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Polygenic scores (PGS) have been widely used to predict disease risk using variants identified

from genome-wide association studies (GWAS). To date, most GWAS have been conducted

in populations of European ancestry, which limits the use of GWAS-derived PGS in non-

European ancestry populations. Here, we derive a theoretical model of the relative accuracy

(RA) of PGS across ancestries. We show through extensive simulations that the RA of PGS

based on genome-wide significant SNPs can be predicted accurately from modelling linkage

disequilibrium (LD), minor allele frequencies (MAF), cross-population correlations of causal

SNP effects and heritability. We find that LD and MAF differences between ancestries can

explain between 70 and 80% of the loss of RA of European-based PGS in African ancestry for

traits like body mass index and type 2 diabetes. Our results suggest that causal variants

underlying common genetic variation identified in European ancestry GWAS are mostly

shared across continents.
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Polygenic scores (PGS, also known as PRS when applied to
diseases) are now routinely utilised to predict complex traits
and risk of diseases from findings of genome-wide association

studies (GWASs). Over recent years, the predictive performances of
PGS have steadily increased with GWASs sample sizes, as predicted
by theory1. However, the over-representation of European ancestry
in the majority of GWASs has been shown to yield an unbalanced
improvement of PGS prediction accuracy in non-European ances-
try populations2,3. For example, Duncan et al.2 report the average
accuracy of PGS across multiple traits to be ~64% lower in indi-
viduals of African ancestry as compared with that in individuals of
European ancestry. Similarly, Martin et al.3 report, across multiple
traits, reductions of PGS accuracy of ~37%, ~50% and ~78% in
individuals of South-Asian, East-Asian and African ancestries,
respectively, relative to individuals of European ancestry.

Although increasingly emphasised in the recent GWAS litera-
ture, it is worth noting that the loss of accuracy problem is not
utterly new. Indeed, a number of studies in the animal breeding
literature have previously reported lower accuracy of genomic
selection across genetically distant breeds4,5, consistent with the
observation of limited transferability of GWAS findings across
diverse human populations6,7. These studies also highlight major
factors influencing that loss such as differences between popula-
tions in causal variants effect sizes, in alleles frequencies and in
linkage disequilibrium (LD) between causal variants and SNPs
assayed in GWAS6,8,9. To illustrate the latter point, let us consider
a SNP which has an LD r2 with a causal variant of 0.8 in the
discovery population and 0.6 in the target population. Such a SNP
would therefore explain 25%= (1− 0.6/0.8) less trait variation
and thus be less predictive in the target population as compared
with the discovery population, even when causal variants and their
effect sizes are shared between ancestries. More generally, previous
empirical and simulation studies have shown that accuracy of
genetic predictors decays monotonically with increased genetic
differentiation (FST) and LD differences between ancestries4,7,10.
Other factors such as population specific causal variants11,12,
gene × environment interaction13,14 have been implicated as
potential explanations of the loss of PGS prediction accuracy.

In addition, deterministic formulas have been derived to pre-
dict the accuracy of genomic prediction across breeds as a
function of population parameters (e.g. heritability, genetic cor-
relation) and also using selection index theory15,16. However,
these deterministic formulas mostly apply to best linear unbiased
predictors17, which are not classically used in human studies.
Consequently, a theoretical understanding of the trans-ancestry
predictive capacities of standard PGS is still missing. Although
the key factors causing the loss of accuracy have been enumerated
in previous studies, quantification of their relative contributions
has not been done systematically. Note that quantifying the
relative contributions of all these factors is critical for under-
standing aetiological differences between ancestries, which may
have important clinical implications. Here, we develop an
approximation of the theoretical relative accuracy of PGS in an
ancestry divergent sample as a function of population genetics
parameters. Our method only requires GWAS summary statistics
and ancestry-specific reference panels. We evaluate the perfor-
mances of our theory through extensive simulations and apply it
to GWAS of 5 quantitative traits and 3 common diseases with
different genetic architectures in ~350,000 unrelated UK Biobank
participants.

Results
Expected relative accuracy of PGS in ancestry divergent
populations. We consider a quantitative trait y, for which the
genetic component is underlain by random additive effects of MC

causal variants. Without loss of generality, we assume causal
variants to be shared between ancestries but allow their effect
sizes to vary from one ancestry to another. Therefore, ancestry-
specific causal variants are a special case with non-zero effect sizes
in only one ancestry. We then assume that a GWAS of y has been
performed in a discovery sample of a given ancestry, hereafter
denoted by Population 1 and that a PGS, defined as the sum of
minor allele counts weighted by their estimated effects from the
discovery GWAS, is used to predict y in a target sample of
another ancestry, hereafter denoted by Population 2. The study
design is shown in Supplementary Fig. 1.

We derived the expected accuracy of such PGS in Population 2
(denoted R2

2) as function of the expected accuracy in a sample of
same ancestry as Population 1 (denoted R2

1), the minor allele
frequencies (MAF) pk,1 and pk,2 at the kth PGS-SNP (i.e. SNPs
included in the PGS) in Populations 1 and 2, respectively, the LD
between the jth causal SNP and the kth PGS-SNP in Population 1
and 2, respectively (denoted rjk,1 and rjk,2), the heritabilities h21
and h22 of y in Populations 1 and 2, respectively, and the
correlation ρb of causal SNP effects between Population 1 and
Population 2. It is worth underlining here that direct attempts to
predict R2

1 or R
2
2 are challenging as they require prior knowledge

of the number of causal variants (MC). Unfortunately, no method
to date can provide estimates of MC with high enough precision.
However, under the assumption that causal variants are shared
between ancestries, focusing on the ratio R2

2=R
2
1 overcomes this

limitation and therefore allows us to derive the approximate
closed-form formula shown below in Eq. (1) (details of our
derivations are given in Supplementary Note 1):
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where MT denotes the number of GWS SNPs used to calculate
PGSs. Note that a special case of Eq. (1) was derived in de
Vlaming et al.18 to characterize the accuracy of PGS in the
presence of causal effects heterogeneity (modelled in their work
by a parameter denoted ρG akin to our parameter ρb) between
cohorts of the same ancestry.

