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Background: A subset of patients undergoing thyroid surgery for presumed benign thyroid disease 
presented with papillary thyroid microcarcinoma (PTMC). A non-invasive and precise method for early 
recognition of PTMC are urgently needed. The aim of this study was to construct and validate a nomogram 
that combines intratumoral and peritumoral radiomics features as well as clinical features for predicting 
PTMC in the American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS)  
3 nodules using ultrasonography. 
Methods: A retrospective review was conducted on a cohort of 221 patients who presented with ACR TI-
RADS 3 nodules. These patients were subsequently pathologically diagnosed with either PTMC or benign 
thyroid nodules. These patients were randomly divided into a training and test cohort with an 8:2 ratio for 
developing the clinical model, intratumor-region model, peritumor-region model and the combined-region 
model respectively. The radiomics features were extracted from ultrasound (US) images of each patient. 
We employed K-nearest neighbor (KNN) model as the base model for building the radiomics signature 
and clinical signature. Finally, a radiomics-clinical nomogram that combined intratumoral and peritumoral 
radiomics features as well as clinical features was developed. The prediction performance of each model was 
assessed by the area under the curve (AUC), sensitivity, specificity and calibration curve. 
Results: A total of 23 radiomics features were selected to develop radiomics models. The combined-region 
radiomics model showed favorable prediction efficiency in both the training dataset (AUC: 0.955) and the 
test dataset (AUC: 0.923). A radiomics-clinical nomogram was constructed and achieved excellent calibration 
and discrimination, which yielded an AUC value of 0.950, a sensitivity of 0.950 and a specificity of 0.920. 
Conclusions: This study proposed the nomogram that contributes to the accurate and intuitive 
identification of PTMC in ACR TI-RADS 3 nodules. 
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Introduction

Papillary thyroid microcarcinoma (PTMC) is defined by 
the World Health Organization as a small papillary thyroid 
cancer measuring 10 mm or less in the greatest dimension 
of the tumor (1). In the past several decades, there has 
been a substantial increase in the incidence of thyroid  
cancer (2). The rise has been almost entirely due to papillary 
carcinoma (3). PTMC accounts for a significant proportion 
of this rise (4). Some investigators have suggested that the 
increasing incidence may be attributed to overdiagnosis 
resulting from enhanced surveillance and diagnostic 
capabilities (5,6). Moreover, the majority of PTMC 
patients remain asymptomatic, with inert behavior and a 
generally favorable prognosis (7). Active surveillance (AS) 
has been suggested as a management strategy for low-risk 
PTMC, but controversy exists with its adoption as not all 
PTMCs exhibit a uniformly benign prognosis (8). Besides, 
a growing body of evidence substantiates a true increase 

in the occurrence of thyroid cancer (9). Lim et al. found 
that incidence-based thyroid cancer mortality was also  
increasing (9). It is important to underscore that while many 
patients with PTMC have favorable prognosis, a subset of 
them faces worse prognosis with tumor recurrence or distant 
metastasis (10). Distant metastasis in PTMC is rare but 
fatal (11). Ultrasonography is widely used as a noninvasive 
and easily accessible first-step diagnostic method for the 
detection and evaluation of nodular thyroid disease (12). 
The American College of Radiology Thyroid Imaging 
Reporting and Data System (ACR TI-RADS) is proposed 
as a method for stratifying the risk of malignancy in thyroid 
nodules, founded upon the comprehensive assessment 
of ultrasound (US) features that are categorized into five 
distinct domains: composition, echogenicity, shape, margin, 
and echogenic foci (12). All thyroid nodules categorized 
as ACR TI-RADS 3 exhibited non-solid characteristics, 
lacked significant hypoechogenicity, and demonstrated 
well-defined margins, absence of microcalcifications, and 
an aspect ratio of ≤1 (12). For an ACR TI-RADS 3 lesion, 
follow-up imaging is available at the first, third, and fifth 
year. If there is no change in size, imaging can stop at the 
fifth year, as stability over this time reliably indicates that 
the nodule has a benign behavior (13). However, a study 
found a proportion of PTMCs in patients who underwent 
thyroid surgery for presumed benign thyroid disease (14). 
As a result, it is still necessary to find an effective method 
for early recognition of PTMC. Fine-needle aspiration 
biopsy (FNAB) of the thyroid is considered to be the most 
effective diagnostic tool for thyroid nodules (15). While 
FNAB is invaluable for detecting thyroid malignancy, it is 
both a costly and invasive method (16). Moreover, the size 
of micropapillary thyroid carcinoma is too small, resulting 
in low accuracy of FNAB. 

