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Abstract

Cardiovascular disease (CVD) is the leading cause of mortality and morbidity for all sexes, 

racial and ethnic groups. Age, and its associated physiological and pathological consequences, 

exacerbate CVD incidence and progression, while modulation of biological age with interventions 

track with cardiovascular health. Despite the strong link between aging and CVD, surprisingly 

few studies have directly investigated heart failure and vascular dysfunction in aged models 

and subjects. Nevertheless, strong correlations have been found between heart disease, 

atherosclerosis, hypertension, fibrosis, and regeneration efficiency with senescent cell burden 

and its proinflammatory sequelae. In agreement, senotherapeutics have had success in reducing 

the detrimental effects in experimental models of cardiovascular aging and disease. Aside from 

senotherapeutics, cellular reprogramming strategies targeting epigenetic enzymes remain an 

unexplored yet viable option for reversing or delaying CVD. Epigenetic alterations comprising 

local and global changes in DNA and histone modifications, transcription factor binding, 

disorganization of the nuclear lamina, and misfolding of the genome are hallmarks of aging. 

Limited studies in the aging cardiovascular system of murine models or human patient samples 

have identified strong correlations between the epigenome, age, and senescence. Here, we compile 

the findings in published studies linking epigenetic changes to CVD and identify clear themes of 

epigenetic deregulation during aging. Pending direct investigation of these general mechanisms in 

aged tissues, this review predicts that future work will establish epigenetic rejuvenation as a potent 

method to delay CVD.
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INTRODUCTION

Cardiovascular disease (CVD), including heart failure, hypertension, atherosclerosis, and 

cardiomyopathy, remains the leading cause of death worldwide and carries a severe 

socioeconomic burden. While many factors contribute to CVD development, including diet, 

genetics, and the environment, one core, independent risk factor amongst almost everyone 

with a CVD is aging. It was once estimated that by 2030, about 20% of the United States 

population would be aged 65 or older and that CVD will account for 40% of the deaths 

of that group, making CVD the leading cause of death[1,2]. According to the United States 

Census Bureau, we have observed an increase in the elderly population from 40 million 

in 2007 to 51 million in 2017, with the projected number of people over 65 to leap to 

95 million in 2060. CVD prevalence continues to increase as human life expectancy also 

continues to rise, likely due to greater exposure to the traditional external risk factors and 

intrinsic pathways of aging[3]. After adjusting for the other major risk factors for CVD, one 

study found the odds of vascular diseases increased with every decade of life, demonstrating 

a strong increase in peripheral arterial disease (PAD), carotid artery stenosis, and abdominal 

aortic aneurysm (AAA) with advanced age[4].

The pathological consequences associated with normal cardiovascular aging include 

hypertrophy, altered left ventricular (LV) diastolic and systolic function, heart failure, 

enhanced arterial stiffness, and endothelial dysfunction, all of which can alter the 

structure and function of the heart and arterial system[5,6]. In the vasculature specifically, 

aging contributes to decreasing vascular compliance. Furthermore, it promotes vascular 

remodeling, including calcification and fibrosis, which in turn precedes the development 

of hypertension and accelerates the progression of other vascular-related diseases such as 

atherosclerosis or heart failure[7]. In addition, the incidence of metabolic diseases such as 

diabetes also increases significantly with age and contributes greatly to CVD morbidities 

and mortalities[8]. Interestingly, many metabolic disorders are associated with premature 

aging, suggesting that there are mechanisms we can unravel to potentially intervene and 

prevent the deterioration of the cardiovascular system independent of natural aging.

Until recently, aging has widely been considered an unmodifiable risk factor for many 

chronic diseases (cancer and neurodegenerative diseases) and very prominently CVDs[9–11]. 

Aging interventions have become a rising area of interest, where molecular and clinical 

dissection of aging processes have begun to show promising therapeutic targets. The 

monumental finding in 1939 that caloric restriction (CR) in mice and rats, and most recently 

in primates, extended lifespan led to the important hypothesis that lifespan extension with 

delayed aging improved healthspan[12,13]. Since then, an examination of healthy aging and 

processes that promote age-related deterioration across species and organs has increased our 

understanding of the involvement of aging in chronic diseases[14].

Herman et al. Page 2

J Cardiovasc Aging. Author manuscript; available in PMC 2021 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



THE ROLE OF SENESCENT CELLS IN CARDIOVASCULAR PATHOLOGIES 

AND AGE-RELATED PATHWAYS

CVD and cellular senescence

A major contributor to age-related cellular dysfunction was found to be the accumulation 

of senescent cells in tissues[15]. Senescent cells were discovered in 1965 by Hayflick[16] 

as cells with a limited proliferative capacity; however, we now define senescence as those 

cells with indefinite cell cycle arrest, resistance to apoptosis, and expression of a senescence

associated secretory phenotype (SASP)[17]. Thus, senescent cells provide a new avenue 

for therapeutic interventions, known as senotherapies[18,19]. Specifically, a class of drugs 

known as “senolytics” is designed to take advantage of the senescent cell’s resistance 

to apoptosis by targeting cell survival pathways to eliminate senescent cells from tissue 

selectively, thereby removing their detrimental effects[20–22]. Alternatively, another class of 

drugs known as “senostatics” is designed to modulate the proinflammatory SASP; however, 

the complex composition of the SASP varies widely among different cell types, different 

stages of senescence (early, middle, or late), and various senescence inducers, providing 

many obstacles to a successful therapeutic intervention[23]. While the components of the 

SASP may vary, the beneficial effects of senotherapies (both senolytics and senostatics) 

are mostly attributed to blunting the secretion of proinflammatory cytokines, chemokines, 

growth factors, and extracellular matrix (ECM) remodeling proteins, among others secreted 

by senescent cells[24–26]. For a more detailed discussion of these senotherapeutic agents, 

please consult the reviews by Kirkland and Tchkonia[24], 2020 and Robbins et al.[26], 2021.