Equation (1) shows that the relative accuracy (RA, relative to
the accuracy in populations of same ancestry as Population 1) of
PGS, defined as R2

2=R
2
1, can be discomposed as the product of

multiple terms: (i) the squared genetic correlation (the correlation
of effect sizes of causal variants) between populations, (ii) the
ratio of heritability between populations, (iii) the ratio of squared
covariances between PGS and y in both populations (approxi-
mated by the product of the first two terms on the right hand side
of Eq. (1); Supplementary Note 1); and (iv) the ratio of variance
of PGS in both populations. This decomposition allows us to
distinguish and thus separately quantify the fraction of the RA
that is attributable to differences in effect size distribution
between populations (term (i) and term (ii) in the decomposition,
including ρ2b, h

2
2 and h21) and the fraction attributable to alleles

frequencies and LD differences between populations (term (iii)
and term (iv) in the decomposition). It is important to underline
that the contribution of each of these factors can differ between
traits.

Many terms in Eq. (1) can be quantified a priori using
information from previous studies or from reference panels.
However, the big unknown in Eq. (1) remains the LD between
unobserved causal variants and PGS-SNPs. Understanding how
much PGS-SNPs tag causal variants is critical to quantify and
therefore predict the RA of PGS. To reduce this uncertainty, we
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focus in this study on PGS based on independent genome-wide
significant (GWS) SNPs, which are more informative of the
location of causal variants than sub-significant SNPs. Impor-
tantly, previous studies2,3,19,20 have shown reduced predictive
performance of PGS across ancestry when the PGS includes sub-
significant SNPs, which provides an additional rationale for
concentrating on GWS SNPs. Note also that in the near future, as
GWAS sample sizes increase, the accuracy of GWS-based PGS
will become similar to that of genome-wide PGS approaches.

Given that causal variants are largely unknown, we propose a
heuristic method that considers as a candidate causal variant, any
SNP in LD (r2 > 0.45) with a GWS SNP and located within 100 kb
of the latter (Supplementary Fig. 2). This heuristic is justified by a
previous study by Wu et al.21 which has quantified the fine-
mapping precision of GWAS and has found over multiple
computer simulations that causal variants lied within 100 kb of
the GWS SNPs ~90% of the time and that LD r2 between causal
and GWS SNPs was >0.45. Once candidate causal variants are
identified for each independent GWS included in the PGS, we
approximate Eq. (1) by replacing r2jk;l and rjk;1rjk;2 with the average
of these quantities over all candidate causal variants, as shown
below in Eq. (2):
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where β̂k represents the effect size of the kth PGS-SNP estimated
in the discovery GWAS. We use the notation r2k;1 to denote the
mean squared correlation of allele counts between the kth PGS-
SNP and all candidate causal SNPs within 100 kb. Similarly, we
define rk;1rk;2 as the mean of rjk;1rjk;2’s between the kth PGS-SNP
and all candidate causal SNPs within 100 kb.

Moreover, we assume that the accuracy of the PGS in samples
of same ancestry as the discovery GWAS is known (e.g. estimated
in an independent sample) and propose to quantify other input
parameters such as allele frequencies and LD correlations using
data from an ancestry diverse reference panel like that of Phase 3
of the 1000 Genomes Project (1KGP)22. Finally, the quantifica-
tion of ρb and h2 requires access to phenotypic and genotypic data
from the target population, which may not be available
simultaneously. Therefore, when such data are unavailable our
method can only quantify the fraction of the RA that is explained
by allele frequencies and LD differences between populations.

Performance of the method on simulated data. We ran com-
puter simulations to evaluate the performances of Eqs. (1) and (2)
under various genetic architectures. We also assessed the per-
formances of a naive approach that assumes GWS SNPs to be the
causal variants. In this case the expected RA explained by allele
frequencies and LD differences between populations would

approximately equal to 1
MT
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PGS-SNPs are independent and given that SNP effect sizes from
GWAS are typically small and of similar magnitude, this naive
approach can be further considered as a function of the ratio of
heterozygosity at GWS SNPs between ancestries.

Our simulations utilise existing genotypes at ~1.1 million
common HapMap3 SNPs imputed in 351,983 unrelated UK
Biobank (UKB) participants. These participants were categorised
into four ancestry homogeneous groups corresponding to

European ancestry (EUR; NEUR= 333,263), East-Asian ancestry
(EAS; NEAS= 2257), South-Asian ancestry (SAS, NSAS= 9448)
and African ancestry (AFR; NAFR= 7015). The European
ancestry group was further divided into a discovery set of N=
313,284 participants in which GWS SNPs were identified
(Methods), a validation set in which the accuracy of PGS
within-European-ancestry was quantified and a reference group
in which we predicted the accuracy of PGS. A thorough
description of how these groups were defined is given in the
Methods section. As our main focus is to predict the fraction of
the RA that can be attributed to alleles frequencies and LD
differences between populations, we therefore assumed that effect
sizes of causal variants are perfectly correlated across populations,
i.e. ρb= 1 and that heritability is constant across populations, i.e.
h22 ¼ h21 ¼ h2. Note that in practice these assumptions are likely
to be violated. However, our theoretical framework (Eqs. (1, 2))
allows us to study the contribution of MAF and LD and that of
heritability and genetic correlation separately. We relax this
assumption below. In total, we simulated six scenarios corre-
sponding to three values of the number of causal variants MC=
1000, 5000 and 10,000; and two values of trait heritability h2=
0.25 and 0.5 (Methods).