Radiomics, defined as quantitative features extracted 
from radiological images through sophisticated data 
characterization algorithms, serves the purpose of 
developing prognostic prediction tools and therapeutic 
decision support tools for cancer (17). Since it was 
proposed, the field of radiomics has witnessed a remarkable 
surge in research endeavors, with a growing body of 
literature dedicated to enhancing accurate cancer diagnosis 
and therapeutic strategies (18). To our current knowledge, 
only one study has specifically addressed the application 
of US radiomics in predicting malignancy of thyroid 
micronodules (19). There exists a research gap in the field 
of US radiomics as applied to PTMC. In the present study, 
we aimed to develop an US-based nomogram that combines 
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malignancy of thyroid micronodules. Besides, previous radiomics 
studies in thyroid nodules mainly focused on the intratumoral 
region alone. There still exists a research gap in the field of 
ultrasound radiomics as applied to predicting papillary thyroid 
microcarcinoma (PTMC).

• This study is the first to construct and assess the performance of 
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intratumoral and peritumoral radiomics features as well 
as clinical features for predicting PTMC in ACR TI-
RADS 3 nodules, and validate its performance. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://gs.amegroups.com/article/
view/10.21037/gs-24-30/rc).

Methods

Study population and data acquisition

Between January 2019 and October 2022, a retrospective 
review was conducted on a cohort of 221 patients 
who presented with ACR TI-RADS 3 nodules. These 
patients were subsequently pathologically diagnosed 
with either PTMC or benign thyroid nodules. The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013) and was approved by the 
institutional ethics committee of The Second Affiliated 
Hospital of Wenzhou Medical University (No. 2023-K-
43-01). Individual consent for this retrospective analysis 
was waived. However, prior to surgery or biopsy, written 
consent was obtained from all patients. The inclusion 
criteria comprised: (I) patients with confirmed pathological 
results of either PTMC or benign thyroid nodules; (II) 
patients with clear B-mode US images available for analysis; 
(III) patients with comprehensive clinical information. 
The exclusion criterion is the presence of a prior history of 
other malignancies or coexisting malignancies among the 

patients (Figure 1). 

US examination and interpretation of US features

The US examinations were conducted by board-certified 
radiologists who possessed expertise in superficial tissue US 
imaging and had more than five years of experience in the 
field. Multiple US machines were utilized to conduct these 
examinations, including the Resona7 by Mindray (Shenzhen, 
China), the Aplio 500 by Toshiba Medical Systems (Tokyo, 
Japan), and the ESAOTE (MyLab 90 X-vision, Genoa, 
Italy), all outfitted with suitable high-frequency probes. 
Images capturing the largest cross-section of the nodules in 
the longitudinal plane were acquired for further analysis.

Two seasoned radiologists, each with at last 5 years 
of experience in superficial tissue ultrasonography, 
independently assessed all images without access to the 
patients’ clinical data or final diagnoses. The reassessment 
of the US features involved evaluating tumor dimensions, 
echogenicity (hypoechoic, iso/hyperechoic, or mixed), 
echotexture (homogeneous or heterogeneous), margin 
characteristics (well-defined or ill-defined), and the 
identification of calcifications (absent, macrocalcification, or 
microcalcification), as well as determining the aspect ratio (>1 
or ≤1). The radiomics models were subsequently constructed 
based on manually-segmented regions of interest that were 
confirmed by two radiologists. Prior to feature extraction, 
the intensities of all images were normalized. 

