
lenges remain regarding their practical.
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