As expected, we observed across all scenarios that accuracies of
PGS decreased monotonically with increased genetic distance to
EUR (Supplementary Fig. 3). The genetic distance was measured
as FST described in Supplementary Note 2. More specifically, we
found the largest RA in individuals of Asian ancestry (mean RA
~91% in SAS and mean RA ~77% in EAS), which has an average
FST of ~0.06 with EUR. The smallest RA was observed in
individuals of AFR ancestry (~46%), which has an average FST of
~0.14 with EUR (Supplementary Figs. 3 and 4). These results
imply that trans-ancestry predictive power of PGS remains
limited even when causal variants and their effect sizes are shared
between ancestries20,23. Across 18 simulation scenarios and over
100 simulation replicates for each scenario (Fig. 1), we found
differences between the mean observed RA and the predicted RA
from Eq. (1) to range between −4.5 and +2.5%. Although these
differences were statistically significant in 11/18 simulation
scenarios (two-tailed t-test, p-value <0.05/18), we found their
sign to be inconsistent between ancestries. In fact, predicted RA
from Eq. (1) slightly underestimates the observed RA in SAS and
AFR ancestries but yields a small overestimation in EAS ancestry.
Consequently, we found on average over all non-EUR ancestries,
that Eq. (1) produces unbiased predictions, i.e. not statistically
different from the observed RA (two-tailed t-test, p-value= 0.46).
Similarly, we found our heuristic approach based on candidate
causal variants to yield unbiased predictions of the RA in 7/
18 simulated scenarios. More specifically, differences across
scenarios between the mean observed RA and that predicted
from Eq. (2) ranged between −5.3 and +5.2%. Note that this
range is larger than when using information on causal variants.
On average across simulation scenarios, we found that the
approach assuming GWS SNPs to be the causal variants (referred
to RApred3 in Fig. 1) strongly overestimated the RA in non-
European ancestries. The average overestimation relative to the
observed RA ranged from +4.3% (i.e. (96.3%−92.3%)/92.3% ×
100%)) in SAS up to +103.0% in AFR ancestry. This result
suggests that population differences in LD between causal
variants and GWS SNPs contribute a larger fraction to the
decreased RA than allele frequencies differences at GWS SNPs
only. It is also worth noting that our predictions were nearly
insensitive to using either whole-genome sequence (WGS) data
from the 1KGP or imputed genotypes of UKB participants as
reference panels (Supplementary Fig. 5), which is reflected by the
highly correlated allele frequencies (Supplementary Fig. 6) and
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LD scores (Supplementary Fig. 7) between WGS and imputed
data (Supplementary Note 3). However, LD reference panels with
larger sample sizes are still recommended to achieve more
accurate estimates of LD correlations. Finally, we assessed the
robustness of our results by varying the size of the discovery
GWAS between 100,000 and 300,000 participants (Supplemen-
tary Note 4). We found the accuracy of PGS to increase
proportionally in all ancestries, such that the RA remained
constant and thus independent of sample size (Supplementary
Fig. 8).

Altogether, our simulation results show the validity of our
theory and highlight its ability to predict with little bias (<5%) the
RA attributable to allele frequencies and LD differences between
ancestries under various scenarios.

Impact of negative selection. In addition to heritability and
polygenicity, another important aspect of the genetic architecture
of complex traits and diseases is the relationship between effect
sizes at causal variants (hereafter denoted by β) and their minor
alleles frequencies (hereafter denoted by p). This relationship has
been modelled in many studies24–28 using a parameter S such that
β2 is assumed to be proportional to [2p(1−p)]s. Values of S
determine the relative contributions of common versus rare
variants to the genetic variance in the population and thus have
been used as an indirect measure of the strength of natural
selection29. Our model assumes that the variance explained by
each causal SNP is constant regardless of allele frequencies. This
assumption is consistent with a strong negative selection on

causal variants shared between populations and corresponds to a
value of S=−1. Although previous studies24,26,30 have reported
pervasive negative selection on complex traits and diseases, these
studies often report estimates of S with less extreme magnitudes
than that assumed in our model. Moreover, given that little is
known on the strength of negative selection in non-European
populations, we next investigated through additional simulations
the impact of violations of this assumption.

We adopted a similar framework (Methods) as in our first
simulation. However, for the sake of simplicity, we fixed the
number of causal variants to MC= 5000 and the trait heritability
to h2= 0.5. We denoted S1 and S2 as the value of S in Population
1 and Population 2, respectively. We considered three scenarios
corresponding to (i) S1= S2=−0.5, i.e. equal strength of negative
selection in both populations, (ii) S1=−0.75 and S2=−0.5, i.e.
stronger selection in Population 1 and (iii) S1=−0.5 and S2=
−0.75, i.e. stronger selection in Population 2.