Training cohort (n=176) Test cohort (n=45)

221 patients were enrolled 32 patients were excluded

Inclusion criteria:
• Patients with confirmed pathological results of PTMC or 

benign thyroid nodules
• Patients with clear B mode ultrasound images available for 

analysis
• Patients with comprehensive clinical information

Exclusion criteria:
• Patients with a prior history of other malignancies 

or coexisting malignancies

253 patients who presented with ACR TI RADS 3 nodules and were subsequently pathologically 
diagnosed with PTMC or benign thyroid nodules from January 2019 to October 2022

8:2 ratio

Figure 1 The flowchart of the study population. ACR TI-RADS, The American College of Radiology Thyroid Imaging Reporting and 
Data System; PTMC, predicting papillary thyroid microcarcinoma.

https://gs.amegroups.com/article/view/10.21037/gs-24-30/rc
https://gs.amegroups.com/article/view/10.21037/gs-24-30/rc
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Lesion segmentation and radiomics features extraction

The radiomics analysis workflow encompassed several pivotal 
steps, including lesion segmentation, feature extraction, 
feature selection, and model construction, as depicted in 
Figure 2. The study cohort was randomly split into a training 
cohort and a test cohort, following an 8:2 ratio. The region of 
interest (ROI) was meticulously delineated by an experienced 
radiologist and subsequently verified by another, both of 
whom were kept blind to any clinical information. To achieve 
this, the tumor region in each US image was manually 
outlined using ITK-SNAP software (http://www.itksnap.
org; version 4.0.1) around the lesion’s contour. To obtain 
the peritumoral regions, a standard morphological dilation 
operation was applied to the delineated tumor contour, 
expanding it by 5 mm. This operation was executed through 
a custom program developed in Matlab 2016b (MathWorks, 
Natick, MA, USA). Consequently, for each US slice, three 
distinct ROI images were obtained: the intratumor ROI, 
the peritumor ROI, and a combined ROI merging both 
intratumoral and peritumoral regions. Prior to feature 
extraction, the intensities of all US images were normalized 
to standardize the gray intensity values. Following this, 
a comprehensive total of 3,122 radiomics features were 
subsequently extracted. These features were categorized 
into three distinct groups: geometry, intensity, and texture. 
Geometry features characterize the three-dimensional 
(3D) shape attributes of the tumor, while intensity features 
encapsulate first-order statistical distributions of voxel 
intensities within the tumor. Texture features, on the other 
hand, encapsulate patterns derived from second- and 
high-order spatial distributions of intensities. A variety 
of methods were employed to extract texture features, 
including gray-level dependence matrix (GLDM), gray-
level size zone matrix (GLSZM), gray-level run length 
matrix (GLRLM), gray-level co-occurrence matrix (GLCM) 
and neighbouring gray tone difference matrix (NGTDM). 
For the implementation of feature extraction, we utilized 
the Pyradiomics 2.2.0 open-source python package. More 
detailed information about this package can be found at 
http://www.radiomics.io/pyradiomics.html. 

Feature selection and radiomics model establishment

In order to analyze our data statistically, we employed 
different tests based on the distribution of the features. For 
features that followed a normal distribution, we utilized the 
Student t-test, while for non-normally distributed features, 

we applied the Mann-Whitney U test. Features with a P 
value below 0.05 were retained for further analysis. To assess 
the correlation between features with high repeatability, 
Spearman’s rank correlation coefficient was employed. If 
the correlation coefficient exceeded 0.9 between any two 
features, we retained one of them. In order to ensure a 
comprehensive depiction of the features, we implemented 
a greedy recursive deletion strategy for feature filtering. 
This involved iteratively removing features with the highest 
redundancy in the current set. Ultimately, we identified and 
retained a total of 23 relevant features. 

