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The trophic peptide hormone adrenocorticotropic (ACTH) stimulates steroid hormone 
biosynthesis evoking both a rapid, acute response and a long-term, chronic response, 
via the activation of cAMP/protein kinase A (PKA) signaling. The acute response is initi-
ated by the mobilization of cholesterol from lipid stores and its delivery to the inner mito-
chondrial membrane, a process that is mediated by the steroidogenic acute regulatory 
protein. The chronic response results in the increased coordinated transcription of genes 
encoding steroidogenic enzymes. ACTH binding to its cognate receptor, melanocortin 2 
receptor (MC2R), stimulates adenylyl cyclase, thus inducing cAMP production, PKA acti-
vation, and phosphorylation of specific nuclear factors, which bind to target promoters 
and facilitate coactivator protein recruitment to direct steroidogenic gene transcription. 
This review provides a general view of the transcriptional control exerted by the ACTH/
cAMP system on the expression of genes encoding for steroidogenic enzymes in the 
adrenal cortex. Special emphasis will be given to the transcription factors required to 
mediate ACTH-dependent transcription of steroidogenic genes.
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iNTRODUCTiON

The adrenal gland is a key component of the hypothalamus–pituitary–adrenal (HPA) axis, thus 
playing a crucial role in the adaptation of organism to stressors. The adrenocorticotropic hormone 
(ACTH) belongs to this regulatory circuitry, being one of the most potent physiological modulators 
of adrenal cortex steroidogenesis and trophicity (1, 2). It exerts its role through the binding to the 
G protein-coupled receptor (GPCR) melanocortin 2 receptor (MC2R), which activates adenylyl 
cyclase cascade leading to cAMP production and subsequent activation of cAMP-dependent protein 
kinase A (PKA). PKA is the main kinase responsible for the phosphorylation of specific transcrip-
tion factors, which in turn regulate free cholesterol availability and activate steroidogenic enzyme 
expression (3, 4). Among those transcription factors, steroidogenic factor 1 (SF-1), cAMP response 
element-binding protein (CREB), CRE modulator (CREM), CCAAT/enhancer-binding proteins  
(C/EBPs), and activator protein 1 (AP-1) have been extensively described for their implication in 
regulating the expression of the genes encoding for steroidogenic acute regulatory (StAR) protein 
and steroidogenic enzymes (5–8). Any perturbation of this ACTH/cAMP/PKA-dependent cascade 
may cause alteration in adrenocortical cell proliferation and dysregulation of steroidogenesis as occur 
in various human diseases. The aim of the present review is to provide an overview of the ACTH/
cAMP-dependent transcriptional regulation of the steroidogenic process in the adrenal cortex.
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ADReNAL STeROiDOGeNeSiS

Steroid hormones are implicated in the regulation of a plethora 
of developmental and physiological processes from fetal life to 
adulthood. Cholesterol is the precursor of all those hormones that 
hence share a closely related structure based on the cyclopen-
tanophenanthrene 4-ring hydrocarbon nucleus. Cholesterol can 
be synthesized de novo from acetate in the adrenal (9). However, 
the main adrenal source of cholesterol is plasma low-density lipo-
proteins (LDLs) provided by dietary cholesterol (10). The sterol 
response element-binding proteins (SREBPs) are a family of 
transcription factors implicated in the regulation of genes partici-
pating in the biosynthesis of cholesterol and fatty acids (11). They 
are the main regulators of intracellular cholesterol metabolism. 
ACTH promotes the activation of 3-hydroxy-3-methylglutaryl 
coenzyme A reductase, the rate-limiting enzyme in cholesterol 
synthesis. It also stimulates the uptake of LDL cholesterol esters, 
which, once taken up by receptor-mediated endocytosis can be 
converted to free cholesterol for steroid hormone biosynthesis (12) 
or directly stored. Moreover, ACTH stimulates hormone-sensitive 
lipase (HSL) and inhibits acyl-coenzyme A (CoA):cholesterol 
acyltransferase (ACAT), thereby increasing the free cholesterol 
pool available for steroid hormone biosynthesis.