In non-European ancestries, we found over 100 replicates that
our theory based on Eq. (1) mostly predicts a smaller RA than
actually observed on average in the three scenarios (Fig. 2). This
therefore makes our approach conservative. We observed a
slightly larger downward bias in the predicted RA when using our
heuristic approach based on candidate causal SNPs. On average,
the latter approach showed an absolute underestimation of the
RA of ~2.0% in SAS ancestry (i.e. the difference between the
observed and the predicted RA is 92%−90%= 2.0%), 6.5% in
EAS ancestry and 8.5% in AFR ancestry, which thus provides a
lower bound for the RA. Interestingly, we did not find significant
differences in observed and predicted accuracies across scenarios
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Fig. 1 Trans-ancestry relative prediction accuracy of PGS in different simulation scenarios. Relative accuracies (RA) were calculated as the ratio of the
squared correlation between PGS and simulated trait in UKB participants of non-European ancestry over the same squared correlation estimated in 10,000
independent UKB participants of European ancestry (Methods). We varied trait heritability (h2= 0.25 and 0.5) and numbers of MC causal variants (MC=
1000, 5000 and 10,000) in the simulations. RAobs refers to the observed RA calculated. The predicted RA labelled as RApred1 is estimated using Eq. (1)
based on parameters calculated from SNP pairs of PGS-SNPs and known causal variants within 100 kb; RApred2 refers to RA calculated using SNP pairs of
PGS-SNPs and candidate causal variants using Eq. (2). RApred3 refers to the naive predicted RA using Eq. (1) when assuming that PGS-SNPs are the causal
variants. The numbers under the ancestry labels in x-axis denoted the pairwise FST calculated using HapMap3 SNPs between discovery population and
target population (see Supplementary Note 2). Boxes represent the first and third quantiles and whiskers are 1.5-folds the interquartile range. The points
represent the RA for 100 replicates. The median estimates are shown as the horizontal line in the boxes.
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(ANOVA test, p-value >0.05). This somewhat surprising
observation is suggestive that when heritability is constant and
effect sizes of causal variants are perfectly correlated, differences
in strengths of selection between ancestries might have a
negligible impact on the RA of PGS. As a consequence, we can
expect differences in strengths of selection between ancestries to
mainly impact the term ρ2bh

2
2=h

2
1 in Eq. (1). Note, however, that

our simulations were based on observed contemporary LD
differences between ancestries, which have likely already been
shaped by negative selection. This limitation may have masked an
additional contribution of differential selection between
ancestries.

Application to real data. We performed GWASs of 5 quantita-
tive traits and 3 common diseases with different genetic archi-
tectures in 313,284 unrelated UKB participants of EUR ancestry
(Supplementary Note 5). The 5 quantitative traits are standing
height (Height), body mass index (BMI), HDL and LDL choles-
terol (HDL and LDL) and triglycerides (TG); and the 3 common
disease (cohort prevalence >5% in each ancestry) are asthma, type
2 diabetes (T2D) and hypertension (HTN). We report in Sup-
plementary Table 1, the numbers of quasi-independent GWS
SNPs for each trait and disease (Methods). We used these GWS
SNPs to create polygenic predictors of each trait and disease then
evaluated their predictive performances in the validation sub-
samples of the UKB as described in the Methods section. We
evaluated the accuracy of PGS of diseases on the liability scale
using ancestry-specific disease prevalence estimated in the UKB
and the transformation proposed previously by Lee and collea-
gues31 (Methods). Note that using ancestry-specific prevalence
from previous population studies32–35 did not change our results
(Supplementary Fig. 9). We also assessed the predictive accuracy
of PGS based upon sub-significant SNPs (Supplementary Note 6)
and found, in individuals of non-European ancestries, that PGSs
including SNPs selected at less stringent p-value thresholds did
not systematically improve over using GWS SNPs only (Supple-
mentary Fig. 10). This important observation is consistent with
previous studies2,3,19,20 and emphasises that observed RA from p-
value thresholding scoring methods can be seriously under-
estimated if based on sub-significant SNPs.

As previously reported2,3, we found the average observed RAs
across traits and diseases to decrease monotonically with
increasing FST from EUR ancestry. More specifically, the mean
observed RA across traits and diseases is 72%, 64% and 24% in
participants of SAS, EAS and AFR ancestry, respectively.

Consistently, the number of traits and diseases for which the
reduction of RA was statistically significant (Wald test, p-value
<0.05) also differed between ancestries (Supplementary Table 2).
In SAS ancestry for example, the reduction of RA was significant
only for height, BMI, LDL and HDL. However, in EAS ancestry
the reduced RA of TG and Asthma PGS was also significant,
while PGSs of all traits had significantly reduced RA in AFR
ancestry.

Despite this monotonically decreasing trend on average across
traits, we found the observed RA of the LDL PGS to be larger in
participants of EAS (RA= 58%; standard error S.E. 10%) and
AFR (RA= 40%; standard error S.E. 5.0%) ancestries as
compared with participants of SAS ancestry (RA= 35%; S.E.
4.1%). We further investigated this observation and found this
pattern to be explained by a single large effect variant (namely
rs7254892 with an estimated SNP effect β̂= 0.49 standard
deviation per allele, MAF estimated in 1KGP= 0.03, 0.04, 0.07
and 0.16 in EUR, SAS, EAS and AFR ancestries, respectively)
which explains 1.5% of LDL variance in participants of EUR
ancestry. Excluding this variant from the LDL PGS led to a
reduced accuracy in participants of EAS and AFR ancestries (RA
= 30%; S.E. 7.8% for EAS and RA= 16%; S.E. 3.3% for AFR;
Supplementary Fig. 11) below that from participants of SAS
ancestry (RA= 37%; S.E. 4.5%). This result is important as it
shows how the distribution of SNP effects can lead to unexpected
patterns of RA, and therefore challenge straightforward compar-
isons between traits with different genetic architectures.