For the construction of the radiomics signature, we 
utilized the least absolute shrinkage and selection operator 
(LASSO) regression model to the discovery dataset. 
Based on the regularization weight λ, the LASSO model 
effectively shrinks regression coefficients towards zero 
and effectively setting the coefficients of many irrelevant 
features to exactly zero. To find the optimal value of λ, 
we performed 10-fold cross-validation with minimum 
criteria, selecting the λ value that minimized the cross-
validation error. Features with nonzero coefficients were 
used for regression model fitting and amalgamated to 
conduct the radiomics signature. Each patient was assigned 
a radiomics score by calculating a linear combination of 
the retained features, weighted by their corresponding 
model coefficients. We used the Python scikit-learn 
package for LASSO regression modeling. Following the 
LASSO feature screening, we input the final features into 
the machine learning model. We used K-nearest neighbor 
(KNN) algorithm to construct a risk model based on the 
intratumor ROI, the peritumor ROI, and the combined 
ROI, respectively. For obtaining the final Rad Signature, 
we adopted five-fold cross verification was adopted. 

The building of the clinical model and radiomics-clinical 
nomogram

Given that thyroid nodules categorized as ACR TI-RADS 
3 exhibited clearly defined margins, an aspect ratio of ≤1 
and absence of microcalcifications, we deliberately chose to 
utilize US features such as tumor dimension, echotexture 
and echogenicity in order to distinguish between benign 
thyroid nodules and PTMC. The process of constructing 
the clinical model followed a similar approach to the 
radiomics model. The features used for clinical modeling 
were selected based on the univariate and multivariate 
analysis with a P value <0.05. We utilized the same machine 
learning model as the one used in the radiomics model 

http://www.itksnap.org
http://www.itksnap.org
http://www.radiomics.io/pyradiomics.html
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construction process. Additionally, we set the test cohort to 
fixed for a fair comparison and performed five-fold cross-
validation. By integrating the radiomics signature and the 
important clinical predictor, we created an easy-to-use 
radiomics-clinical nomogram model for potential clinical 
applications. 

Statistical analysis

In order to assess the equivalence of patient attributes across 
different cohorts, we employed independent t-tests to 
analyze normally distributed data and used Mann-Whitney 
U tests to express non-normally distributed data as medians 
(interquartile range). Categorical variables were analyzed 
using Chi-squared tests. To assess the predictive power of 
the models, we plotted receiver operating characteristic 
(ROC) curves, calculated the area under the curve (AUC), 
and determined the equilibrium sensitivity and specificity 
at the cut-off point that maximized the value of the Youden 
index. We tested the performance of the models in both 
the training and test cohorts. To compare the AUCs, we 
employed Delong’s test between the predictive models. 
Furthermore, we conducted the calibration curve to evaluate 
the clinical applicability of these models. This analysis 
assessed the potential benefits of using the models in clinical 
decision-making. All statistical analyses were performed 

using SPSS (version 21.0; IBM Corp.), and statistical 
significance was determined as a two-sided P value <0.05. 

Results

Baseline characteristics of patients

The study enrolled a total of 130 patients with benign 
thyroid nodules and 91 patients with PTMC. In order to 
compare the clinical characteristics of these patients, we 
performed relevant statistical analyses such as independent 
sample t-tests, Mann-Whitney U tests, or Chi-squared 
tests, as deemed appropriate for each variable. The baseline 
clinical information of all patients is presented in Table 1. 