The initial step of steroidogenesis occurs in the mitochondria. 
Whereas the movement of cholesterol from the outer mitochon-
drial membrane (OMM) to the inner mitochondrial membrane 
(IMM) is known to be promoted by StAR (see below), the 
molecular mechanism underlying cholesterol transport and load-
ing into the OMM is still under investigation (13). The enzymes 
that participate in steroid biosynthesis are either cytochrome 
P450s (CYPs) or hydroxysteroid dehydrogenases (HSDs).

Cytochrome P450s are a group of oxidative enzymes. In the 
human genome, genes for 57 CYPs enzymes have been described. 
Seven of them are called “type 1” enzymes. They are targeted to 
mitochondria and receive electrons from NADPH via a flavoprotein 
(ferrodoxin reductase) and a small iron-sulfur protein (ferredoxin). 
“Type 2” enzymes are localized in the endoplasmic reticulum and 
received electrons form NADPH via a single 2-flavin protein 
called P450 oxidoreductase (14). Six P450 enzymes participate 
in steroidogenesis. The mitochondrial P450 side chain cleavage 
(SCC, encoded by the CYP11A1 gene) catalyzes breakage of the 
bond between positions 20 and 22 in the cholesterol side chain 
(20, 22 desmolase). P450c11β (11β-hydroxylase, encoded by the 
CYP11B1 gene) and P450c11AS (aldosterone synthase, encoded 
by the CYP11B2 gene) catalyze 11β-hydroxylase, 18-hydroxylase, 
and 18-methyl oxidase activities. At the level of the endoplasmic 
reticulum, we distinguish: P450c17 (encoded by the CYP17A1 
gene) that catalyzes both 17α-hydroxylase and 17,20-lyase 
activities; P450c21 (encoded by the CYP21A1 gene) that 
catalyzes 21-hydroxylation in the synthesis of both glucocor-
ticoids and mineralocorticoids; and P450-Aro (encoded by the 
CYP19A1 gene) that catalyzes the aromatization of androgens 
to estrogens.

The HSDs use nicotinamide adenine dinucleotides or their 
phosphate forms (NADH/NAD+ or NADPH/NADP+) as cofac-
tors to either reduce or oxidize a steroid through a hydride trans-
fer mechanism (15). Differently from steroidogenic reactions 

catalyzed by P450 enzymes, which are mediated by a single form 
of P450, each reaction catalyzed by HSDs involves at least two, 
often different isozymes. On the basis of their structures, those 
enzymes are divided into: short-chain dehydrogenase/reductase 
(SDR) family, which include 11β-HSDs 1, 2, and 17β-HSDs 1, 2,  
and 3 and aldo-keto reductase (AKR) family, which include  
17β-HSD5 (15, 16). Under a physiological point of view, it is 
preferable to classify the HSDs as dehydrogenases or reductases. 
The former use NAD+ as cofactors to oxidize hydroxysteroids to 
ketosteroids, whereas the latter mainly use NADPH to reduce 
ketosteroids to hydroxysteroids. Those enzymes act in  vitro 
typically bidirectionally on the basis of the pH and cofactor con-
centration, while in intact cells they work mainly in one direction, 
with the direction established by the cofactors available (15, 16).