We next applied our method to predict the fraction of RA
attributable to MAF and LD differences between ancestries
(Fig. 3). We used WGS data from the 1KGP as a reference panel
for LD and allele frequency calculations. For traits with
significantly reduced RA, we define the loss of accuracy (LOA)
of their corresponding PGS as LOA= (1− RA) × 100%. We also
define the proportion of LOA explained by LD and MAF as the
ratio between the predicted LOA over the observed LOA
(Supplementary Fig. 12). The derivation of standard errors of
this proportion is given in Supplementary Note 7. Our method
predicts a different contribution of LD and MAF across traits and
ancestries (Supplementary Table 2, Fig. 3). For example, we
predict that MAF and LD differences between EUR and SAS
ancestries explain ~24% (S.E. 2%) of the LOA of the height PGS,
while we predict those factors to explain ~38% and ~72% of the
LOA in EAS and AFR ancestry, respectively. For T2D and HTN,
respectively, we found that ~82% (S.E. 14%) and ~86% (S.E. 20%)
of the LOA can be expected because of MAF and LD differences
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Fig. 2 Impact of negative selection on PGS trans-ancestry relative accuracies. Relative accuracies (RA) of PGS in different ancestries under various
strengths of negative selection. Traits were simulated with a heritability h2= 0.5 and assuming MC= 5000 causal variants. Negative selection was
modelled using a parameter S such that smaller values of S indicate stronger strength of selection. Values of S are denoted S1 and S2 in the discovery
population and target populations, respectively. We considered thee scenarios: a S1= S2=−0.5; b S1=−0.5, S2=−0.75; and c S1=−0.75, S2=−0.5.
RAobs, RApred1, RApred2 and RApred3 labels are defined as in the legend of Fig. 1. Boxes represent the first and third quantiles and whiskers are 1.5-folds the
interquartile range. The points represent the RA for 100 replicates. The median estimates are shown as the horizontal line in the boxes.
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between EUR and AFR ancestries. However, we note that the
standard errors of the latter predictions are large. On average over
traits (with a significantly reduced RA), we found that MAF and
LD differences alone can explain up to ~37% (S.E. 5%), ~57% (S.
E. 11%) and ~86% (S.E. 7%) of the LOA in SAS, EAS and AFR
ancestry, respectively. Standard of average over traits were
calculated using leave-one-trait-out jackknife (Supplementary
Note 7).

Altogether, our results show that MAF and LD can explain
>50% of the loss of accuracy of PGS in individuals of AFR or EAS
ancestry, while the RA of PGS in SAS is likely dominated by other
factors such as heritability differences or low correlation of causal
effects.

Discussion
In this study, we developed a new theory to predict the relative
prediction accuracy of PGS across populations of different
ancestries. Our theory overcomes the challenge of predicting
accuracy directly by modelling the relative prediction accuracy
instead. Under the assumption that causal variants are shared but
allowing their effects to differ between populations, we have
shown that the contribution of MAF and LD differences at causal
SNPs and that of other parameters of the genetic architecture
(heritability and genetic correlation, i.e. ρb) can be quantified
separately. We have shown through simulations that the

contribution of differences in LD and MAF to the RA of PGS can
be predicted with little bias (<5%) using a simple heuristic
approach that models local correlation of LD and MAF across
ancestries in the close vicinity of GWS SNPs. Our approach only
requires GWAS summary statistics as well as data from a
globally-diverse reference panel such as the 1KGP.

We explored the impact of negative selection through addi-
tional simulations by considering different relationships between
effect sizes and allele frequencies of causal variants. We found
that predictions from our method can underestimate the RA by
up to −8.5% in populations undergoing mild negative selection
(Fig. 2). Therefore, our predictions can be interpreted as upper
bounds for how much RA can be reduced simply because of MAF
and LD differences between ancestries. More generally, since
PGSs in the current study are mainly focused on common var-
iants, the impact of low frequency and rare variants which may
better inform selection remains to be investigated.

We further assessed the ability of our theory to predict the
accuracy of PGS of multiple traits and diseases in non-European
UKB participants. Altogether, we found that between ~70% (S.E.
7.0%) and 100% (S.E. 20.6%) of the reduction of RA of PGS in
AFR ancestry could be explained by differences in LD and MAF.
Importantly, we found that the fraction of the RA attributable to
MAF and LD varied between traits, which mostly reflects dif-
ferences in the genetic architecture (heritability, polygenicity and
cross-ancestry effect size correlation: ρb) of these traits. It is

a

d e f

b c
100

R
el

at
iv

e 
ac

cu
ra

cy
 (

%
) 80

60

40

20

0

100

R
el

at
iv

e 
ac

cu
ra

cy
 (

%
) 80

60

40

20

0

100

100

50

0

SAS EAS AFR
R

el
at

iv
e 

ac
cu

ra
cy

 (
%

)
P

ro
po

rt
io

n 
of

 L
O

A
 e

xp
la

in
ed

by
 L

D
 a

nd
 M

A
F

 (
%

)

100

50

0

P
ro

po
rt

io
n 

of
 L

O
A

 e
xp

la
in

ed
by

 L
D

 a
nd

 M
A

F
 (

%
) 100

50

0

P
ro

po
rt

io
n 

of
 L

O
A

 e
xp

la
in

ed
by

 L
D

 a
nd

 M
A

F
 (

%
)