Establishment and evaluation of the radiomics model

We manually extracted a total of 3,122 features from both 
the tumoral and peritumoral regions, encompassing 612 
first-order features, 28 shape features, and the last are texture 
features, as depicted in Figure 3A. A detailed list of these 
handcrafted features can be found in https://cdn.amegroups.
cn/static/public/gs-24-30-1.xlsx, https://cdn.amegroups.cn/
static/public/gs-24-30-2.xlsx. These features were extracted 
using an in-house feature analysis program implemented in 
Pyradiomics, accessible at http://pyradiomics.readthedocs.io. 
Figure 3B provides an overview of all the features along with 

Table 1 Baseline clinical information of all patients

Parameter
Training cohort (n=176) Testing cohort (n=45)

Benign (n=105) Malignant (n=71) P value Benign (n=25) Malignant (n=20) P value

Age (years) 49.86±12.03 50.44±10.09 0.75 50.00±13.65 51.20±11.63 0.70

Tumor dimension (mm) 29.15±13.35 16.61±13.59 <0.001* 26.80±12.94 13.54±12.39 <0.001*

Sex 0.28 0.43

Female 88 (83.81) 54 (76.06) 20 (80.00) 13 (65.00)

Male 17 (16.19) 17 (23.94) 5 (20.00) 7 (35.00)

Echogenicity <0.001* 0.11

Hypoechoic 35 (33.33) 48 (67.61) 9 (36.00) 13 (65.00)

Iso/hyperechoic 8 (7.62) 7 (9.86) 2 (8.00) 2 (10.00)

Mixed 62 (59.05) 16 (22.54) 14 (56.00) 5 (25.00)

Echotexture 0.009* 0.79

Homogeneous 9 (8.57) 16 (22.54) 2 (8.00) 3 (15.00)

Heterogeneous 96 (91.43) 55 (77.46) 23 (92.00) 17 (85.00)

Data are presented as a number (%) or mean ± standard deviation. *, P<0.05.

https://cdn.amegroups.cn/static/public/gs-24-30-1.xlsx
https://cdn.amegroups.cn/static/public/gs-24-30-1.xlsx
https://cdn.amegroups.cn/static/public/gs-24-30-2.xlsx
https://cdn.amegroups.cn/static/public/gs-24-30-2.xlsx
http://pyradiomics.readthedocs.io
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Figure 3 Radiomics features extraction and selection. (A) Handcrafted features, encompassing shape features, firstorder features and texture 
features (glrlm, gldm, glszm, glcm, ngtdm), were extracted from ROIs and the distribution of these features is provided. (B) The image 
displays all of the radiomics features along with their respective P value. (C,D) The optimal penalty coefficient lambda (λ) was selected by 
the LASSO model based on ten-fold cross-validation and minimum criteria procedure. gldm, gray-level dependence matrix; glszm, gray-
level size zone matrix; glrlm, gray-level run length matrix; glcm, gray-level co-occurrence matrix; ngtdm, neighbouring gray tone difference 
matrix; MSE, mean standard error; LASSO, least absolute shrinkage and selection operator; ROI, region of interest.

their corresponding P value results. 
For constructing the Rad-score, we employed a 

LASSO logistic regression model to identify the nonzero 
coefficients. The coefficients and mean standard error 
(MSE) obtained from 10-fold validation process are 
depicted in Figure 3C,3D. Following the selection process, 
a cumulative of 23 features exhibited non-zero coefficient 
values, illustrated in detail in Figure 4. 

We used KNN model as the base model for constructing 
both the radiomics signature and clinical signature. Figure 5 
shows favorable predictive performance of radiomics models 
in both training and test cohorts. In the training cohort, the 
combined-region model achieved a sensitivity of 0.887, a 

specificity of 0.895 and an AUC value of 0.955, which was 
higher than that of intratumor-region model (AUC =0.948) 
and peritumor-region model (AUC =0.889) (Figure 5A, 
Table 2). In the corresponding test cohort, the combined-
region model also obtained an excellent result, with highest 
AUC value of 0.923 [95% confidence interval (CI): 0.854–
0.992], followed by the intratumor-region model (AUC 
=0.851, 95% CI: 0.730–0.972) and the peritumor-region 
model (AUC =0.798, 95% CI: 0.669–0.927) (Figure 5B,  
Table 2). In addition, sensitivity and specificity value of 
the combined-region model in training cohort were 0.887 
and 0.895, which in test cohort were 0.850 and 0.800, 
respectively. 
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Figure 4 A histogram illustrating the radiomics score derived from the selected radiomics features. HLH, high-low-high-pass filtered 
image; LHH, low-high-high-pass filtered image; glrlm, gray-level run length matrix; HHL, high-high-low-pass filtered image; glszm, gray-
level size zone matrix; 3D, three-dimensional; LLL, low-low-low-pass filtered image; ngtdm, neighbouring gray tone difference matrix; 
HLL, high-low-low-pass filtered image; LLH, low-low-high-pass filtered image; glcm, gray-level co-occurrence matrix.

