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Abstract

Background

Hypoxia is a common microenvironment condition in most malignant tumors and has been

shown to be associated with adverse outcomes of cervical cancer patients. In this study, we

investigated the effects of hypoxia-related genes on tumor progress to characterize the

tumor hypoxic microenvironment.

Methods

We retrieved a set of hypoxia-related genes from the Molecular Signatures Database and

evaluated their prognostic value for cervical cancer. A hypoxia-based prognostic signature

for cervical cancer was then developed and validated using tumor samples from two inde-

pendent cohorts (TCGA-CESC and CGCI-HTMCP-CC cohorts). Finally, we validated the

hypoxia prediction of ccHPS score in eight human cervical cancer cell lines treated with the

hypoxic and normoxic conditions, and 286 tumor samples with hypoxic category (more or

less) from Gene Expression Omnibus (GEO) database with accession GSE72723.

Results

A risk signature model containing nine hypoxia-related genes was developed and validated

in cervical cancer. Further analysis showed that this risk model could be an independent

prognosis factor of cervical cancer, which reflects the condition of the hypoxic tumor micro-

environment and its remodeling of cell metabolism and tumor immunity. Furthermore, a

nomogram integrating the novel risk model and lymphovascular invasion status was devel-

oped, accurately predicting the 1-, 3- and 5-year prognosis with AUC values of 0.928, 0.916

and 0.831, respectively. These findings provided a better understanding of the hypoxic

tumor microenvironment in cervical cancer and insights into potential new therapeutic strat-

egies in improving cancer therapy.
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Introduction

Cervical cancer (CC) is the fourth leading cause of cancer incidence and mortality among

women worldwide [1]. Despite the increased use of cervical cancer screening and HPV vac-

cines, and the improvement of diagnostic and treatment techniques, cervical cancer is still a

public health problem [1–3]. Especially in the low-resources countries, such as countries in

Africa, cervical cancer remained as the leading cause of cancer-related death because of late

diagnosis at invasion stages [1, 4]. Thus, it is necessary to explore and identify the molecular

mechanisms of carcinogenesis in cervical cancer, which may lead to new therapeutic strategies,

and thereby improve the survival of patients with cervical cancer.

Hypoxia is a biological condition in which adequate oxygen supply is deprived at the tissue

level, a common microenvironment feature in most malignant tumors [5, 6]. Tumor hypoxia

results from rapid proliferation, altered tumor cell metabolism, and abnormal surrounding

vasculature in the tumor microenvironment [7, 8]. Hypoxia causes a series of changes in bio-

logical functions [9, 10], leading to more therapeutically resistant tumor cells with increased

aggressive progression [5, 7].

Many reports have confirmed that hypoxia is a prognosis factor associated with adverse

outcomes in cervical cancer [11–13]. Several hypoxia-related genes have been identified as

robust biomarkers in predicting overall survival (OS) of patients with cervical cancer, such as

hypoxia-inducible factor-1 alpha (HIF-1α) [14–16]. However, previous studies mainly focused

on investigating cancer prognosis with one or a limited number of hypoxia-related genes [17–

19]. As hypoxia is a complex microenvironment that induces a series of biological changes in

cell metabolism, proliferation, and apoptosis [5, 6], integrated analyses of hypoxia-related

genes will provide a more comprehensive understanding of hypoxia-induced biological

changes and their effects in cancer progression, ultimately improving cancer therapy. A recent

publication from Yang et al. [20] constructed a 5-gene prognostic signature in cervical cancer

based on the molecular subtype clustering using hypoxia hallmark genes, and the five genes

were further experimentally verified to be potential prognostic targets respectively. However,

the relationship between this signature and the hypoxic tumor condition was not verified, and

this signature did not give us more insights about the biological changes in tumor microenvi-

ronment under hypoxia.

In this study, we investigated the effects of hypoxia-related genes on tumor progress to con-

struct a hypoxia-related gene signature, which could be an independent prognostic factor.

Moreover, we proved that this signature is associated with tumor hypoxia level, high risk score

reflects the relatively severe tumor hypoxia. Importantly, we investigated the characteristics of

the tumor hypoxic microenvironment between high- and low-risk patients, including their

chemotherapy drug sensitivity, and biological changes of the tumor microenvironment (TME)

in cell metabolism and tumor immunity. The results will provide a better understanding of the

hypoxic tumor microenvironment in cervical cancer and insights into potential new therapeu-

tic strategies in improving cancer therapy. In details, we retrieved a set of hypoxia-related

genes in the Molecular Signatures Database, investigated their prognostic value in cervical can-

cer, and finally developed and validated a Hypoxia-related Prognostic Signature for cervical

cancer (ccHPS) using tumor samples in TCGA-CESC and CGCI-HTMCP-CC cohorts. Signif-

icantly, the ccHPS risk model in this study has a robust performance in predicting OS for

patients with cervical cancer, and could serve as an independent prognostic factor. Combining

with eight human cervical cancer cell lines treated with the hypoxic and normoxic condition,

and 286 tumor samples with hypoxic category (more or less) from GSE72723, we verified that

the ccHPS model could reflect the condition of hypoxic tumor microenvironment. Further-

more, we investigated the biological changes of the tumor microenvironment (TME) in cell
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metabolism and tumor immunity by comparing the high-risk and low-risk patients classified

by the ccHPS risk model, and showed that the ccHPS model might act as an indicator for TME

remodeling.