The pattern of steroid hormones secreted by each adrenal 
zone is determined by the enzymes expressed in each zone (17). 
Specifically, adrenal zona glomerulosa expresses angiotensin II 
receptors and P450c11AS, whereas it does not express P450c17. 
Indeed, zona glomerulosa produces aldosterone under the regula-
tion of the renin–angiotensin system. In contrast, at the levels 
of zona fasciculata, angiotensin II receptors, and P450c11AS are 
not detected, whereas the ACTH receptor MC2R and P450c11β 
are expressed (18). The zona fasciculata also expresses P450c17, 
which catalyzes 17α-hydroxylation, exhibiting only little 17,20-
lyase activity. Indeed, zona fasciculata secretes the two glucocorti-
coids, cortisol and corticosterone, under the influence of ACTH, 
but very little dehydroepiandrosterone (DHEA). Interestingly, 
patients displaying mutations in P450c17 are not able to produce 
cortisol, but show increased corticosterone production (19), 
like in rodents, which normally do not express P450c17 in their 
adrenals. Regarding the zona reticularis, it also expresses MC2R 
and large amounts of P450c17 and cytochrome b5, thus displaying 
17,20-lyase activity with subsequent DHEA production, the most 
part of which is sulfated to DHEAS by SULT2A1. In general, small 
amounts of DHEA are converted to androstenedione, and very 
little amounts of androstenedione are converted to testosterone, 
likely through AKR1C3/17βHSD5. In contrast, zona reticularis 
expresses very little P450c21 and P450c11β (thus producing only 
a minimal amount of cortisol) and relatively little 3βHSD2.

ACUTe ReSPONSe TO ACTH:  
THe STeROiDOGeNiC ACUTe 
ReGULATORY PROTeiN

Steroidogenic cells are able to store very little amounts of steroids, 
which imply a rapid synthesis of new steroids in response to a 
sudden demand. ACTH exerts its role in promoting steroidogenic 
cell growth and stimulating steroidogenesis at three distinct lev-
els. We first distinguish a long-term exposure to ACTH. It takes 
weeks or months to stimulate adrenal growth and it is mediated 
by ACTH-dependent production of cAMP, which in turn triggers 
IGF-II (20), fibroblast growth factor (FGF) (21), and epidermal 
growth factor (EGF) (22) synthesis. The concerted action of those 
growth factors is to promote adrenal cellular hypertrophy and 
hyperplasia. Second, ACTH can act over days through cAMP to 
stimulate the transcription of genes, which encode for different 
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steroidogenic enzymes (see below). Third, ACTH can mediate an 
acute response, which occurs within minutes and is inhibited by 
protein synthesis inhibitors (like puromycin or cycloheximide). 
This ACTH-mediated acute response is accompanied by a rapid 
stimulation of the StAR gene transcription in steroidogenic cells 
of the adrenal cortex, testis, and ovary (5, 23) and by the phos-
phorylation of Ser195 in the existent pool of StAR (24). Those 
events promote cholesterol flow from the OMM to the IMM, 
where cholesterol is converted to pregnenolone in the first and 
rate limiting step of steroid hormone biosynthesis. The first to 
show that ACTH acute steroidogenic response involved the rapid 
synthesis of a 37-kDa phosphoprotein were Orme-Johnson and 
coworkers (25, 26). Just a few years later, Stocco and colleagues 
cloned this protein and they gave it the name of “StAR” (27). StAR 
is an acutely regulated, cycloheximide-sensitive protein exhibit-
ing a mitochondrial leader sequence by which it is directed to 
the mitochondria. Once inside the mitochondria, StAR is cleaved 
to a 30-kDa protein. It has been shown that the overexpression 
of a mouse StAR in the mouse Leydig MA-10 cells increased 
their basal steroidogenesis (27). Moreover, when expression 
vectors for both StAR and P450scc enzyme are cotransfected in 
non-steroidogenic COS-1 cells, the synthesis of pregnenolone 
is augmented respect to that obtained with P450scc alone (28). 
The pivotal role of StAR in the regulation of steroidogenesis was 
strengthened after the identification of mutations causing prema-
ture stop codons in the StAR gene of patients affected by the most 
common form of congenital lipoid adrenal hyperplasia (CAH) 
(28, 29), a rare disorder of steroid biosynthesis. In this disorder, 
glucocorticoid, mineralocorticoid, and sex steroids biosynthesis 
is impaired, which may lead to adrenal failure, severe salt wast-
ing crisis and hyperpigmentation in phenotypical female infants 
irrespective of genetic sex (29). Moreover, it has been shown that 
in mice the targeted disruption of the Star gene causes defects in 
steroidogenesis, with consequent male pseudohermaphroditism 
and lethality within 1 week after birth (30, 31).