There is a rapidly growing body of evidence supporting the deleterious role of senescent 

cells in several CVDs. During embryonic development, tissue regeneration, and wound 

healing, vascular senescent cells have a beneficial presence to maintain homeostasis[27]; 

however, we have learned that impaired removal and accumulation of senescent cells 

in cardiovascular tissue foments impaired function and disease development. Senescent 

cells have been implicated in several CVD pathologies, most notably, atherosclerosis[28], 

AAA[29], cardiac fibrosis[30], heart failure[31], and hypertension[32]. Further incriminating 

senescent cells as causative agents of CVD, Childs et al.[33] demonstrated that senescent 

cells are critical drivers of atherosclerosis and selective removal of these cells has 

therapeutic potential to improve disease outcomes. In the same year, Roos et al.[34], found 

that pharmacological clearance of senescent cells can lessen the vasomotor dysfunction that 

occurs in murine aging and atherosclerosis.

Senescent cardiomyocytes contribute to cardiac pathologies

Heart failure is an age-related cardiac pathology that is a major source of mortality, 

affecting approximately 1% of all people over 50 years and doubling its prevalence with 

each decade of life[35,36]. Cardiomyocyte senescence is common in cardiac aging and 

related diseases, although senescent cardiomyocytes are more difficult to identify due 

to their terminally differentiated state[37]. Senescent cardiomyocytes display contractile 

dysfunction, endoplasmic reticulum (ER) stress, DNA damage, genomic instability, 

declining mitochondrial function, SASP, and hypertrophic growth[38]. Further, the exact 

triggers and effects of cardiomyocyte senescence in vivo have not been well described. 
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However, studies in mice and rats have identified many of the signatures of cellular 

senescence, such as increased cardiomyocyte size, telomere attrition, ROS production, 

and elevated senescence markers p16 (CDKN2A) and p53 (TP53)[39,40]. In hypertrophic 

cardiomyopathy patients, cardiomyocytes with DNA damage also had the shortest 

telomeres, and patients with ischemic cardiomyopathy also displayed shortened telomere 

length[41]. While senescence is often associated with telomere shortening, cardiomyocytes 

are post-mitotic cells that do not experience replicative exhaustion; therefore, senescent 

cardiomyocytes demonstrate length-independent telomere damage caused by mitochondrial 

dysfunction and ROS[42]. As mentioned above, hypertrophy is a hallmark of age-associated 

heart dysfunction, and although cardiomyocyte hypertrophic growth is commonly associated 

with senescence, it is unclear whether senescent myocyte growth directly contributes to 

cardiac hypertrophy[43]. A few studies have found that ER stress appears to promote a 

hypertrophic cardiomyocyte phenotype in vitro, hypertrophy was detected in hearts post

infarction, and aged rat hearts demonstrated cardiomyocyte hypertrophy and increased LV 

fibrosis; however, none of these studies directly measured senescence[43–45]. Interestingly, 

treatment of aged mice with the senolytic drug navitoclax selectively removed senescent 

cardiomyocytes, which improved myocardial remodeling and increased survival following 

myocardial infarction[46]. While studies have outlined that accumulated damage to 

mitochondria, proteins, and DNA with age contributes to cardiomyocyte malfunction, 

telomere damage and cellular senescence are also critical to heart failure in humans, and 

more efforts will be needed to fully elucidate the contribution of senescent cardiomyocytes 

to age-related cardiac pathologies[47].

Further, cardiomyocyte senescence and the downstream pathologies are also the 

results of stress-induced premature senescence. Cardiomyocytes treated with doxorubicin 

demonstrated similar characteristics to those of aged rats, including increased senescence

associated beta-galactosidase positive cells, reduced telomerase activity, and increased 

expression of cell cycle regulatory proteins such as p16 and p21 (CDKN1A)[48]. Recently, 

Mitry et al.[49], further described the mechanism by which doxorubicin accelerates 

cardiomyocyte senescence and cardiotoxicity. In the study, Mitry et al.[49] found that 

doxorubicin caused early and persistent topoisomerase-induced mtDNA damage that 

enhanced cardiomyocyte senescence, in turn straining the heart’s aerobic metabolism over 

time and promoting late-onset heart failure often observed in survivors of childhood cancers.

Aside from cardiomyocytes, other cardiac cells promote senescence and aging and the 

downstream age-related diseases. For example, cardiac fibroblasts secrete many paracrine 

factors such as matrix metalloproteinases and express integrins to promote signaling and 

ECM interactions that regulate cardiomyocyte senescence[50,51]. Endothelial cell senescence 

has also been implicated in heart failure with preserved ejection fraction, in which the 

activation of p53 signaling generates cardiac inflammation and left ventricular pressure 

overload in mice[52]. Interestingly, cardiomyocyte dysfunction can also promote changes in 

neighboring cell types, such as fibroblasts, and impair the reparative function of cardiac 

fibrosis after cardiomyocyte injury[53,54].

An important area of study for cardiac aging is impaired cardiomyocyte regeneration. We 

have discussed the key hallmark of cardiac aging; the increased size of cardiomyocytes, 
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but another critical change is the loss of cardiomyocytes with age[55]. While the neonatal 

heart demonstrates regenerative capacity, it was long thought the adult heart lacked the 

ability to renew cardiomyocytes[56]. Recent observations that adult cardiomyocytes renew at 

a rate of 0.5% to 2% per year demonstrating a limited, innate regenerative ability that has 

dismantled those previous theories; however, the capacity of the heart to regenerate declines 

with age[57–59]. Increased cardiomyocyte death, even in the very small numbers, was shown 

experimentally to promote heart failure, and that inhibiting the loss of cardiomyocytes, 

potentially through regeneration, could be an ideal therapeutic avenue[60]. The heart 

regeneration field suffers from a lack of consistent and reproducible data on the subject; 

however, a consensus has developed that stem cells are not the source of cardiomyogenesis, 

but rather preexisting cardiomyocytes divide to give rise to new cells[57,61–63]. A deeper 

understanding of the mechanisms that drive cardiomyocyte death with age may yield 

therapeutic potential for promoting regeneration in aged and damaged hearts.