80

60

40

20

0

Heig
ht

ASTHM
ATG

LD
L

BM
I

Heig
ht

ASTHM
ATG

LD
L

BM
I

Heig
ht

HDL
LD

L
BM

I

Heig
ht

HDL
LD

L
BM

I

Heig
ht

ASTHM
ATG

T2D
HTN

LD
L

HDL
BM

I

Heig
ht

ASTHM
ATG

T2D
HTN

LD
L

HDL
BM

I

RApred(LD + MAF) RAobs
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noteworthy that AFR participants of the UK Biobank reside in the
UK and therefore are likely to share similar environments as EUR
participants. As consequence, the relative contribution of ρb and
h2, which partially reflects the effects of gene by environment
interactions (if any), might be underestimated. Similarly, the
contribution of ρ2bh

2
2=h

2
1 to the RA of PGS in individuals of SAS

and EAS might be even larger if evaluated across continents than
reported in this study. A recent study by Durvasula et al.12 sug-
gested that ~50% of the heritability is captured by European
specific variants when a trait is under moderate negative selection,
thus limiting the upper bound of prediction accuracy in AFR for
example when using European-derived GWAS summary statis-
tics. Our results based on common variants also show a RA <50%
in AFR but we demonstrate that this reduction is mostly
explained by MAF and LD differences at common causal variants
and not necessarily by population specific causal variants. The
latter conclusion is further supported by large genetic correlations
observed between EUR and non-EUR ancestries36, which overall
suggests that causal variants underlying common genetic varia-
tion identified in European ancestry GWASs are mostly shared
across continents.

We note a few limitations to our study. First, our model uses
LD and MAF estimated from a reference panel. We have shown
the effectiveness of this strategy in population of homogenous
ancestry; however, its application remains challenging in admixed
populations with complex LD patterns and demographic history.
In addition, our theoretical approach cannot be directly applied
to predict the RA of PGS using SNP effects estimated from a
trans-ancestry meta-analysis, although a straightforward exten-
sion could be derived for fixed-effects trans-ancestry meta-
analyses. In practice, random effect models, which already
accounts for allele frequency differences between ancestries, are
often preferred over fixed-effects models. Therefore, we
acknowledge that further theoretical work is required to address
that specific question. Secondly, we only analysed common SNPs
(with MAF >0.01 in each ancestry) in all populations, which
limits the generalization of our conclusions to rarer variants.
Indeed, rare variants are more likely to be population specific and
are usually poorly imputed using a small imputation reference
panel. Thirdly, our study has focused on PGS calculated from
GWS SNPs alone while other methods such as LDpred37 or
SBayesR38, which utilise information from the entire genome,
have been shown to be more accurate within ancestry. Although
we acknowledge that characterizing the theoretical RA of PGS
based on genome-wide methods like LDpred or SBayesR deserves
further investigation, we also emphasise that the gap in prediction
accuracy between GWS SNPs and genome-wide methods is
destined to shrink as the sizes of GWAS continue to grow.
Nevertheless, we re-analysed our simulated data using these two
methods (Supplementary Note 8) and found that their predictive
performance relative to our clumping strategy is near propor-
tional in EUR and non-EUR ancestries. Therefore, we see a
similar RA across all methods (Supplementary Fig. 13) although
SBayesR shows the largest RA across scenarios. The latter
observation mirrors our simulation results showing a constant
RA as sample size increases (Supplementary Fig. 8). Fourthly, our
predictions of the contribution of LD to the RA of PGS can in
principle be inflated in the presence of epistatic interactions
between causal variants if they are in strong LD or if causal effect
sizes are a function of local LD differences between populations.
Lastly, although our simple heuristic strategy to identify candidate
causal variants worked well in simulations, we expect the use of
standard fine-mapping tools to further improve the efficiency of
our method. More specifically, fine-mapping posterior prob-
abilities could be used as weights for candidate causal SNPs,
which our current heuristics cannot do. An advantage of our

heuristic method is that it utilises whole-genome sequencing data
and therefore candidate causal variants that are not present in the
GWAS may still be used for inference. In contrast, standard fine-
mapping tools are limited by the resolution of GWAS summary
statistics, although that resolution can be improved using sum-
mary statistics imputation39.

In conclusion, despite the acknowledgement of the necessity to
collect large scale genome-wide data across different ancestries to
fulfil the potential use of PGS in the precision medicine era3, this
goal remains difficult to achieve in the near future. Instead, trans-
ancestry studies have been increasingly popular. They incorporate
genotype data from different ancestries to boost statistic power
with increasing sample sizes, which have the benefit to discover
disease/trait-associated loci and fine-mapping causal variants
associated with complex traits or diseases13,40–43. However, the
structure of the reference population still remains to be thor-
oughly explored, such as whether some specific populations with
certain sample sizes are mostly useful in trans-ancestry studies.
Our model presents an opportunity for such study design using
both the LD and allele frequency information in a population
level. By performing trans-ancestry GWASs, we expect that the
predictive ability would increase when the admixed LD structure
and allele frequency of the discovery population is similar to the
target population.