Several studies have been carried out to understand the 
mechanism of action of StAR (32), which still remains to be 
fully elucidated. It was hypothesized that the “mature” 30-kDa 
intramitochondrial form of StAR was the biologically active por-
tion of the protein, due to its longer half-life respect to the short 
one of the 37 kDa precursor. However, when the two StAR forms 
are expressed in the cytoplasm or added to mitochondria in vitro, 
they are equally active (33). Moreover, while constitutively active 
when it is localized on the OMM, StAR results to be inactive at the 
level of the mitochondrial intramembranous space or the matrix 
(34). That evidence suggested that StAR exerts its action on the 
OMM, its steroidogenesis-promoting function tightly depending 
on the residency time on the OMM itself (33, 34). This implies 
that StAR activity is linked to its localization rather than to its 
cleavage to the “mature” form. When StAR interacts with the 
OMM, it undergoes to conformational changes (35, 36) that allow 
StAR to accept and discharge cholesterol molecules. Interestingly, 
steroidogenesis-promoting and cholesterol-transfer activities of 
StAR are distinct. Indeed, StAR-mediated transfer of cholesterol 
between synthetic membranes in  vitro (37) is maintained also 
by the inactive R182L mutant, which impairs steroidogenesis, 
causing lipoid CAH (38). Finally, StAR activity on the OMM 

requires the translocator protein TSPO, also called peripheral 
benzodiazepine receptor (PBR) (39, 40), which has been identi-
fied as a key player in the flow of cholesterol into mitochondria 
to permit the initiation of steroid hormone synthesis. Moreover, 
it has been demonstrated that phosphorylated StAR interacts 
with voltage-dependent anion channel 1 (VDAC1) on the OMM, 
which in turn promotes processing of the 37-kDa phospho-StAR 
to the 32-kDa intermediate (41). In the absence of VDAC1, 
phospho-StAR undergoes degradation by cysteine proteases 
prior to mitochondrial import and subsequent cleavage to the 
30-kDa protein. StAR phosphorylation by PKA requires phos-
phate carrier protein on the OMM, which seems to interact with 
StAR before it interacts with VDAC1 (41). Importantly, although 
StAR is necessary for the ACTH-mediated acute steroidogenic 
response, steroidogenesis still occurs in the absence of StAR 
(around 14% of StAR-induced rate) (29, 42). This may account for 
the steroidogenic capacity of tissues lacking StAR, like placenta 
and brain.

CHRONiC ReSPONSe TO ACTH

The transcription of steroidogenic genes depends on the slower, 
chronic response to ACTH in the adrenal cortex. Indeed, 
ACTH interaction with specific membrane receptors leads to 
the activation of coupled G proteins, with subsequent stimula-
tion of membrane-associated adenylyl cyclase catalyzing cAMP 
formation. cAMP-activated PKA hence phosphorylates multiple 
transcription factors, whose concerted action and interaction 
with different cis-regulatory elements direct StAR and steroido-
genic gene expression. Furthermore, after transcription factor 
binding to gene promoters, posttranslational modifications, like 
phosphorylation/dephosphorylation and coactivator proteins 
binding, are required to activate gene expression. In the following 
section, the main transcription factors that direct the transcrip-
tion of steroidogenic genes in response to ACTH will be described 
(Table 1; Figure 1).

Steroidogenic Factor 1
Steroidogenic factor-1 (SF-1; NR5A1) is an orphan member of 
the nuclear receptor superfamily, which acts as a key regulator of 
adrenogonadal development and tissue-specific gene expression 
in steroidogenic cells. Parker and Morohashi groups identified 
SF-1 by its capacity to bind to and activate transcription from 
multiple P450 steroidogenic enzyme promoters, which display 
one or more SF-1-binding sequences in close proximity to the 
TATA box (72, 73). Furthermore, it has been shown that SF-1 
interacts with multiple coactivator and corepressor proteins that 
function as bridges between transcription factors and the basal 
transcription system (74–76).