Figure 5 Diagnostic performance of the clinical model and three radiomics models in the training (A) and testing (B) cohorts. AUC, area 
under the curve; IntraPeri, intratumoral and peritumoral combined-region; CI, confidence interval.
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Establishment and performance of the clinical model and 
radiomics-clinical nomogram

In univariate and multivariate analysis, we employed the 
P value (P<0.05) of the features in the training cohort to 
select the features to establish the clinical model. Among 

these features, only tumor dimension and echogenicity met 
this condition (Table 3). Therefore, the two features were 
utilized to construct the clinical model, which achieved 
an AUC of 0.911 (95% CI: 0.872–0.950) in the training 
cohort. In the test cohort, the AUC was 0.784 (95% CI: 
0.627–0.941) (Figure 6, Table 2). 
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Table 2 Predictive performance of three models in the training and testing cohort

Model AUC 95% CI Sensitivity Specificity Cohort

Training cohort

Clinical model 0.911 0.872–0.950 0.915 0.733 Train

IntraPeri model 0.955 0.929–0.981 0.887 0.895 Train

Nomogram 0.961 0.934–0.988 0.930 0.895 Train

Testing cohort

Clinical model 0.784 0.627–0.941 0.700 0.920 Test

IntraPeri model 0.923 0.854–0.992 0.850 0.800 Test

Nomogram 0.950 0.883–1.000 0.950 0.920 Test

Sensitivity and specificity were evaluated at the cutoff value that produced the highest Youden index value. AUC, area under receiver 
operating curve; CI, confidence interval; IntraPeri model, intratumoral and peritumoral combined-region model. 

Table 3 Univariate and multivariate analysis of clinical information for predicting PTMC in training cohort

Parameter
Univariate analysis

 
Multivariate analysis

OR (95% CI) P value OR (95% CI) P value

Age 1.001 (0.997–1.006) 0.65

Tumor dimension 0.986 (0.982–0.989) <0.001* 0.989 (0.985–0.992) <0.001*

Sex 1.149 (1.004–1.314) 0.09

Echogenicity 0.834 (0.790–0.880) <0.001* 0.886 (0.839–0.934) <0.001*

Echotexture 0.774 (0.661–0.906) 0.008* 0.882 (0.765–1.018) 0.15

*, P<0.05. PTMC, papillary thyroid microcarcinoma; OR, odds ratios; CI, confidence interval.

Figure 6 Receiver operating characteristic analysis analyses of the clinical model, combined-region model and radiomics-clinical nomogram 
in both the training (A) and testing (B) cohorts. AUC, area under the curve; CI, confidence interval; IntraPeri, intratumoral and peritumoral 
combined-region.
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Figure 7 Nomogram to predict PTMC in ACR TI-RADS 3 nodules. IntraPeri, the combined-region radiomics signature; td, tumor 
diameter in ultrasound images; under echogenicity, 0 means ‘Hypoechoic’, 1 means ‘Iso/Hyperechoic’ and 2 means ‘Mixed’; under tumor 
diameter, 30 means ‘30 mm’ and 90 means ‘90 mm’. PTMC, papillary thyroid microcarcinoma; ACR TI-RADS, American College of 
Radiology Thyroid Imaging Reporting and Data System.