Materials and methods

Data collection

The hypoxia-related gene (HRG) set was downloaded from hallmark gene sets in the Molecu-

lar Signatures Database (MSigDB) [21], which includes 200 genes in response to hypoxia.

RNA sequencing (RNA-Seq) data and corresponding clinical metadata of tumor samples

from the cohort of TCGA cervical squamous cell carcinoma and endocervical adenocarcinoma

(TCGA-CESC) were retrieved from the UCSC Xena Browser (https://xenabrowser.net/

datapages/). The clinical metadata includes Age, Grade, TNM stage classification, FIGO stages,

lymphovascular invasion (LVI) and radiation therapy. RNA-Seq data and survival information

of samples from an independent cohort of CGCI HIV+ Tumor Molecular Characterization

Project (CGCI-HTMCP-CC) were obtained from TCGA using the R package ‘TCGAbiolinks’.

For the CGCI-HTMCP-CC samples, if multiple samples from the same cervical cancer cases,

we randomly selected one of them (S1 Table). Both TCGA-CESC and CGCI-HTMCP-CC

RNA-Seq data were normalized as fragments per kilobase of transcript per million mapped

reads (FPKM) and then log2-transformed. The Ensembl gene identifiers were converted into

gene symbols according to the gene mapping file (S2 Table), which was extracted from the

gene annotation file (http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_22/

gencode.v22.annotation.gtf.gz) in the Human GENCODE database (version 22) [22]. If a gene

symbol mapped to multiple Ensembl gene identifiers, the median expression value was

selected.

The expression array data of 286 tumor samples and 16 cell line samples in Gene Expression

Omnibus (GEO) database with accession GSE72723 [18, 19] were downloaded using R library

‘GEOquery’. Of the above 302 expression array samples, 150 samples and 4 cell line samples

with Illumina WG-6 were mapped into gene symbols according to the annotation for the

GPL6884 platform. At the same time, 136 tumor samples and 12 cell line samples with Illu-

mina HT-12 were mapped according to the GPL10558 platform. When multiple probes corre-

sponding to the same gene, the median expression value was selected.

Development of the hypoxia-related gene risk model

In the process of model development, we selected the 289 patients that included both clinical

data and gene expression profile data in TCGA-CESC. The univariate Cox analysis was per-

formed in the TCGA-CESC cohort (n = 289) to select significant HRGs with prognostic value

in cervical cancer, adopted using the ‘survival’ package in R with P-value< 0.01 as the signifi-

cant threshold. The 289 TCGA-CESC patients were randomly assigned into a training cohort

(n = 203) and a test cohort (n = 86) at a 7:3 ratio using the ‘caret’ package (S1 Table). The train-

ing cohort was used to develop the risk model, whereas the test cohort was used as one of the

two validation sets. Besides, 117 tumor samples with survival information from cohort

CGCI-HTMCP-CC were used as additional validation cohort to qualify model performance.

The clinical characteristics of patients in the training and two test cohorts are summarized in

S3 Table.

Firstly, the least absolute shrinkage and selection operator (LASSO) method was used to fit

the most informative and parsimonious Cox regression model using R software package

‘glmnet’ in the TCGA-training cohort, and establish the best combination of the HRGs. The

Penalty parameter (λ) for the model was determined from tenfold cross-validation using the
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minimum criteria, this minimum value of λ is corresponding to the lowest partial likelihood

deviance. Subsequently, Hypoxia-related Prognostic Signature for cervical cancer (ccHPS) was

developed to predict the risk score by combining the coefficients of HRGs in the LASSO

model and the expression abundance of HRGs in each tumor sample. The formula was as fol-

low:

ccHPS ¼
Xn

i¼1

ðGene expressioni � CoefficinetiÞ

Finally, Principal Component Analysis (PCA) was performed base on the expression of

genes in the ccHPS model. The time-dependent receiver operating characteristic (ROC) curves

and Kaplan-Meier (K-M) survival analysis were conducted to assess the prognostic accuracy of

the ccHPS risk score using ‘survivalROC’ and ‘survival’ package in TCGA-training cohort

(Training set), TCGA-test cohort (Validation set-1) and an independent dataset from

CGCI-HTMCP-CC cohort (Validation set-2).