Methods
Samples and quality controls. The UK Biobank (UKB) comprises of ~500,000
individuals recruited from the UK, aged from 40 to 69 years old. Participants were
genotyped using two genotyping arrays, the Affymetrix UK BiLEVE AxiomTM

Array and UK Biobank AxiomTM Array. Each participant provided written
informed consent. The North West Multi-Centre Research Ethics Committee
(MREC) approved the study and all participants in the UKB study analysed here
provided written informed consent. Additional study and quality control details are
shown in Bycroft et al.44. The approach to infer the ancestry of each individual is
described in Yengo et al.45. We firstly projected each individual of UKB onto the
genotypic principal components (PCs) calculated in 2000 participants of 1KGP22.
We only extracted individuals from four ancestries in the 1KGP, namely, European
ancestry (EUR, N= 503), South-Asian ancestry (SAS, N= 489), East-Asian
ancestry (EAS, N= 504) and African ancestry (AFR, N= 504). We excluded
African Caribbeans in Barbados (ACB) and Americans of African Ancestry in SW
USA (ASW) populations from AFR and all individuals of American ancestry
(AMR) considering their complex admixture patterns. We then assigned each of
those genotyped participants of UKB to the closest ancestry based on the first three
PCs, resulting in 463,795 EUR, 11,906 SAS, 2486 EAS and 9184 AFR. To remove
cryptic relatedness in the UKB, we used the GCTA software to calculate the
genomic relationship matrix (GRM)46 based on genotyped SNPs in each of the
aforementioned populations. With one of each pair of individuals with estimated
relatedness larger than 0.05 being removed, a subset consisting of unrelated indi-
viduals was generated in each ancestry. For the European ancestry, we only
extracted those self-reported British and Irish participants. After randomly sam-
pling 10,000 individuals from British subset, we created the discovery dataset using
the remaining 313,284 individuals. As for the target populations, we used an
independent dataset of ~39,000 UKB individuals. Those individuals included the
10,000 randomly sampled participants who identified themselves as British, 9979
participants of EUR who identified themselves as Irish, the 9448 participants of
SAS, the 2257 participants of EAS and the 7015 participants of AFR. Data from the
1KGP were used as the reference panel in this study. We generated subsets of
unrelated individuals in 1KGP with the same strategy as described above, resulting
in 495 EUR, 457 SAS, 498 EAS and 484 AFR.

For participants of non-European ancestries in the UKB, we further imputed
the SNP array data to the 1KGP given that the imputation reference panels,
Haplotype Reference Consortium (HRC)47 and UK10K48, used in the UKB are
predominant by European descents thus a large number of missing SNPs are
observed when using hard call (<0.1) thresholds on dosage data. In each ancestry
we firstly extracted genotyped SNPs such that Hardy–Weinberg equilibrium
(HWE) p-value >0.001 and missing rates <0.05 and also excluded individuals with
genotype call rates <0.9. Filtered SNPs in each ancestry were then phased using
SHAPEIT249 and imputed to 1KGP by IMPUTE250. In each ancestry, stringent
quality control procedures were performed separately. We removed SNPs with
imputation quality scores <0.30, MAF < 0.01, HWE p-value <10−6, or missing
genotype call rates >0.05. HapMap3 SNP set, which has been well designed for
human genome-wide common genetic variants51, was then extracted from imputed
data to run follow-up analyses. A total of 990,395 filtered HapMap3 SNPs in
common between populations were selected.
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SNPs in the 1KGP reference panel were restricted to a total of 6,877,707 SNPs
common to all four ancestries after excluding those SNPs with minor allele count
(MAC) <5 in each ancestry. The above described HapMap3 SNP set was further
intersected with 1KGP, thus limiting the number to 978,783.

Simulations. We derived a deterministic equation to quantify the relative pre-
diction accuracy of PGS across ancestries. To evaluate this equation, we performed
various simulations (each scenario with 100 replicates) using the real genotypes in
the UKB cohort. To simplify our notations, we denoted the training/discovery
sample as Population 1 (l= 1) and the target/test sample as Population 2 (l= 2).

The phenotypes were simulated based on the additive model y= g+ e in all
scenarios using different values of MC and trait heritability (h2). In each simulation
replicate, we simulated a trait with a heritability of 0.25 or 0.5 in all ancestries.
Traits were simulated from MC (MC= 1000, 5000 and 10,000) causal variants
sampled at random from the HapMap3 SNPs. We assumed the effect sizes of causal
variants (β) were perfectly correlated across populations, i.e. ρb= 1. For each causal
variant, β was sampled from a normal distribution with mean 0 and variance

h2
2pjlð1�pjlÞMC

, where pjl is the MAF in jth causal variant in population l. For each

individual, the genetic value g was defined such as g ¼ PM
j¼1 xjlβj, where xjl denotes

the minor allele count (xjl equals to 0, 1 or 2) at the jth causal variant in population
l. The environmental effect (e) was simulated using a normal distribution with
mean 0 and variance equal to (1− h2): e � Nð0; 1� h2Þ, such that the phenotypic
variance across populations was equal to 1.

PLINK1.90 (note version 20 Mar was used in this study)52 was used to run
GWAS for the simulated phenotypes in Population 1 using the simple linear
association testing on HapMap3 SNPs. To mimic the imperfect LD between the
causal variants and the SNP markers used in GWAS, the causal variants were
always left out of the analysis.

To further explore the impact of negative selection, we sampled β from a multi-

normal distribution with mean 0 and variance 2pjl 1� pjl
� �S

σ2β , where σ2β is the

variance of causal effect sizes. We considered three scenarios corresponding to (i)
equal strength of selection in both ancestries (S1= S2=−0.5), (ii) stronger
selection in Population 1 (S1=−0.75 and S2=−0.5) and (iii) stronger selection in
Population 2 (S1=−0.5 and S2=−0.75). The phenotypes were generated in the
same way as described above. For simplicity, we focused on a trait with a
heritability h2= 0.5 and controlled by MC= 5000 causal variants.