Figure 8 Calibration curves of the prediction models in both the training (A) and testing (B) cohorts. The vertical axis depicts actual fraction 
of positives of PTMC, and the horizontal axis represents mean predicted probability estimated by the models. IntraPeri, intratumoral and 
peritumoral combined-region; PTMC, papillary thyroid microcarcinoma.
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Based on clinical and radiomics model, we successfully 
constructed a nomogram combined intratumoral and 
peritumoral radiomics features as well as clinical features 
(Figure 7). The utilization of intratumoral and peritumoral 
radiomics features significantly improved the predictive 
ability for PTMC in ACR TI-RADS 3 nodules based 
on the significant clinical characteristics. In the training 
cohort, the radiomics-clinical nomogram model yielded 
an AUC of 0.961 (95% CI: 0.934–0.988), which were 
higher than clinical factor (0.961 vs. 0.911) and radiomics 
signature models (0.961 vs. 0.955). In the test cohort, the 

AUC values of the nomogram model (0.950, 95% CI: 
0.883–1.000) were higher than that of clinical factor (0.950 
vs. 0.784) and radiomics signature models (0.950 vs. 0.923) 
(Figure 6, Table 2). The sensitivity and specificity of the 
clinical model, intratumor-peritumor combined-region 
model, and nomogram in the training and test cohorts were 
demonstrated in the Table 2, which showed the radiomics-
clinical nomogram had favorable discrimination efficiency. 

Figure 8 displays calibration curves for the clinical 
model, combined-region model, and nomogram. Results 
showed good agreement between the prediction curve of 
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the radiomics-clinical nomogram and standard curve. Thus, 
the nomogram demonstrated an excellent performance 
for identifying PTMC in ACR TI-RADS 3 nodules. In a 
comparison against scenarios without prediction model 
implementation (i.e., treat-all or treat-none scheme), the 
nomogram provided greater benefit in most cases (Figure 8).

DeLong’s test was used for the comparisons between 
the AUCs of the models. Notably, there were significant 
differences in the value of AUC between the combined-
region model and both intratumor-region model (P<0.05) 
and peritumor-region model (P<0.05) in the test cohort. 
Overall, compared with other radiological models, the 
performance of the combined-region model was better. As 
depicted in Figure 6, the nomogram demonstrated the best 
predictive ability, surpassing the standalone radiomics and 
clinical models. The calibration curve also showed favorable 
prediction efficiency of the proposed combined nomogram. 

Discussion

In this study, a predictive nomogram consisting of 
intratumoral and peritumoral radiomics features as well 
as clinical features was developed and validated for the 
individualized prediction of PTMC in patients with ACR 
TI-RADS 3 nodules. 

Although most PTMCs have an indolent course, 
the literature has reported some cases of PTMC with 
locoregional recurrences and distant metastases (20). 
Therefore, early and accurate detection of PTMC can help 
to promote optimal treatment and relieve the burden of 
patients. US still plays an important role in the diagnosis 
of thyroid-related diseases. However, the method has 
limitations associated with small nodules, resulting the 
accuracy of diagnosing PTMC being inefficient. Zhang 
et al. (21) found that US in identifying PTMC has a low 
sensitivity and specificity, implicating that a proportion of 
patients would be mistreated or misdiagnosed. Although 
FNAB demonstrates an effective method for diagnosing 
thyroid nodules ≤1 cm with a low nondiagnostic rate, it is 
still a costly and invasive method (22). Thus, it is crucial 
to find a nondestructive and effective method to make a 
reliable and precise diagnosis early. 