Evaluation of immune status between high-risk and low-risk groups

The immune score and tumor purity for each patient sample were calculated using the ESTI-

MATE (Estimation of STromal and Immune cells in Malignant Tumors using Expression

data) algorithm with ‘estimate’ package [23], which uses gene expression data to infer the frac-

tion of stromal and immune cells in tumor samples. Estimation of immune cell infiltration

fractions was conducted using the CIBERSORT (Cell type Identification By Estimating Rela-

tive Subsets Of RNA Transcripts) method [24], which characterizes the immune cell composi-

tion (22 immune cell types) of a tumor biopsy from their gene expression profiles. The

significance values were determined based on 100 permutations. Samples with P-value < 0.05

in CIBERSORT were selected for further analysis. Microenvironment Cell Populations-

counter (MCP-counter) method [25] was used to quantify the abundance of immune cells and

stromal cells (T cells, CD8+ T cells, Cytotoxic lymphocytes, B lineage, NK cells, Monocytic

lineage, Myeloid dendritic cells, Neutrophils and Endothelial cells) in tumors of each patient

from gene expression profiles. We compared the differences in ESTIMATE, CIBERSORT and

MCP-counter results between high- and low-risk patients by Student’s t-test.

Gene set enrichment analysis

All genes in TCGA-CESC dataset were first processed by log2 transformation and then ranked

concerning their differential expression between high- and low-risk patients using ‘limma’

package [26]. Gene set enrichment analysis (GSEA) was conducted between high- and low-

risk samples to investigate the functional divergence in two groups, using the R package ‘clus-

terProfiler’ with 20,000 permutations [27–29]. Gene sets derived from Gene Ontology (biolog-

ical process), KEGG pathways and HALLMARK pathways were collected from MSigDB. The

Benjamini-Hochberg (BH) method was used to control the false discovery rate [30]. Adjusted

P-value< 0.05 and the NES were used to determine the enrichment of a pathway between two

groups.

Chemosensitivity prediction

The chemotherapeutic sensitivity for each tumor sample was estimated based on the pharma-

cogenomics data in Genomics of Drug Sensitivity in Cancer database (GDSC; https://www.

cancerrxgene.org/) [31]. The half-maximal inhibitory concentration (IC50) of each treated
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specific chemotherapy drug in each tumor sample was estimated using the R package ‘pRRo-

phetic’ [32, 33].

Nomogram construction and evaluation

A nomogram incorporating the risk scores and clinical characteristics of patients was con-

structed using the ‘rms’ package. A concordance index (C-index) was calculated to assess the

discrimination of the nomogram via a bootstrap method with 1000 resamples. The time-

dependent receiver operating characteristic (ROC) curves were performed using the ‘survival-

ROC’ package. Decision Curve Analysis (DCA) was performed using ‘rmda’ package.

Results

Identification of prognostic hypoxia-related genes

Of 200 hypoxia-related genes (HRGs) from MSigDB, 190 were covered in the TCGA-CESC

dataset (S4 Table). To further investigate the prognostic-related HRGs in cervical cancer, we

performed survival analysis for each HRG by comparing patients’ overall survival (OS) status

in low- and high-expression groups based on their median expression. As a result, 21 genes

were found significantly related to OS (P< 0.01) and were considered as prognostic-related

genes for further analysis (Fig 1A and S4 Table).

Construction of hypoxia-related prognostic risk model

Based on the above 21 prognostic HRGs, we conducted LASSO Cox regression analysis to

develop a Hypoxia-related Prognostic Signature for cervical cancer (ccHPS) using the training

cohort. As a result, a prognostic risk model with 9 HRGs (EFNA1, IER3, ISG20, KLF7, LDHC,

P4HA2, PGM1, RBPJ and STC1) was identified according to the optimal value of lambda (log

(λ) = -3.34; Fig 1B). The coefficients of each gene in the ccHPS model were shown in Fig 1C.

There were six genes positively associated with risks and three genes negatively associated.

To evaluate the performance of the ccHPS risk model, the risk scores for each patient in the

training cohort were then calculated according to the gene expression of 9 signature genes in

Fig 1. Identification of the hypoxia-related genes to develop a risk model. (a) Forest plot showing the significant HRGs in Univariate Cox regression analysis

with P< 0.01 using TCGA-CESC entire cohort. (b) Partial likelihood deviance for tuning the parameter selection in the LASSO regression model using

training cohort. The red dotted line is the cross-validation curve, and the error bars are the upper and lower standard deviation curves along the λ sequence.

The two dotted vertical lines represent the optimal values by minimum criteria (left) and 1-se criteria (right). The minimum criteria was selected in this study.

(c) The coefficients of each gene in the ccHPS model.

https://doi.org/10.1371/journal.pone.0269462.g001
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each patient and gene coefficients in the risk model. According to the median risk score,

patients were divided into two groups (high- and low-risk groups). PCA analysis showed that

patients in the two risk groups were distributed in two directions (S1A Fig). K-M survival anal-

ysis indicated that high-risk patients had a significantly shorter survival time than low-risk

patients (P< 0.01, Fig 2A). Moreover, the time-dependent ROC curve was performed to assess

the performance of risk score in predicting OS (Fig 2D). The result showed that the ccHPS

model could predict the 1-, 3- and 5-year prognosis with AUC values of 0.79, 0.79 and 0.81,

respectively. These findings suggested that ccHPS can predict OS in cervical cancer, and a high

ccHPS score was associated with a poor clinical outcome.