Senescent vascular cells contribute to vascular diseases of aging

Among the many changes observed with aging, arterial remodeling and dysfunction are 

critical to the development of CVD, even in individuals who may be deemed healthy by 

all other standards. For example, aged arteries are defined by an increased ratio of intima

to-media thickness, and multiple reports have determined a 2- to 3-fold increase in intima 

thickness between 20- and 90-year-old people[5]. In addition, changes in the arterial wall 

feature increased collagen synthesis and elastin degradation with age, promoting arterial 

stiffness and reduced elasticity[64]. The consequence of such vascular remodeling manifests 

as increased blood pressure and lower diastolic pressure generating a predisposition to 

developing hypertension and atherosclerosis, among other vascular diseases[65–67].

Both of the primary cell types of the artery, vascular smooth muscle cells (VSMCs) 

and endothelial cells (ECs), become senescent with age, regardless of the presence of a 

vascular-related disorder[68–70]. The human VSMCs from aged vessels and advanced-stage 

atherosclerotic plaques displayed senescence indicators with prolonged population doubling 

times and reduced cell proliferation[71,72]. These findings were corroborated by associating 

the growth arrest of VSMCs with increased expression of p16 and p21, cyclin-dependent 

kinase inhibitors, and RB1 phosphorylation, all of which are observed during replicative 

VSMC senescence and are widely considered hallmarks of senescence[28,73,74]. The VSMCs 

from the fibrous cap region of the atherosclerotic plaque compared to the vascular media 

demonstrated telomere shortening caused by oxidative stress-induced DNA damage. The 

resulting VSMC senescence accelerates vascular disorders such as atherosclerosis[28]. 

Angiotensin II is another well-described driver of VSMC senescence, and recently, smooth 

muscle 22α, an actin-binding protein, has been shown to prevent p53 degradation via 

MDM2 suppression to promote angiotensin II-induced VSMC senescence[75]. Importantly, 

senescent VSMCs in the plaque of carotid arteries express enhanced levels of interleukin-6 

(IL-6), signifying VSMCs as a SASP producer and source of inflammation during vascular 

disease[76]. Most recently, Uryga et al.[77] suggested persistent telomere damage in VSMCs 

causes senescence and inflammation via immune cell recruitment and retention. Overall, 

senescent VSMCs have been recognized in atherosclerotic lesions, AAA, and PAD, 

suggesting that VSMCs have a critical role in age-related vascular pathologies[70].

Herman et al. Page 5

J Cardiovasc Aging. Author manuscript; available in PMC 2021 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Aside from VSMCs, ECs play an influential role in vascular disorders with age. While 

ECs typically maintain vascular homeostasis, senescent or dysfunctional ECs establish 

proinflammatory, prothrombotic, and vasoconstrictor characteristics in addition to reduced 

proliferation and migration. Replicative senescent ECs express increased cell adhesion 

molecules such as ICAM-1 and decreased endothelial nitric oxide synthase and activity, 

caused by telomere shortening[70]. Another cause of EC senescence may be disturbed 

flow during atherosclerosis. In both mice and in vitro, the aberrant flow was a driver of 

EC senescence by activating the p21-p53 pathway[78]. Aged and senescent ECs are also 

producers of inflammatory cytokines, namely IL-6, tumor necrosis factor alpha (TNFα), and 

monocyte chemoattractant protein-1 (MCP-1), which also suggests that the accumulation 

of senescent ECs in the artery with age causes chronic sterile inflammation and vascular 

changes that predispose one to vascular diseases[79,80].

Although VSMCs and ECs compose most of the artery, immune cell aging and senescence 

may also contribute greatly to vascular pathologies associated with aging. Individuals 

60 years or older with shortened telomeres in leukocytes experience a higher mortality 

rate that has been linked to increased death from CVD[81]. In an interesting and 

clinically relevant study, the analysis of leukocyte populations led to the finding that 

telomere length was strongly associated with the development of atherosclerosis and 

CVD[82,83]. Furthermore, senescent leukocytes and senescent effector memory T cells 

were found preferentially in unstable atherosclerotic plaques[84]. Additionally, enhanced 

cytokine expression (TNF, MCP-1/CCL2, IL6) and ROS production have been observed 

in monocytes from atherosclerosis patients[85]. Importantly, the proinflammatory phenotype 

of aged and senescent monocytes is driven by senescence[86]. Figure 1 summarizes the 

known consequences of cardiovascular aging and the molecular mechanisms, cell types, 

environmental factors involved, and potential therapeutics and interventions.

Overall, the evidence overwhelmingly points to the need to continue to study aging and 

senescence in CVD. Here, we present the body of work thus far that has uncovered 

numerous important pathways and mechanisms by which aged and senescent cells 

contribute to the development of different cardiovascular pathologies. Recurring thematic 

features of cardiovascular aging and disease suggest an unstable genome with shortened 

telomeres and a deregulated transcriptome that is pro-fibrotic, proinflammatory, but anti

proliferative with reduced regenerative capacity. In sum, these cellular phenotypes suggest 

an altered epigenome that has emerged as one of the hallmarks of aging in recent years. 

By focusing on mechanisms with druggable targets such as epigenetic alterations, we 

can develop therapies to modulate aging and senescence in CVD. Outlined below are the 

central findings from studies that have investigated epigenetic changes in CVD, although as 

discussed in FUTURE PERSPECTIVES, these studies are limited and mostly out of context 

with aging. Nevertheless, these studies have revealed important insights that can be validated 

and developed into targeted therapeutics in the future.