In the human adrenocortical cancer cell line H295R StAR 
gene transcription is induced by both angiotensin II and cAMP 
via increased SF-1-binding to a cAMP-responsive region within 
the first 350 bp upstream of the transcription initiation site (45, 
77–79). On the other hand, the mutation of the SF-1 response 
elements in the mouse promoter of the StAR gene does not impair 
cAMP-dependent StAR induction in MA-10 Leydig cells or Y1 
adrenocortical cells (78).
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TABLe 1 | Promoter elements implicated in basal and ACTH/cAMP-regulated expression of steroidogenic genes.

Basal regulation ACTH/cAMP-dependent regulation

StAR Three SF-1-binding sites [−135; −95; −45; mouse promoter,  
Ref. (7)]
Three SF-1-binding sites [−926/−918; −105/−96; −43/−36;  
human promoter, Ref. (43, 44)]
Two Sp1-binding sites [−1159/−1153; −157/−151; human 
promoter, Ref. (44, 45)]

CRE2/AP-1 [−81/−75, mouse promoter; Ref. (6)]
Two C/EBPs putative-binding sites [−119/−100; −50/−41; human promoter,  
Ref. (43)]
Two SF-1-binding sites [−105/−65; −43/−36; human promoter, Ref. (43)]
Highly conserved overlapping motif [−81/−72, mouse promoter, which recognizes 
the CRE/AP1 and C/EBPs family of proteins, Ref. (7, 46–48)]

CYP11A1 Proximal SF-1-binding site [P site, −46/−38; human promoter, 
reviewed in Ref. (49)]
Imperfect Sp1-binding site [−111/−101; human promoter, reviewed 
in Ref. (49)]
TReP-132 [−155/−131; human promoter, reviewed in Ref. (49)]
Adrenal enhancer (AdE, −1850) composed of two binding regions
(a) AdE1 (−1845) containing an imperfect Sp1 and an NF-1-binding 
site [human promoter, reviewed in Ref. (49)]
(b) AdE2 (−1898) containing an imperfect Sp1-binding site [human 
promoter, reviewed in Ref. (49)]
AP-1 motif [−319/−313; mouse promoter, Ref. (50)]
TGAGTCA motif [termed SF-3-binding site, −120/−114; mouse 
promoter, Ref. (50, 51)]
AGGTCA motif [termed SF-2-binding site, −73/−68; mouse 
promoter, Ref. (50, 51)]
AGCCTTG motif [termed SF-1-binding site, −45/−39; mouse 
promoter, Ref. (50, 51)]

Proximal SF-1-binding site [P site, −46/−38; human promoter, reviewed in Ref. (49)]
Upstream cAMP responsive sequence (U-CRS, −1600 bp), which includes
(a) SF-1-binding site (−1617/−1609)
(b) CREB/ATF-binding site (CRE; −1685/−1606)
(c) Two AP-1-binding sites (−1559/−1553; −1633/−1626)
(a)/(b)/(c) human promoter, reviewed in Ref. (49)
AP-1 motif [−319/−313; mouse promoter, Ref. (50), although available data 
indicate that this motif is not a major contributor to the induction of CYP11A1 
expression by ACTH/cAMP]
TGAGTCA motif [termed SF-3-binding site, −120/−114; mouse promoter,  
Ref. (50, 51)] 
AGGTCA motif [termed SF-2-binding site, −73/−68; mouse promoter, Ref. (50, 51)]
AGCCTTG motif [termed SF-1-binding site, −45/−39; mouse promoter,  
Ref. (50, 51)] (mutation of those elements reduced the expression levels of Cyp11A1 
gene following treatment with 8-Br-cAMP, although all mutated plasmids retained 
appreciable responsiveness to cAMP)