Validation of the stable performance and prognostic value of ccHPS

The TCGA-test cohort (n = 86), the TCGA-entire set (n = 289), and an additional independent

CGCI-HTMCP-CC cohort (n = 117) were further used to assess the robustness of the ccHPS

model.

Of the TCGA-test cohort and the TCGA-entire set, the risk score of each patient was calcu-

lated using the same ccHPS formula as above, and patients were subsequently divided into

Fig 2. Evaluation of the prognostic prediction ability of ccHPS risk model in both training and validation sets in TCGA-CESC cohort. (a-c) Kaplan-Meier

curves for the OS of patients in the TCGA-training cohort (a), TCGA-test cohort (b), and TCGA-CESC entire cohort (c) between the high-risk and low-risk

groups that were separately divided by ccHPS risk model. (d-f) Time-dependent ROC curves for the ccHPS risk model at 1-, 3- and 5-years survival time in the

TCGA-training cohort (d), TCGA-test cohort (e), and TCGA-CESC entire cohort (f), respectively.

https://doi.org/10.1371/journal.pone.0269462.g002
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high- and low-risk groups according to their median scores. PCA analysis confirmed that

patients in high- and low-risk groups were clustered in discrete directions in both TCGA-test

and the entire set (S1b and S1c Fig). Consistent with the training dataset, the high-risk group

significantly had a shorter predicted survival time than low-risk groups (Fig 2B and 2C). More-

over, the time-dependent ROC curve was conducted in both sets. In the TCGA-test set, the

AUC values of 1-, 3- and 5-years are 0.89, 0.78 and 0.69, respectively (Fig 2E). In the TCGA-

entire set, the AUC values of 1-, 3- and 5-years are 0.81, 0.78 and 0.77, respectively (Fig 2F).

The results suggested that the current prognostic model is relatively stable, especially in year 3.

Besides, we found AUC is decreased in test sets during follow-up, AUC is highest in year 1 and

lowest in year 5. As both the disease status of an individual and biomarker values may change

during follow-up, therefore, the most recent marker value may be best related to the current

disease status of an individual [34, 35].

Furthermore, the prognostic value of the ccHPS model was validated using an additional

dataset from the CGCI-HTMCP-CC cohort, which includes 117 cases with both RNA-Seq

data and their overall survival. Consistently, PCA analysis confirmed that patients in high- and

low-risk groups were clustered in discrete directions in the CGCI-HTMCP-CC cohort (Fig

3A). The AUC value in the CGCI-HTMCP-CC cohort is 0.61 (Fig 3B). The ccHPS score in the

Dead (73 cases) was significantly higher than that in Alive (44 cases) (Fig 3C; P = 0.02).

According to the quartile values (Q75 and Q25) in the TCGA-training cohort, we conducted

the K-M survival analysis between high (higher than Q75) and low (lower than Q25) risk

patients in CGCI-HTMCP-CC. Consistent with the TCGA cohort, the result showed that the

high- and low-risk cases had statistical differences in survivals, and high-risk patients from

CGCI-HTMCP-CC had poor clinical outcomes (Fig 3D). Besides, the distribution of the

expression of the nine genes in the ccHPS model between high- and low-risk patients was

investigated in both TCGA-CESC (Fig 3F) and CGCI-HTMCP-CC (Fig 3E) cohorts. All the

nine genes had significant divergent expression levels between high- and low-risk groups in

TCGA-CESC, and eight of nine genes in CGCI-HTMCP-CC were significantly divergent

between two groups. The above results demonstrated the robustness and predictive ability of

the ccHPS model.

Additionally, we investigated the stability of the ccHPS model across the clinical factors

using the TCGA-CESC entire dataset. Each of the clinical factors was divided into two groups,

and the included clinical factors are Age at diagnosis (> 50 and< = 50 years old), grade (G1-2

and G3-4), N stage (N0 and N1) and T stage (T1 and T2-4). Across all the clinical factors, the

high-risk patients were significantly associated with a poor clinical outcome than that in the

low-risk patients (P< 0.05; S2 Fig), suggesting a stable performance of the ccHPS model across

the clinical factors.

ccHPS reflects the hypoxic tumor microenvironment

In addition to the prognostic value of the ccHPS model, we also investigated its reflection of

the hypoxic TME by comparing it with two cervical cancer-specific hypoxia signatures, a

31-gene signature by Halle et al. [19] and its 6-gene reduced form by Fjeldbo et al. [18]. Com-

paring with Halle et al. [19], the ccHPS score in their defined high hypoxia tumors (77 sam-

ples) was significantly higher than that in low hypoxia tumors (73 samples) with P-

value = 1.68e-06 (Fig 4A). For Fjeldbo et al. [18], the ccHPS score in the classified more hyp-

oxic tumors (44 samples) was significantly higher than the less hypoxic tumors (92 samples)

with P-value = 5.506e-07 (Fig 4B). Furthermore, we also validated the hypoxia prediction of

ccHPS score in eight human cervical cancer cell lines (Fig 4C), each of them was separately

treated with hypoxic (0.2% O2, 5% CO2) and normoxic (95% air, 5% CO2) conditions [18]. As
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shown in Fig 4C, the ccHPS score of hypoxic treated cells was significantly higher than the

compared normoxic treated cells with P-value = 1.85e-04. The above results suggested the abil-

ity of the ccHPS model in predicting tumor hypoxic microenvironment.