Radiomics is an accurate, objective and highly efficient 
method to enhance conventional imaging diagnosis. It 
extracts a multitude of quantitative, high-dimensional 
features from the image, and carries on self-training and 
learning based on the pathological results. Several published 
studies have delved into the application of radiomics in 

predicting the malignancy of thyroid micronodules. For 
example, Zhang et al. (19) constructed a multimodal US 
radiomics nomogram, showing favorable predictive efficiency 
with an AUC of 0.881. Wu et al. (23) explored the potential 
ability of CT-based radiomics in accurate classification 
of thyroid micronodules, and their model achieved an 
AUC value of 0.851. Previous radiomics studies in thyroid 
nodules mainly focused on the intratumoral region alone. 
Nonetheless, there is growing evidence that the predictive 
model should not be limited to mere tumor regions, and 
that the surrounding areas may provide complementary 
information about tumor heterogeneity in other cancers. 
So, in this study, we developed US-based radiomics models 
to identify PTMC in ACR TI-RADS 3 nodules using 
intratumoral and peritumoral radiomics features, separately 
or in combination, and validated their performances. 

In our study, there were 23 radiomics features which 
were significantly correlated with the malignancy of 
PTMC, including one shape feature, five first-order 
features, five gray-level co-occurrence matrix (GLCM) 
textural features, four gray-level run-length matrix 
(GLRLM) textural features, five gray-level size zone matrix 
(GLSZM) textural features and three neighbouring gray 
tone difference matrix (NGTDM) textural features. The 
textural radiomics features accounted for the greatest 
weight. It has been shown that the textural features 
measure tumor heterogeneity and further reflect cancer 
pathophysiology, which was also confirmed in our study (24). 
Based on these features, we constructed three radiomics 
models: intratumor-region model, peritumor-region model 
and the combined-region model. All three showed favorable 
discriminative performance. This further confirms that 
radiomics analysis is an effective tool for calculating the 
spatial heterogeneity of tumors. The combined-region 
model showed an excellent result, with higher AUC value 
(AUC =0.923) in the independent test cohort compared to 
that of the intratumor-region model and the peritumor-
region model (0.851 and 0.798, respectively). This suggests 
that the surrounding areas is able to provide complementary 
information about tumor heterogeneity, and that the 
combined-region model will yield more accurate predicting 
results than the individual models. 

In this study, we also considered clinical characteristics, 
such as echogenicity and tumor dimension. However, the 
inclusion of only clinical characteristic is inadequate for 
achieving a high diagnostic accuracy rate. The clinical 
model had a subpar predictive performance in the 
identification of PTMC (AUC =0.784). But we found that 
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the addition of radiomics had a strong and independent 
effect on prediction accuracy. By combining intratumoral 
and peritumoral radiomics features as well as clinical 
features, we constructed a nomogram that yielded a 
significant improvement in diagnostic performance, raising 
the AUC from 0.784 to 0.950. As compared to the methods 
of Zhang et al. (19) and Wu et al. (23), our method showed 
better performance. The calibration curve also indicated the 
clinical applicability of the proposed combined nomogram. 
Overall, the developed radiomics-clinical nomogram 
contributed to improve the identification of PTMC from 
ACR TI-RADS 3 nodules. 

There are limitations in our study. Firstly, there is a 
lack of external verification, because the sample size was 
insufficient and it was developed and validated in the same 
center. Thus, a multicenter survey using a larger sample size 
is necessary to further validate the nomogram predictive 
model. Secondly, since this study is retrospective, selection 
bias is inevitable, which affected the results of our study. 
In the future, we aim to carry out prospective studies to 
control for confounding variables. Thirdly, the lesion’s 
contour was delineated manually, which was labor-intensive 
and time-consuming. Further research on automatic volume 
segmentation is needed to simplify this process. Fourthly, 
US images were captured utilizing diverse US machines, 
necessitating a standardization process to ensure consistency 
across the dataset. Fifthly, the utilization of various versions 
of the TI-RADS by different centers could potentially 
introduce discrepancies in the classification of thyroid 
nodules, thereby affecting the accuracy and reliability of 
diagnostic outcomes.

Conclusions

As a noninvasive prediction tool, the US-based nomogram 
consisting of intratumoral and peritumoral radiomics 
features as well as clinical information has high diagnostic 
performance in the early discrimination of PTMC in ACR 
TI-RADS 3 nodules. 
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