CYP11B1 CRE-binding site [termed Ad1/CRE and resembling a consensus 
CRE, −71/−64; human promoter, Ref. (52, 53) reviewed in Ref. (54)]
Ad5 [−119/−111; human promoter, ERRalpha has been shown 
to be the nuclear protein interacting with this element under basal 
conditions, reviewed in Ref. (54)]
SF-1-binding site [termed Ad4, −242/−234; human promoter, it 
seems to be less important for both CYP11B1 and CYP11B2 basal 
expression, reviewed in Ref. (54)]
CRE-binding site [−74/−67; mouse promoter, reviewed in Ref. (54)]
Two Ad5-binding sites [one at −122/−114 and the other one at 
−208/−200; mouse promoter, reviewed in Ref. (54)]
SF-1-binding site [−247/−240; mouse promoter, reviewed  
in Ref. (54)]

CRE-binding site [termed Ad1/CRE and resembling a consensus CRE, −71/−64; 
human promoter, Ref. (52, 53), reviewed in Ref. (54)]
Functional CRE consensus sequence [−56/−49, mouse promoter, Ref. (55)]

CYP11B2 CRE-binding site [termed Ad1/CRE and resembling a consensus 
CRE, −71/−64; human promoter; Ref. (53), reviewed in Ref. (54)]
Ad5 [−119/−111; human promoter, ERRalpha has been shown to 
be the nuclear protein interacting with this element under the basal 
conditions, reviewed in Ref. (54)]
Two SF-1-binding sites [one at −129/−114, human promoter,  
Ref. (56)];
The other one termed Ad4, −344/−337, human promoter. It 
seems to be less important for both CYP11B1 and CYP11B2 basal 
expression; reviewed in Ref. (54)
Chicken ovalbumin upstream promoter transcription factor  
[COUP-TF, −129/−114; human promoter, Ref. (56)]
CRE-binding site [−67/−60; mouse promoter, reviewed in Ref. (54)]
Ad5 [−108/−100; mouse promoter, reviewed in Ref. (54)]
SF-1 [−330/−323; mouse promoter, reviewed in Ref. (54)]

CRE-binding site [termed Ad1/CRE and resembling a consensus CRE, −71/−64; 
human promoter; Ref. (53, 56) reviewed in Ref. (54)]
SF-1-binding site [−129/−114; human promoter, Ref. (56)]
Chicken ovalbumin upstream promoter transcription factor [COUP-TF, −129/−114; 
human promoter, Ref. (56)]
CRE-binding site [−67/−60; mouse promoter, Ref. (56), reviewed in Ref. (54)]

CYP17A1 ASP/Sp1-binding site [−8/−19; human promoter, Ref. (57)]
SF-1-binding site [−58/−50; human promoter, Ref. (57)]
Two nuclear factor 1 (NF-1)-binding sites [−107/−85; −178/−152, 
human promoter, Ref. (59)]
−184/−206 region [The site within this sequence that confers 
basal activity is not known, although it does contain a sequence 
resembling an SF-1 site at −195/−200; human promoter, Ref. (57)]
Sp1/Sp3-binding site [−227/−184, human promoter; Ref. (59)]
SF-1 (−62/−40), Sp1 (−186/−177), and Pbx/Meis (−243/−225) 
binding sites [bovine promoter; Ref. (59–63)]

cAMP-regulatory sequence [CRS, −57/−38: SF-1, p54nrb/NonO, and 
poly-pyrimidine tract-binding protein-associated splicing factor (PSF) are the 
transcription factors shown to be associated to this region; human promoter,  
Ref. (58)]
SF-1 (−62/−40)- and Pbx/Meis (−243/−225)-binding sites [bovine promoter;  
Ref. (60–63)]

(Continued)
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Basal regulation ACTH/cAMP-dependent regulation