Fig 3. Validation of the prognostic value of ccHPS model using an independent CGCI-HTMCP-CC cohort. (a)

Principal component analysis of the gene expression profile in high-risk and low-risk patients in CGCI-HTMCP-CC

cohort. (b) ROC curves for the ccHPS risk model in the CGCI-HTMCP-CC cohort. (c) ccHPS score was significantly

higher in patients with Dead OS status than that with Alive in the CGCI-HTMCP-CC cohort. (d) Kaplan-Meier curves

for the OS of patients in the CGCI-HTMCP-CC cohort. (e) Expression level comparison of nine genes in ccHPS model

using CGCI-HTMCP-CC cohort. The mean and standard deviation of gene expression levels were shown in the bar

plot. (f) Expression level comparison of nine genes in ccHPS model using TCGA-CESC cohort. Statistical comparison

in (c), (e), and (f) was performed using the Wilcoxon test. ���� P� 0.0001, ��� P� 0.001, �� P� 0.01 and � P� 0.05.

https://doi.org/10.1371/journal.pone.0269462.g003
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Function enrichment analysis

We hypothesized that the cell metabolism in high- and low-risk patients is divergent, leading

to different clinical outcomes in cervical cancer. To explore the functional divergence between

high- and low-risk patients, we conducted Gene Set Enrichment Analysis (GSEA) using the

Gene Ontology (biological process), KEGG pathways and HALLMARK gene sets that were

derived from the MSigDB gene sets. At the GO biological process level, 47 pathways were

enriched in low-risk patients and 17 in high-risk patients (S5 Table). At the KEGG pathway

level, four pathways were enriched in high-risk patients (Fig 5A). For the HALLMARK gene

Fig 4. Validation of the tumor hypoxic microenvironment prediction ability of ccHPS model. (a) ccHPS score in more hypoxic tumors was higher than that

in less hypoxic tumors, and the hypoxia level was classified using a 6-gene signature by Fjeldbo et al. [18]. (b) ccHPS score in tumors with high hypoxia score

was higher than that in lower hypoxia levels, and the hypoxia score was classified using a 31-gene signature by Halle et al. [19]. (c) ccHPS score in human

cervical cancer cell lines that were separately treated with hypoxic and normoxic conditions. The transcriptome data of eight cell lines were from Fjeldbo et al.

[18], which include Hela, SW756, C-33, C-41, ME-180, HT-3, SiHa and CaSki, and each of them was treated with hypoxic and normoxic conditions

respectively. Statistical comparison between the paired hypoxic and normoxic cells was performed using paired t-test. Statistical comparison between high- and

low-score groups (in a and b) was performed using the Wilcoxon test. ���� P� 0.0001, ��� P� 0.001, �� P� 0.01 and � P� 0.05.

https://doi.org/10.1371/journal.pone.0269462.g004

Fig 5. Functional enrichment analysis using GSEA for the high-risk and low-risk patients from the ccHPS risk model. (a) Enriched gene sets in KEGG

pathways. Each line with different colors represents a specific gene set. Terms with adjust P-value< 0.05 were selected and considered to be enriched

significantly. Genes ranked from left to right of the x-axis represent high-risk score to low-risk score. The four KEGG terms are enriched in high-risk patients.

(b) Selected enriched gene sets in GO (biological process), which is part of GO (biological process) results in S5 Table. (c) Enriched gene sets in HALLMARK

pathways. The detailed information about the enrichment scores and adjust P-values were listed in S5 Table.

https://doi.org/10.1371/journal.pone.0269462.g005
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signatures, six gene signatures were enriched in high-risk patients and two signatures in low-

risk patients (Fig 5C).

As shown in Fig 5 and S5 Table, pathways in cervical cancer tumor progression and metas-

tasis, such as epithelial-mesenchymal transition (EMT) [36], apoptosis and fatty acid metabo-

lism [37], were enriched in high-risk patients. Besides, cytokine-cytokine receptor interaction

pathway, ribosome, and three keratinization-related biological pathways, including keratiniza-

tion, keratinocyte differentiation and cornification, and keratinization, were enriched in high-

risk patients. Notably, all the above pathways were reported to be associated with cancer pro-

gression. For instance, keratinization was shown to be related to adverse outcomes in several

cancers [38, 39]. Lappano et al. [40] reported that IL-1β (Interleukin-1 Beta), the critical com-

ponent of the cytokine-cytokine receptor interaction pathway, contributes to the initiation

and progression of breast cancer. Ribosomal dysfunction is related to tumor progression [41–

43]. Further investigation of the enriched pathways in high-risk patients might give insights

into the molecular mechanism underlying poor prognosis.

Interestingly, a series of immune-related pathways were enriched in low-risk patients,

including B cell-mediated immunity, B cell receptor signaling pathway, immune response reg-

ulating signaling pathway, and B cell activation (Fig 5B and S5 Table).