EPIGENETIC CHANGES IN THE AGING CARDIOVASCULAR SYSTEM

Epigenetic alterations are one of the key features of aging and age-related disease, 

including CVD. These alterations include changes in DNA modifications, histone 
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modifications, histone composition, transcription factor (TF) binding, non-coding RNA

mediated regulation, chromatin remodeling, nucleosome positioning, and 3D genome 

folding[87,88]. Whether epigenetic changes drive aging or are a consequence of activated 

stress signaling pathways remains to be dissected but likely are part of a vicious cycle that 

ultimately leads to tissue damage, inflammation, and disease. In the following sections, 

we first discuss the probable impact of diet, exercise, and other environmental factors on 

cardiovascular health and then elaborate on the role of specific epigenetic regulators studied 

in the context of cardiovascular aging and disease.

Effect of diet, exercise, and other environmental factors in cardiovascular health

Aside from age, obesity and metabolic syndrome (characterized by sarcopenic obesity, 

insulin resistance, inflammation, etc.) are also major risk factors for CVD, partly due to 

their systemic proinflammatory effects, much like in aging[89]. With increased body mass, 

there is an increase in the overall size of the heart, concentric hypertrophy, increased left 

ventricular mass, hypertension, and diastolic dysfunction, partially overlapping age-related 

cardiac symptoms. CR (i.e., a reduction in daily calorie intake without malnutrition) is 

one of the most reproducible lifestyle interventions that improve cardiovascular health and 

increase lifespan in multiple models[90]. Studies in non-human primates show that rhesus 

monkeys on long-term, moderate CR show improvements in metabolic syndrome, including 

decreased body weight primarily due to loss of fat, decreased visceral fat mass, improved 

insulin sensitivity, and an altered lipid profile with more cardioprotective high-density 

lipoprotein compared to ad libitum fed controls[13,91]. Interestingly, an inadvertent CR in 

humans participating in the Biosphere 2 experiment showed tremendous cardiovascular 

health benefits[92].

Much like CR, exercise has demonstrated effects on cardiovascular health. Physical 

inactivity is a major contributing factor to age-related disabilities, declining heart health, 

stroke, cognitive impairment, and frailty primarily due to progressive arterial stiffness[93]. 

Older individuals undergoing regular exercise show increased maximal oxygen consumption 

rate (VO2max)[94]. Endurance exercise improves not only VO2max but also early diastolic left 

ventricular filling and relaxation, peak ejection fraction, and cardiac output. There are also 

general improvements in vascular physiology and endothelial function[95,96].

Unlike CR and exercise that have health benefits, smoking is a serious risk factor for 

cardiovascular disease. Smoking is often quantified in “pack-years”, i.e., the number of 

packs of cigarettes smoked per day multiplied by the number of years an individual has 

smoked (cancer.gov). In a study of > 13000 participants, Ding et al.[97] determined a 

strong correlation between pack-years, duration, intensity, and cessation time of smoking 

to deleterious cardiovascular outcomes, with the strongest risk being PAD. In addition, 

smoking has been shown to directly target the epigenome, altering DNA methylation 

profiles, specifically 187 CpG sites independently validated in a separate cohort[98]. In 

fact, some mortality predictive DNA methylation clocks, such as GrimAge (discussed 

below), directly incorporate smoking-related changes through an estimate of pack-years of 

smoking[99].
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Similar to smoking, air pollution is a major contributing factor that accelerates the decline of 

cardiopulmonary health. A growing body of epidemiological and clinical evidence indicates 

that ambient particulate matter may directly impact the cardiovascular system, although 

exact biological mechanisms are unknown[100]. In part, the deleterious effects of particulate 

pollutants may be mediated by oxidative stress and systemic inflammation[101]. Therefore, 

long-term studies focused on elucidating the molecular pathways involved will be critical for 

designing mitigative approaches.

Given that environmental factors can impact multiple aspects of cardiovascular health and 

modulate lifespan, we discuss below some of the key molecular mechanisms that might 

be involved in this process. The epigenome is the interface between the environment and 

phenotype and, consequently, plays an important role in regulating health and disease.

DNA modifications in cardiac pathology

Methylation of cytosine (5-methylcytosine or 5mC) is the best-studied and most abundant 

modification on DNA. The 5mC status of groups of CpGs is associated with disease 

onset and mortality and therefore serves as the basis for several pan-tissue clocks that 

have been designed to act as “biological age” estimators. For example, GrimAge[99] 

and PhenoAge[102], two epigenetic clocks trained on chronological age and blood-based 

biomarkers, are associated with time to the incidence of CVD events[103]. Although a 

clear mechanistic basis for these clocks is still obscure, the primary genomic regions 

affected seem to be polycomb targets and those near developmental genes[104]. In 

concordance, a DNA methylome profiling in purified cardiomyocytes of mice undergoing 

heart failure showed methylation patterns that resembled those in neonates[105]. Another 

independent epigenome-wide association study examining relationships between DNA 

methylation and incident CVD discovered two CpG modules in human cohorts: one 

associated with developmental genes and the other with immune functions[106]. In keeping 

with the developmental gene activation theme in diseased hearts, the landscape of 5

hydroxymethylcytosine (5hmC, an oxidative product of 5mC) in cardiomyocytes derived 

from developing and hypertrophic hearts resemble, in part, a neonate-like signature. It was 

shown that 5hmC, which is positively correlated with gene transcription, was reduced over 

mitochondrial genes and increased over enhancers and gene bodies of fetal genes such as 

Myh7, thereby reactivating them[107].

Investigation of DNA methylation in healthy and atherosclerotic lesions from donor-matched 

aorta samples interestingly revealed focal hypermethylation in the diseased tissue over 

repeat and non-repeat regions of the genome and in both a CpG and non-CpG context[108]. 

Furthermore, the differentially methylated regions were associated with endothelial and 

smooth muscle function. A related study in swine, investigating differential methylation in 

ECs from an athero-susceptible location (inner curvature of the aortic arch) and an athero

protected region (descending thoracic aorta), also identified many hypermethylated sites that 

were linked to genes related to transcriptional regulation, pattern-specification HOX loci, 

oxidative stress, and ER stress adaptive pathway[109]. Furthermore, 5’UTR hypermethylation 

exhibited an inverse relationship with gene expression at the HOX loci primarily. These 

observations contrast with DNA methylation changes in aging[110] or cancer[111], where 
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global hypomethylation over megabase-sized blocks of the genome is the primary feature 

despite aging being a risk factor for atherosclerosis.