CYP21 Two Sp1-binding sites [−118/−112 and −106/−100 within the 
recognition site −129/−96; human promoter, Ref. (64)]
Two SF-1-binding sites [a putative one within the −300 bp 
proximal promoter and a second one within a distal region, lying 
approximately 4.8 kb upstream of the transcription start site;  
human promoter, Ref. (65)]
Enhancer element [−330/−150; mouse promoter, Ref. (51)]
Essential regulatory element [−210/−170; mouse promoter, highly 
conserved in the genes from human and bovine; Ref. (51, 66, 67)]
A and B elements located 5.3 and 6 kb upstream of the 
transcriptional start site [mouse promoter, Ref. (69)]

Adrenal-specific protein (ASP)-binding site [−129/−113, within the recognition site 
−129/−96; human promoter, Ref. (64)]
Enhancer element [−330/−150; mouse promoter, Ref. (51)]
Essential regulatory element [−210/−170; mouse promoter, highly conserved in 
the genes from human and bovine; Ref. (51, 66, 67)]
cAMP consensus sequence [−68/−62; mouse promoter, it matches part of the 
consensus sequence proposed for cAMP-regulated expression of other genes, 
Ref. (68)]
Nuclear-binding response element (NBRE)/Nurr77 binding site [−65, mouse 
promoter, Ref. (66)]
Regulatory elements containing variation of an AGGTCA motif at −170, −210, 
−140, −65 [mouse promoter; they show similarity to the CRE consensus, 
although they do not function as classical CREs, Ref. (68); variations of these same 
AGGTCA-bearing elements are also involved in the expression of Cyp11a and 
Cyp11b in Y1 adrenocortical cells, see above and Ref. (70)]

HSD3B2 Two SF-1/LRH-1-binding sites [−64/−56; −315/−307; human 
promoter, reviewed in Ref. (71)]
Nuclear-binding response element (NBRE)/Nurr77 binding site 
[−131; human promoter, reviewed in Ref. (71)]
GATA-binding site [−196/−190; human promoter, reviewed in  
Ref. (71)]

Nuclear-binding response element (NBRE)/Nurr77 binding site [−131, human 
promoter, reviewed in Ref. (71)]

Blue, red and green colours distinguish the different species (human, mouse and bovine, respectively).

TABLe 1 | Continued
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Adrenocorticotropic hormone/cAMP-dependent transcrip-
tion of the human CYP11A1 gene, encoding for the mitochon-
drial enzyme P450scc responsible for cholesterol conversion to 
pregnenolone, requires the binding of SF-1 at two sites (−40 
and −1600 bp) on the gene promoter (80). Remarkably, Omura 
and Chung laboratories have shown that the upstream promoter 
elements confer a large portion of CYP11A1 responsiveness to 
cAMP in Y1 or I-10 Leydig tumor cells and primary adrenal cells 
of transgenic mice (80, 81). SF-1-dependent activation of the 
CYP11A1 promoter can be potentiated by cotransfection with 
c-Jun in steroidogenic JEG3 cells, but not in COS-1 cells (82). 
Thus, c-Jun and SF-1 act synergistically to activate the transcrip-
tion of CYP11A1. It has also been shown that in the human 
adrenal cortex CYP11A1 can be strongly activated by GATA-6 in 
a SF-1-dependent and DAX1-sensitive fashion (83).

Moreover, it has been shown that SF-1 interacts with the home-
odomain-containing transcription factor pituitary homeobox 1 
(Ptx/Pitx1) to synergistically promote CYP11B1 gene transcrip-
tion (84). Interestingly, in the bovine adrenal only one CYP11B1 
gene is expressed. Its promoter is characterized by the presence of 
both a SF-1- and a CRE (cAMP-response element)-like binding 
site, which are essential for cAMP-driven transcription (85, 86).

Adrenocorticotropic hormone/cAMP signaling also regulates 
the expression of the human CYP11B2 gene in the zona glomeru-
losa, where it is responsible for mineralocorticoid production via 
an SF-1-binding site and a CRE (56).