Alterations of tumor immune microenvironment between high- and low-

risk patients

To further explore the relationship between ccHPS risk score and immune status in patients,

we evaluated the immune score between the high- and low-risk patients using ESTIMATE

(Fig 6A). A significantly higher immune score was observed in low-risk patients than that in

high-risk patients (P< 0.0001; Fig 6A), consistent with the GSEA result that a series of

immune-related pathways were obviously enriched in low-risk patients. Besides, the tumor

purity was lower in low-risk patients (P< 0.001; Fig 6A). This result could be explained by a

previous report showing samples with low tumor purity are related to high stromal and

immune scores [23].

Subsequently, CIBERSORT and MCP-counter were used to explore the fraction of specific

immune cell types in high- and low-risk patients. The comparisons between high- and low-

risk patients were summarized in Fig 6B and 6C. The results showed that low-risk patients

were detected having higher cell composition of CD8+ T cells in both methods (P< 0.0001).

Besides, the fraction of activated memory CD4+ T cells (P< 0.01), T cells follicular helper

(P< 0.0001), Cytotoxic lymphocytes (P< 0.001), B lineage (P< 0.001) and Myeloid dendritic

cells (P< 0.01) were found having higher fraction in low-risk patients, whereas high-risk

patients were more associated with macrophages M0 (P< 0.01) and activated mast cells

(P< 0.05). The above results confirmed that ccHPS was related to the microenvironment

remodeling in the tumor immune system in cervical cancer.

Chemotherapy drug sensitivity between high- and low-risk groups

Tissue hypoxia is an indicator of adverse prognosis in cancer patients. Moreover, hypoxia

could enhance the resistance to chemotherapy through a series of signaling biological pro-

cesses, such as DNA damage, apoptosis, p53, autophagy and mitochondrial activity [7, 44, 45].

In this study, we compared the chemotherapy drug sensitivity in high- and low-risk groups

using six chemotherapy drugs in cervical cancer, including Paclitaxel, Gemcitabine, Cisplatin,

Gefitinib, Mitomycin C, and Sunitinib. Consistently, we observed significantly higher esti-

mated IC50 levels in ccHPS high score patients for most chemotherapy drugs, including Pacli-

taxel, Gefitinib, Sunitinib, and Mitomycin C (S3 Fig), suggesting patients in high-risk groups
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Fig 6. Comparison of the immune status between high-risk and low-risk patients from ccHPS risk model base on ESTIMATE, MCP-counter and

CIBERSORT methods. (a) Boxplot shows the Immune Score distribution (left) and Tumor purity (right) from ESTIMATE. (b) Boxplot shows immune cell

abundance in MCP-counter method (c) Boxplot shows the cell composition ratio differentiation of 21 types of immune cells in cervical cancer samples between

high and low-risk patients using CIBERSORT. The statistical comparisons were conducted using Student’s t-test. ���� P� 0.0001, ��� P� 0.001, �� P� 0.01

and � P� 0.05.

https://doi.org/10.1371/journal.pone.0269462.g006
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are more resistant to these chemotherapy drugs. Meanwhile, we observed no significant differ-

ence in the estimated IC50 between the high and low ccHPS score groups for Cisplatin and

Gemcitabine. We concluded that the low-risk patients were more sensitive to chemotherapy

drugs and could benefit from Paclitaxel, Gefitinib, Sunitinib, and Mitomycin C therapy.

Independent prognostic analysis

Univariate and multivariate Cox regression analyses were separately performed using TCGA--

CESC entire cohort to investigate whether the risk score from ccHPS is an independent prog-

nostic factor of OS with cervical cancer. The results were shown in Table 1. In univariate Cox

regression analysis, the risk score was significantly associated with patient prognosis

(P = 1.02×10−6). Besides, Age, FIGO stage, Lymphovascular invasion (LVI), and T stages are

considerably associated with prognoses as well with the threshold P< 0.05 (Table 1). These

significant clinical factors were then included in multivariate cox regression analysis, and the

ccHPS risk score remained associated with patient OS (P = 1.33×10−3). The above findings

suggested that ccHPS was an independent prognostic factor for patients with cervical cancer.

Interestingly, LVI is an independent prognostic factor as well (Table 1).

Establishment and evaluation of the nomogram

The results from Table 1 revealed that ccHPS and LVI are independent prognostic factors in

cervical cancer. Accordingly, a nomogram integrating the ccHPS risk score and LVI was devel-

oped to predict the probability of 1-, 2- and 3-years overall survival in cervical cancer using

TCGA entire cohort (Fig 7A). The nomogram was predicted well, with the C-index reach

0.835. Meanwhile, the ROC curve confirmed that the nomogram has a good performance in

predicting OS with AUC at 1-, 2- and 3-years separately reach 0.928, 0.916 and 0.831 (Fig 7B).

Besides, the DCA result in Fig 7C demonstrated that the prediction performance of the nomo-

gram is better than that in one of the LVI and ccHPS risk scores.