The derepression of repeat elements with retrotransposon activation is a known molecular 

event in senescence and aging. Evidence in senescent cells and mouse tissues indicates that 

these non-coding transcripts, generated from repeat elements, in turn, are reverse transcribed 

and activate an interferon response contributing to a systemic proinflammatory status in 

aging[112]. The overall coverage of 5hmC over repeat elements was shown to decrease 

during cardiac development but increase in the hypertrophied heart, particularly at long 

interspersed nuclear elements. This was accompanied by reduced CG methylation and other 

repressive histone modifications (discussed below), suggesting a consequential activation of 

these regions in disease[107].

Most genome-wide methylation studies have been done using bead-based arrays, whole

genome bisulfite sequencing, or reduced representation bisulfite sequencing post-bisulfite 

treatment of DNA. However, these methods fail to distinguish between 5mC or 5hmC and 

thereby may complicate mechanistic inferences on gene regulation. The recent development 

of the oxidative bisulfite sequencing (oxBS-seq) method allows for the simultaneous 

measurement of 5mC and 5hmC at single-nucleotide resolution[113]. We propose that 

investigation of these distinct DNA modifications in cardiac aging and disease is an 

understudied but important future research direction.

Altered balance of activating and repressive histone modifications

Histone post-translational modifications (PTMs) represent another epigenetic mechanism to 

control gene expression. A core octamer comprising two copies each of H2A, H2B, H3, and 

H4 histones wraps 147 bp of DNA to form the basic unit of chromatin, the nucleosome. 

Linker histone H1 binds to linker DNA at the entry and exit sites of DNA on nucleosomes 

to form the next level of recurring chromatin structural unit, the chromatosome[114]. 

Core and linker histones are modified by diverse PTMs such as acetylation, methylation, 

ubiquitylation, phosphorylation, etc. primarily on the unstructured tail regions (although 

there are many core modifications) and regulate activation or repression of gene expression 

via opening and closing of chromatin structure in a heritable fashion[115]. Table 1 provides 

an overview of known functions of specific histone modifications from the literature. Active 

or open chromatin is referred to as euchromatin, and inactive, closed chromatin is called 

heterochromatin. An existing notion in senescence studies points towards the progressive 

euchromatinization of the genome with concomitant loss of repressive modifications.

A genome-wide investigation of 7 histone PTMs, lysine 9 acetylation on histone H3 

(H3K9ac), H3K27ac, H3K79me2, H3K4me3, H3K9me2, H3K9me3, and H3K27me3 (“me” 

indicating methylation) in cardiomyocytes isolated from normal and pressure-overloaded 

hearts revealed a subset of hypertrophy-associated genes that follow the conventional histone 

code, i.e., a mutually exclusive enrichment of activating (H3K9ac, H3K27ac, H3K79me2, 

and H3K4me3) and repressive (H3K9me2, H3K9me3, and H3K27me3) modifications. 

Additionally, this study identified a network of ~9000 putative active enhancers in the 

hypertrophic heart that might correlate to disease pathology, suggesting that histone PTMs 

regulate the gene network involved in this process[116].
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A cross-tissue analysis of chromatin marks (H3K4me3 and H3K27ac) revealed a clear 

separation in the RNA and chromatin profiles of young, middle-aged, and old hearts. 

Importantly, these age-related chromatin features included H3K4me3 and H3K27ac 

intensity and H3K4me3 breadth, which was previously shown to be linked to transcriptional 

consistency and high expression output required for maintenance of cell identity. Both 

dynamic features (such as enhancer score and H3K4me3 breadth) and static features (such 

as H3K4me3 promoter intensity and H3K4me3 domain breadth in young tissue) were key 

predictors of age[117].

Studies focusing on the repressive H3K9 methylation, specifically H3K9me2, revealed 

that it promotes the reexpression of fetal genes during pathological cardiac hypertrophy. 

Downregulation of the H3K9 dimethyltransferases EHMT1/2 by miR-217 leads to loss 

of H3K9me2 over the promoters of fetal heart genes such as atrial natriuretic peptide 

(Nppa), brain natriuretic peptide (Nppb), and Myh7 in cardiomyocytes[118]. Knockout or 

overexpression of the H3K9 trimethyl demethylase JMJD2A (or KDM4A) had no overt 

cardiac phenotype but exhibited an altered response to stress. For example, overexpression 

of JMJD2A resulted in exacerbated cardiac hypertrophy while its inactivation was 

protective after aortic constriction[119]. These results suggest that histone H3K9 repressive 

modifications play a critical role in suppressing a cardiac stress response that may also be 

occurring during aging, although it remains to be explicitly tested.

Histone acetylation is a very dynamic histone PTM and is regulated by histone 

acetyltransferases and histone deacetylases (HDACs). Loss of HDAC1, 2, 3, 5, and 

9 results in exacerbated cardiac hypertrophy and, in some cases, neonatal lethality or 

a shortened lifespan[120–122]. Sirtuins (SIRT1–7) are a family of nicotinamide adenine 

dinucleotide (NAD+)-dependent class III HDACs that have established protective roles 

in lifespan regulation in multiple species. However, both SIRT1 and NAD+ levels 

decline during aging[123]. Furthermore, loss of SIRT1 interferes with angiogenesis and 

neovascularization after ischemia due to aberrant acetylation of FOXO1, potentiating its 

anti-angiogenic function[124]. Conversely, overexpression of SIRT1 has many beneficial 

effects on endothelial cell function, including increased migration[124], decreased endothelial 

progenitor cell senescence[125], and reduced vascular oxidative stress and inflammation 

via inhibition of NFκB and PARP[126]. While SIRT1 also acts on histones, this aspect of 

regulation remains unexplored.