Selection of genome-wide significant (GWS) SNPs. After running GWAS, we
selected approximately independent SNPs associated with the trait (referred to as
GWS SNPs or PGS-SNPs), using the LD clumping algorithm implemented in
PLINK1.9052. We used the following command: --clump-p1 5e-8 --clump-p2 5e-8
--clump-kb 2000 --clump-r2 0.01. The genotypes of the training population were
used as LD reference for clumping. We used here a more stringent LD threshold
than classically used (e.g. 0.1 or 0.2) because SNPs with LD r2 as large as 0.1 can
still reflect the same signal when GWAS sample size is large (e.g. N > 300,000).

Deterministic accuracy of PGS in trans-ancestry genetic prediction. We cal-
culated the deterministic accuracy in the target populations based on selected GWS
SNPs. Since we focused on in this study the contribution of LD and allele frequency
differences between populations to the RA, the term ρ2bh

2
2=h

2
1 equalled to 1 in the

simulations. We then used a reference panel to calculate the LD correlation and MAF
between populations. To first validate our theory, we used Eq. (1), which assumes
causal variants to be known, to calculate the LD correlation and MAF using SNP pairs
between PGS-SNPs and known causal variants. We then explored the performance of
our heuristic method using Eq. (2), given that causal variants are typically unknown
or unobserved. For that, we took advantage of the LD and MAF information between
PGS-SNPs and candidate causal variants instead. Further, we applied a naive
approach assuming PGS-SNPs to be the causal variants, thus mainly the allele fre-
quency differences between populations would be captured using Eq. (1).

When using Eq. (1) with known causal variants, we firstly matched GWS SNPs
to them to calculate LD correlation and allele frequencies between populations
(results shown as RApred1 in the simulations). It was done by constraining the
window centred at each GWS SNP as 100 kb and then selecting those pairs
including known causal variants. This window was based on the report that ~95%
top lead SNPs (with MAF >0.01) identified from GWASs are within 100 kb
distance from the causal variants in European ancestry21. Although the causal
variants are often unknown or unobserved in a classical GWAS, they are usually
tagged by numerous SNPs. Therefore, we took advantage of the information
regarding fine-mapping precision of GWAS studies and selected candidate causal
variants as those SNPs in LD r2 >0.45 with GWS SNPs and located within 100 kb
window21. Those GWS SNPs and candidate causal variants pairs were then used in
Eq. (2), with results referring to as RApred2 in the simulations. When assuming the
PGS-SNPs as causal variants, we estimated the accuracies using Eq. (1) where the
LD correlation was replaced with 1 (results denoted as RApred3 in the simulations).
The LD correlations were estimated using PLINK1.9052 (−r).

The final predicted parameters to evaluate predictive ability were calculated as
the mean of the estimates across 100 replicates, respectively. To explore the impact
of imputation on our model, we used both 1KGP WGS data and UKB imputed

data as the reference in the simulated data. We used the same approaches, except
for the one assuming causal variants were known, to analyse GWAS summary
statistics of complex traits and diseases in UKB (Supplementary Note 4). While,
1KGP WGS data were used as the reference panel since most causal variants might
not be included in the summary statistics.

The relative accuracy (RA) was calculated as the ratio of R2
2=R

2
1, where R

2
1 was the

predicted prediction accuracy in the population with same ancestry of discovery
population; and R2

2 was the predicted prediction accuracy in other target populations.
Note we have two target populations of EUR when calculating R2

1 in the simulations,
we used the British subset (N= 10,000) as the validation, in which the accuracy of
PGS within-European-ancestry was quantified and a reference group (self-reported
Irish with N= 9979), in which we predicted the accuracy of PGS, separately.

Empirical accuracy of PGS in trans-ancestry genetic prediction. After selecting
approximately independent GWS SNPs using LD clumping, we then generated PGS
in each target population by adding up the product of minor allele counts times effect
sizes of GWS SNPs estimated from GWAS summary statistics. The prediction
accuracy was then estimated using the squared correlation (R2) between the true
phenotypes and the PGS. For diseases, we calculated the liability-scale R2 as described
in Lee et al.31. We estimated the disease prevalence as the proportion of cases in each
ancestry given that UK Biobank is a population-based study. We combined the two
target populations of EUR ancestry (N= 19,979) to calculate the corresponding R2

for traits/diseases in UKB. The empirical relative accuracies (RA) were calculated as
the ratio of the R2 in UKB participants of non-European ancestry over the same R2

estimated in ~20,000 independent UKB participants of European ancestry.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
This study makes use of genotype and phenotype data from the UK Biobank data under
project 12505 (http://www.ukbiobank.ac.uk/). UKB data can be accessed upon request
once a research project has been submitted and approved by the UKB committee. 1KGP
data can be accessed through ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/
1000_genomes_project/data.

Code availability
Data and R scripts for generating the main figures can be found at https://github.com/
loic-yengo/Code_for_Wang_et_al2020/. Other methods used are as follows: GCTA:
http://cnsgenomics.com/software/gcta; PLINK: https://www.cog-genomics.org/plink2;
IMPUTE2: https://mathgen.stats.ox.ac.uk/impute/impute_v2.html; SHAPEIT2: https://
mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html; LDpred: https://github.
com/bvilhjal/ldpred; GCTB-SBayesR: https://cnsgenomics.com/software/gctb/.
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