Discussion

Cervical cancer is a major public health problem worldwide among females, ranking fourth in

incidence and death rates [1, 2]. Hypoxia is a typical microenvironment character in tumors

with deprived adequate oxygen supply, and was shown to be a prognostic factor associated

with adverse outcomes in cervical cancer [11–13]. Moreover, the expression changes of hyp-

oxia-related genes were shown to be associated with cell invasion and metastasis in tumors

[14, 15, 46]. Therefore, integrating hypoxia-related genes to investigate their effects on patient

survival and the related biological changes might help us comprehensively understand the hyp-

oxic tumor microenvironment in cervical cancer, giving us insights into improving cancer

Table 1. Results of the univariate and multivariate cox regression analyses of OS in the TCGA-CESC cohort.

Variables Univariate cox analysis Multivariate cox analysis

Coefficient Hazard Ratio (95% CI) P-value Coefficient Hazard Ratio (95% CI) P-value

ccHPS risk score (Low) -1.31 0.27 (0.16–0.45) 1.02×10−6 -1.49 0.23 (0.09–0.56) 1.33×10−3

LVI (Present) 2.32 10.21 (2.41–43.30) 1.61×10−2 2.39 10.93 (2.54–47.00) 1.31×10−3

FIGO stage (Stage II-IV) 0.79 2.19 (1.33–3.61) 2.00×10−3 -0.34 0.71 (0.20–2.52) 0.59

T stage (T2-4) 0.59 1.81 (1.03–3.18) 0.04 -0.06 0.94 (0.33–2.71) 0.92

Age (>60) 0.57 1.77 (1.05–2.97) 0.03 0.93 2.55(0.82–7.86) 0.10

Grade (G3-4) -0.11 0.89 (0.53–1.51) 0.68 - - -

Radiation therapy (YES) -0.04 0.96 (0.45–2.07) 0.92 - - -

https://doi.org/10.1371/journal.pone.0269462.t001
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therapy. In this study, we constructed a hypoxia-based risk model including nine genes

(EFNA1, IER3, ISG20, KLF7, LDHC, P4HA2, PGM1, RBPJ and STC1), which is developed

and confirmed separately by the TCGA training cohort (n = 203) and two validation cohorts

(TCGA-test cohort (n = 86) and CGCI-HTMCP-CC cohort (n = 117)) based on LASSO Cox

regression analysis. The PCA analysis, ROC analysis, and K-M survival analysis suggested an

excellent performance of the ccHPS model in predicting the prognosis of patients with cervical

cancer. The high-risk score was considerably associated with adverse outcomes of the patients.

The stable performance of the ccHPS model across different clinical factors further confirmed

the robustness of its prognostic value. Importantly, univariate and multivariate Cox regression

analysis showed that ccHPS was an independent prognostic factor in cervical cancer. More-

over, a nomogram integrating ccHPS and LVI was developed, which further improved the

Fig 7. Development and evaluation of the nomogram with ccHPS and LVI using TCGA-CESC entire cohort. (a) The

nomogram plot is based on ccHPS risk score and Lymphovascular invasion (LVI) for predicting the 1-, 2- and 3-years OS. (b) The

time-dependent ROC curve shows the assessment of the nomogram in 1-, 2-, and 3-years OS. (c) Decision curve analysis

separately for the nomogram, LVI, and ccHPS.

https://doi.org/10.1371/journal.pone.0269462.g007
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prediction performance, predicting the 1-, 2- and 3-year prognosis with AUC values of 0.928,

0.916 and 0.831, respectively. These findings demonstrated the high prognostic value of the

hypoxia-related gene-based risk model. In addition to the prognostic value of the ccHPS

model, ccHPS could also indicate tumor hypoxic microenvironment. The ccHPS score of both

tumor samples and cell lines in a high hypoxic environment was consistently higher than

those in a low hypoxic environment.

Furthermore, most of the nine genes in ccHPS have been reported to be associated with the

tumor prognosis in different human cancer types, such as IER3 is a prognostic factor in blad-

der cancer [47], expression increased KLF7 promotes tumor cell growth and metastasis in pan-

creatic cancer [48] and tumor cell migration in oral squamous cell carcinoma [49], and STC1

is a prognostic predictor in patients with esophageal squamous cell carcinoma [50] and colo-

rectal cancer [51]. Notably, P4HA2 has been reported to be a prognostic biomarker in cervical

cancer, which was increased expression in cervical cancer tissues compared with the adjacent

normal tissues, and related to poor prognosis [52, 53].