Available studies taken together confirm that histone modifications contribute to CVD, with 

the direction of changes similar to that observed during senescence. There is a pronounced 

shift in the balance characterized by reduced repressive marks, especially over repeat 

elements and increased active modifications. However, due to the paucity of direct work 

in aged tissue and the lack of integrative analysis, the exact mechanisms remain to be 

elucidated.

A core TF network in aging

A multi-omic (DNA methylome, transcriptome, and epigenome) profiling and integrative 

analyses of the aging murine heart, liver, and quadriceps muscle identified some common 

and unique aging footprints across tissues. As a note, this study primarily performed a 
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gene-centric analysis, and therefore changes over features such as enhancers or repeat 

regions were not analyzed. In the heart, the DNA methylome was the primary epigenetic 

signature that changed around transcription start sites (TSSs) with approximately an equal 

number of hypo- and hyper-methylated CpGs. Although more subtle, H3K27ac enrichment 

increased in the ~5 Kb region around the TSSs, while the H3K27me3 signal decreased. 

A TF motif enrichment analysis around promoters of genes up- or down-regulated in the 

heart during aging revealed that TF motifs enriched in genes that increase expression are 

also enriched in genes that have an increase in H3K27ac and a decrease in H3K27me3. 

Interestingly, a few TFs common to all three tissues were enriched in upregulated genes 

and genes with increases in H3K27ac and decreases in H3K27me3 in the heart. These TFs 

belong to the zinc finger of the cerebellum (Zic) family of factors. Conversely, HMGA1 

binds to genes that are downregulated with age. Importantly, the expression of these TFs 

in humans is altered during aging, and epidemiological studies suggest a link between the 

altered expression of some of these TFs and the mother’s age[127]. These results suggest that 

a common set of epigenetic “master” regulators may be responsible for driving some of the 

key transcriptomic changes in aging.

Increased transcriptional noise in the aging heart

Single-cell studies have emphasized the presence of heterogeneity and variability within 

tumors, complex tissues, and surprisingly even overtly pure cell populations. For example, 

an early study with purified cardiomyocytes isolated from fresh young and old mice hearts 

revealed increased gene expression variability in old cells[128]. The authors of the study 

attributed this increased variability to the stochastic nature of the aging process contributed 

by DNA damage and accumulating somatic mutations. Indeed, mouse embryonic fibroblasts 

treated with hydrogen peroxide showed a similar increase in expression variability. A more 

recent comprehensive single-cell atlas (Tabula Muris Senis[129]) of multiple mouse tissues, 

including heart and aorta, is available but begs for a deeper dive into the dataset to enable the 

discovery of age-related changes specific to the cardiovascular system.

Non-coding RNA in cardiovascular aging

The vast majority of the genome is not translated into proteins but rather serves either as cis

regulatory elements or mediates post-transcriptional gene regulation[130]. These non-coding 

areas of the genome encode small non-coding RNAs (< 200 nucleotides) or long non

coding RNAs (> 200 nucleotides). Small non-coding RNAs mainly comprise micro-RNAs 

(miRNAs), piwi-interacting RNAs (piRNAs), transfer RNAs (tRNAs), small nuclear RNAs 

(snRNAs), small nucleolar RNA (snoRNAs), etc. Long non-coding RNAs can be either 

linear (lncRNAs) or circular (circRNAs). Non-coding RNAs have long been implicated 

in senescence and aging, with several studies conducted in the context of cardiovascular 

aging[131,132].

miRNAs and circRNAs present reliable biomarkers of aging due to their stability in 

circulation and conservation across species. miR-21 is a particularly well-characterized 

miRNA targeting SPRY1, a potent inhibitor of the ERK-MAPK pathway. miR-21 

increases in cardiofibroblasts of the failing heart, augmenting ERK-MAP kinase activity 

impacting interstitial fibrosis and cardiac hypertrophy[133]. In a study profiling miRNAs 
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in the heart of neonatal, 1 month, 6 months and 19 months old mice, miR-22, which 

targets osteoglycin, was found to be robustly upregulated. miR-22 overexpression induced 

senescence and promoted the migration of cardiac fibroblasts[134]. miR-34a is induced in 

aging cardiomyocytes where it targets PNUTS, a cardioprotective protein that otherwise 

reduces age-associated cardiomyocyte cell death[135]. Interestingly, miR-34a, through the 

targeting of a different protein, SIRT1 (discussed above), induces endothelial and VSMC 

senescence and proinflammatory SASP expression[136,137]. SIRT1 is also targeted by 

miR-217 in ECs, where it induces premature senescence and leads to an impairment 

in angiogenesis via modulation of FOXO1 and nitric oxide synthase acetylation[138]. 

Transcriptomic analysis of aortic tissue in old mice revealed miR-29 upregulation and the 

concomitant downregulation of many ECM components that in turn sensitizes the aorta 

to aneurysm formation[139]. In contrast, a number of other miRNAs (miR-18, miR-19, 

miR-17–3p, miR-92, reviewed in[140]) are reduced in expression during aging, specifically 

elevating their targets to affect cardiovascular aging and disease.

CircRNAs impact transcription by acting as sponges of miRNA and RNA binding proteins 

(RBPs) or serving as scaffolds for assembly of larger complexes[141]. Many circRNAs are 

altered in expression upon hypoxic injury or myocardial infarction (reviewed extensively 

in[142]); a few relevant to aging are discussed here. circFoxo3 is generated from the 

Foxo3 transcript and was shown to be overexpressed in the aged hearts of mice and 

humans and correlated to senescence markers. CircFoxo3 is localized to the cytoplasm 

where it retains several anti-senescence proteins such as ID1, E2F1, FAK, and HIF1α, 

thus siphoning their activity away from the nucleus[143]. In addition, a circRNA produced 

from the senescence/aging relevant Cdkn2b locus called Antisense non-coding RNA in 

the INK4 locus (circANRIL) correlates with the expression of its linear RNA and confers 

atheroprotection. circANRIL binds to PES1, a 60S-preribosomal assembly factor, impairs 

ribosome biogenesis and thereby induces nucleolar stress and apoptosis in atherogenic 