Tumor microenvironment (TME) is a complex biological environment where solid tumors

are located, and increasing evidence showed that TME played critical roles in tumor progres-

sion [54]. As a dominant microenvironmental factor, hypoxia is considered the most relevant

factor in tumor progression and metastasis [55, 56]. Consistently, of the ccHPS risk model

with nine hypoxia-related genes, the high-risk score is remarkably related to the poor progno-

sis of cervical cancer patients, indicating the TME remodeling ability of hypoxia and a compli-

cated biological change within TME that ccHPS might derive. An increasing number of

studies indicated that hypoxia plays an essential role in tumor immune escape with the infiltra-

tion of large amounts of immunosuppressive cells in hypoxic zone of solid tumors, including

tumor-associated macrophages and myeloid-derived suppressor cells [55–57]. Moreover, hyp-

oxia reduces the proliferation and differentiation ability of CD8+ T cells [55, 58], a preferred

antitumor immune cell, thus leading to adverse prognosis in cancer [59, 60]. Accordingly, we

explored the correlation of ccHPS with immune systems in TME using ESTIMATE. The

results showed that high-risk patients had lower immune scores and higher tumor purity than

low-risk patients, suggesting a negative correlation between ccHPS risk score and antitumor

immunity of cervical cancer. Further CIBERSORT and MCP-counter analysis showed that

CD8+ T cells, activated memory CD4+ T cells, T cells follicular helper, Cytotoxic lymphocytes,

B lineage, and Myeloid dendritic cells were having a higher fraction in low-risk patients with

cervical cancer. In contrast, high-risk patients were more associated with the accumulation of

macrophages M0 and activated mast cells. Previous reports have consistently shown that mast

cells, an cancer immunotherapy target, can be activated by hypoxia in solid tumors [61]. Hyp-

oxia could also lead to the accumulation of macrophages [7, 56, 62], and macrophages M0 pro-

motes cancer invasion [63]. The results suggested the close connection between hypoxia and

ccHPS with similar remodeled immunogenic features, including increased immunosuppres-

sive cells and decreased antitumor immune cells. Therefore, we concluded that ccHPS might

give us insights into antitumor immunotherapy and further improve the strategies for treating

cervical cancer.

Besides the effects on the tumor immunity, the ccHPS model might be an indicator for

remodeling TME with cancer cell metabolism. Previous reports showed that hypoxia induces

proteomic changes in tumor cells, thus leading to a series of metabolic changes to stimulate

tumor growth and enhance therapy resistance [64–66]. In this study, GSEA analysis between

high-risk and low-risk patients divided by ccHPS confirmed the effects of ccHPS on remodel-

ing TME with cancer cell metabolism. In the results, a series of pathways in tumor progression

and metastasis were enriched in high-risk patients, such as EMT [36], keratinization [38, 39],

cytokine-cytokine receptor interaction pathway [40] and ribosome [41–43]. Therefore, further

PLOS ONE A novel hypoxia-related signature in cervical cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0269462 June 3, 2022 14 / 19

https://doi.org/10.1371/journal.pone.0269462


investigation of the ccHPS-led metabolic changes in tumor cells will facilitate us to focus on

specific pathways, and finally direct the tumor therapy.

In conclusion, the present study integrated hypoxia-related genes to construct a risk model,

ccHPS, which was developed and confirmed separately by the training cohort and two inde-

pendent test cohorts based on LASSO Cox regression analysis. Notably, the ccHPS model

could be an independent prognosis factor in predicting patient OS with cervical cancer and

closely related to the TME remodeling in cell metabolism and tumor immunity. We concluded

that the ccHPS risk model might help us better understand the hypoxic tumor microenviron-

ment, provide insights into antitumor immunotherapy, and ultimately improve the treatment

strategies of cervical cancer.

Supporting information

S1 Fig. Principal component analysis of the gene expression profile in high-risk and low-

risk patients. (a) PCA analysis for high-risk and low-risk patients in TCGA-Training cohort.

(b) PCA in TCGA-test cohort. (c) PCA in TCGA-CESC entire cohort. The genes used for PCA

analysis were the nine genes in the ccHPS model.

(TIF)

S2 Fig. Kaplan-Meier curve analysis for the high-risk and low-risk patients stratified by

clinical factors. The clinical factors included Grade in stages G1-2 (a) and G3-4 (b), Age that

higher than 50 (c) and less than 50 years old (d), N stages in N0 (e) and N1 (f), T stages in T1

(g) and T2-4 (h). The high-risk and low-risk scores are divided by the median score in ccHPS

using the TCGA-CESC cohort.

(TIF)

S3 Fig. Box plots showed the differences between high- and low-ccHPS scores in the esti-

mated IC50 levels of six chemotherapy drugs using TCGA-CESC patients. The statistical

comparisons were conducted using the Wilcoxon test. ���� P� 0.0001, ��� P� 0.001, ��

P� 0.01 and � P� 0.05. and ns P> 0.05.

(TIF)

S1 Table. The training and validation datasets in TCGA-CESC and CGCI-HTMCP-CC.

(XLSX)

S2 Table. The gene identifier mapping table used for converting Ensembl gene identifier

into gene symbol, which was based on Human GENCODE database (version 22).
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S3 Table. Clinical characteristics of patients in TCGA training and test cohorts, and

CGCI-HTMCP-CC cohort.
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S4 Table. Univariate cox analysis result for 190 hypoxia-related genes covered in TCGA--

CESC cohort.
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S5 Table. Gene Set Enrichment Analysis (GSEA) using the MSigDB gene sets derived from

KEGG, HALLMARK, and gene ontology (biological process).
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