VSMCs and macrophages[144,145]. Unlike miRNAs that are well studied in aged hearts and 

vasculature, key age-related circRNAs remain to be profiled in detail.

lncRNAs, unlike miRNAs, are not well conserved across species, and therefore their 

targets and functions should be interpreted with caution. Nevertheless, numerous studies 

have evaluated the role of lncRNAs in cardiovascular aging and disease (reviewed 

in[146]). lncRNAs are highly versatile, serving as expression signals to trigger a response, 

competitive endogenous RNAs, guides to direct factors to specific genomic locations, 

scaffolds for RBPs, or mediators of chromatin looping[146]. For example, Mhrt, an 

antisense lncRNA produced from the region between Myh6 and Myh7, interferes with 

the switch to fetal Myh7 expression in hypertrophic hearts. Mhrt antagonizes BRG1 

function by interacting with its helicase domain and inhibiting chromatin targeting (see 

next section)[147]. Chaer, another lncRNA mediating cardiac hypertrophy, interacts with 

PRC2 subunits and thereby inhibits the repression of cardiac hypertrophy-related genes[148]. 

Meg3 expression is upregulated in senescent HUVEC (endothelial) cells and in the aging 

cardiovascular system, where it also targets PRC2 components to assert a pro-aging function 

in aging vasculature[149]. An RNA-seq study in porcine cardiac muscle revealed 4 lncRNAs 

that were consistently expressed during aging. Ontology analysis of the target genes of these 

lncRNAs was significantly enriched for negative regulation of myotube differentiation and 
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muscle contraction, suggesting that the lncRNAs likely interfere with the normal muscle 

physiology[150].

There are numerous other examples of non-coding RNA functions in cardiovascular aging 

that are beyond the scope of this review. However, it is interesting to note that many of 

them target epigenetic enzymes or TFs and therefore may directly and pervasively impact 

the epigenome.

ATP-dependent chromatin remodeling in the diseased heart

ATP-dependent chromatin remodeling complexes are large multi-subunit molecular 

machines that utilize ATP to reposition or evict nucleosomes or exchange histones to 

alter chromatin structure. The BRG1/BRM-associated factor (BAF) chromatin remodeling 

complexes are comprised of either brahma or brahma-related gene 1 (BRG1) catalytic 

subunits along with several other accessory proteins. BAF complexes are critical for 

heart development and disease pathogenesis. For example, BRG1 plays opposing roles 

at the Myh6 and Myh7 loci: in embryos, it interacts with HDACs and poly (ADP 

ribose) polymerase 1 (PARP1) to repress the adult-specific Myh6 while activating fetal 

Myh7[151]. Brg1 expression is lost in cardiomyocytes but reactivated in hypertrophic hearts. 

It sequentially recruits G9a and then DNMT3 to deposit H3K9me2 and 5mC at the Myh6 
promoter impairing cardiac contraction[152]. Thus, a complex interplay of repressors and co

repressors recruited by BRG1 in injured hearts activates fetal Myh7 while interfering with 

adult Myh6 expression. Cardiac regeneration (as may be promoted by injury) requires BRG1 

not only to suppress Myh6 but also to increase the expression of pro-proliferative Bmp10 
and Cdkn1c genes. Although not directly tested in aging hearts, reactivation of Brg1 is a 

plausible mechanism to promote repair. Finally, mutations in genes encoding BAF complex 

subunits have been associated with various cancers and congenital heart diseases[153,154].

Laminopathy and loss of heterochromatin lead to premature aging

Hutchinson Gilford Progeria Syndrome (HGPS) is a premature aging disorder attributed to 

a mutation in the lamin A (LMNA) gene that results in the production and incorporation 

of a truncated version of lamin A called progerin in the nuclear membrane. This 

misincorporation grossly disrupts the nuclear lamina and lamina-associated heterochromatin 

and pro-senescence/pro-aging gene expression changes. Surprisingly, HGPS patients usually 

die in their teens from atherosclerosis and CVD complications suggesting strong links 

between chromatin dysregulation and CVD events in these patients. Interestingly, vascular 

progerin production and its progressive increase with age have also been noted in normal 

individuals, and there are many common histological features in the vasculature of HGPS 

and geriatric subjects[155]. Additionally, fibroblasts isolated from HGPS patients undergo 

premature senescence, and in iPSC models of HGPS, many epigenetic changes noted 

mimic those found in in vitro models of cellular senescence. For example, there is a 

reduction in repressive histone modifications, H3K27me3 and H3K9me3, loss of EZH2, and 

derepression of LINE elements[156,157]. This evidence suggests that epigenetic alterations, 

particularly those found in senescent cells, may drive some of the key CVD pathologies 

in HGPS. Indeed, selective clearance of naturally occurring p16 positive senescent cells 
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in the heart and senescent foam macrophages at atherosclerotic lesions by senolytics can 

ameliorate disease symptoms[33,158].

Figure 2 summarizes the key concepts of epigenetic regulation impacting CVD: DNA 

modifications [Figure 2A], histone modifications [Figure 2B], TF binding [Figure 2C], 

altered gene expression [Figure 2D], non-coding RNAs [Figure 2E], chromatin remodeling 

[Figure 2F] and lamina disorganization [Figure 2G] as derived from models of heart failure, 

and limitedly, aged tissues.

FUTURE PERSPECTIVES AND PROVOCATIVE THERAPIES FOR AGE

RELATED CVD

With the advent of better health monitoring, chemotherapies, vaccines, and rehabilitation 

programs, human life expectancy has increased and will continue to increase in the next few 

decades. This means that the number of people > 65 years of age will comprise 20% or 

more of the population by the next decade. Unfortunately, CVD will remain one of the top 

causes of death among older individuals, surpassing neurodegenerative diseases and cancers, 

suggesting that the cardiovascular system is especially prone to the chronic deleterious 

changes that come with age. Until recently, age was thought to be a largely unmodifiable 

feature of life, but the innovations of the longevity biotechnology field are on a trajectory to 

change this outcome. Thus, now is the time to identify key mechanisms contributing to heart 

disease in the elderly to design and rapid testing of breakthrough therapeutics.

Several notable interventions which directly or indirectly remodel the epigenome hold 

promise in ameliorating CVD. Preclinical studies in mouse models have already shown the 

efficacy of senolytics in countering the deleterious effects of cardiac dysfunction, vascular 

dysfunction, and calcification[33,34,159,160]. Senostatics that reduce the SASP without 

eliminating senescent cells, which carry the risk of fibrosis, might also show benefits 

but have not been directly tested. Potential SASP modulators include glucocorticoids[161], 

rapamycin[162], metformin[163] and CR/CR mimetics[164]. Although the exact mechanisms 

underlying age reversal are lacking, these molecules have a profound effect on the 

epigenome (reviewed in[87,88,165]). Some direct effects of epigenome remodeling are 

exemplified by enzymes such as MLL1[166] and BRD4[167], which are critical regulators 

of SASP genes. Additional synthetic therapeutics that could potentially modulate senescence 

or SASP include locked nucleic acids, anti-miRs, and other antisense oligonucleotides that 

block non-coding RNA activity and/or target them for degradation[168]. Overall, given the 

predominance of senescent cell function in CVD, targeting them is a viable option to treat 

age-related cardiac dysfunction.

Another targetable cell type in CVD is the quiescent cardiomyocyte and fibroblast 

populations that comprise most adult heart tissue. Unlike senescent cells, quiescent cells 

are responsive to growth factors and apoptotic signals, making them more pliable for 

modulation. While neonatal cardiomyocytes are capable of proliferation and regeneration, 

this function declines rapidly in adults[169]. The cardiac stem cell theory was recently 

annulled following extensive fate-mapping data that clearly showed that non-myocytes 

could not produce new cardiomyocytes in the adult during homeostasis or following 
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infarction[170]. Thus, an endogenous stem cell-centric therapy in CVD is contentious. 

However, the exogenous supply of cardiac progenitors produced from induced pluripotent 

stem cells could be explored but need careful testing. Another avenue to improve 

regeneration of adult cardiomyocytes is by inducing controlled proliferation, for example, 

by cyclical expression of Yamanaka factors. In a premature aging model carrying a Lmna 
mutation, cyclic induction of these pluripotency factors partially rescued the degeneration 

of VSMCs in the aortic arch compared to untreated mice, as indicated by an increase in 

the nuclei number. At the functional level, electrocardiographic analysis showed that there 

was also a partial rescue of bradycardia in the treated mice compared to controls. Yamanaka 

factors induce reprogramming by changing the histone modification landscape, specifically 

restoring H3K9me3 and H4K20me3 to youthful levels[171].

Pathological, activated cardiac fibroblasts (as opposed to quiescent fibroblasts) are induced 

following cardiac injury and can cause excessive fibrosis. These activated fibroblasts have 

been shown to have a unique gene expression signature, prominently the upregulation of 

fibroblast activation protein, which was targeted to eliminate them by chimeric antigen 

receptor (CAR)-T cell therapy[172] selectively. We propose that a similar survey of the 

transcriptome and epigenome can discover neoantigens on aged tissues, which can then be 

exploited for immunotherapy in CVD.

Of note, most of the studies discussed in this review use mouse models of heart failure 

or cardiac disease to interrogate epigenetic features. However, the experimental rodent is 

usually an adult (2–4 months old) with a very different epigenomic landscape than older 

animals, who present the most risk for disease. These models thus may accurately capture 

acute pathological changes while completely missing the contribution to disease of any 

long-term chronic effects such as systemic inflammation or global epigenetic changes. 

Conversely, studies that focused on interventions that extend lifespan rarely measured 

whether the cardiovascular function was improved[173]. Collectively, the field must embrace 

naturally aged mice models and impose the inclusion of age as a biological variable to gain 

deeper insight into the etiology of age-related cardiac dysfunction and disease.

CONCLUDING REMARKS

In the studies that have considered both the perspective of aging and cardiovascular health, 

we have accumulated important insights into the epigenetic mechanisms of cardiovascular 

aging that we describe in this review. Genomic regions that are targeted during aging 

include repeat elements and lamina-bound heterochromatin, developmental gene promoters, 

polycomb targets, and stress response genes. These regions also show prominent changes 

in DNA modifications. The histone code itself is unaltered, but specific master TFs 

co-opt epigenetic enzymes and chromatin architectural proteins to promote a disease 

phenotype. Concordant with changes in DNA and histone modifications, the coding, and 

non-coding transcriptome is also significantly altered, impacting cardiac function and 

vascular physiology. Further studies will illuminate more precise roles of epigenetic factors 

that can ultimately be exploited to design novel therapeutics.
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Figure 1. 
Molecular mechanisms involved in cardiovascular aging: consequences and potential 

therapeutics and interventions. Telomere damage, epigenetic changes, and mitochondrial 

damage are associated with the accumulation of senescent cardiovascular/immune cells, 

cardiovascular aging, and disease. Diet, smoking, and air pollution can also negatively 

contribute to aging, while physical exercise may improve cardiovascular health. Potential 

therapeutics and interventions include targeted elimination of senescent cells (senolytics), 

modulation of the proinflammatory SASP (senescence-associated secretory phenotype; 

senostatics), and dietary interventions (caloric restriction).
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Figure 2. 
Epigenetic mechanisms involved in cardiovascular aging and disease. Several epigenetic 

changes are documented in cardiovascular aging and disease, including (A) DNA 

modifications (5-methylcytosine is also used in epigenetic clocks and associated with 

cardiovascular disease onset); (B) altered balance of active and repressive histone marks; 

(C) alterations to transcription factor binding; (D) transcriptional changes; (E) altered 

expression of non-coding RNAs; (F) chromatin remodeling; and (G) laminopathy and loss of 

heterochromatin.
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