Furthermore, SF-1 is implicated in the transcriptional regula-
tion of CYP17A1, the gene encoding the P450c17 enzyme, which 
catalyzes both the 17α-hydroxylation of pregnenolone and pro-
gesterone (required for cortisol biosynthesis) and the 17,20-lyase 
reaction of 17α-hydroxylated steroids (leading to androgen pro-
duction). Studies carried out on H295R cells revealed that CREs 
are located within the first 63 bp upstream of the transcriptional 

initiation site and that a second basal transcription element lies 
between −184 and −206 bp (87). SF-1 forms a complex with p54nrb/
NonO and polypyrimidine tract-binding protein-associated  
splicing factor (PSF), which binds within those first 60-bp 
upstream of the transcriptional start site, stimulating CYP17 
expression in response to ACTH/cAMP signaling (58). As for 
CYP11A1, GATA-6 promotes the SF-1-dependent transcription 
of CYP17 in H295R cells (83).

Many studies have revealed that the ACTH-regulated expression 
of the CYP21A1 gene, coding for the P450c21 enzyme, which has 
a key role in the production of cortisol and aldosterone, requires 
the binding of the nuclear receptors SF-1 and Nur77 to its pro-
moter (88–90). Interestingly, SF-1 binds to a distal region that lies 
approximately 4.8 kb upstream of the CYP21A1 transcription start 
site driving adrenal-specific expression of the human gene (65).

cAMP Response element/Binding  
Protein/CRe Modulator/Activating 
Transcription Factor
A family of cAMP-responsive nuclear factors mediates transcrip-
tional regulation by ACTH/cAMP signaling pathway. This family 
is composed by a large number of proteins, which are encoded 
by the CREB, CREM, and ATF genes. Those proteins recognize 
and bind the 8-bp 5′-TGACGTCA-3′ palindromic sequence or a 
minor variation, called the CRE, which lie within 100 nucleotides 
of the TATA box in the promoters of eukaryotic cAMP responsive 
genes (91–93). The members of the CREB family are characterized 
by their DNA-binding leucine zipper (bZIP) domains and gener-
ally they interact with each other to mediate cAMP-dependent 
transcriptional response (91). Interestingly, the sequences of 
the mouse (27), human (94), and rat StAR promoters, which 
exhibit an extensive homology, lack a consensus CRE, similarly 
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to the promoters of different steroid hydroxylase genes whose  
transcription is regulated by ACTH/cAMP signaling (57). It has 
been shown that the cAMP-responsive region of the StAR gene pro-
moter exhibits a highly conserved motif (50-TGACTGATGA-30 
corresponding to 281/272 bp in the mouse promoter) to which 
different bZIP families of transcription factors, like not only 
CREB, CREM, and ATF1, but also AP-1 and C/EBPs (see below) 
bind to drive StAR transcription (7, 46, 47, 95, 96).

cAMP response element-binding protein has been dem-
onstrated to be the principal player in mediating stimulus- 
transcription coupling in the ACTH/cAMP pathway. However, 
knockout mouse CREB studies showed that this action can 
be compensated by other CRE-binding proteins like CREM 
and ATF-1 (97). This mechanism also seems to work in the 
regulation of steroiodogenesis, as CREB family members directly 
induce StAR gene transcription (6, 7, 47). Interestingly, whereas 
CREB gene products usually function as positive transactivators, 
CREM can either activate or repress CRE-mediated transcrip-
tion (98, 99). Alternative splicing of the CREM gene originates 
multiple isoforms that can act as either activators (τ, τ1, and 
τ2) or repressors (α, β, and γ) of transcription (100). Identical 
functional regions have been identified in CREB and CREMτ 
proteins (99). When overexpressed, either CREB or CREMτ dis-
play qualitatively comparable effects toward cAMP-dependent 
StAR gene transcription in murine adrenal and gonadal cells 
(6, 7, 101), whereas CREMα and CREMβ have been shown to 
repress StAR transcription (7). Further, CREM proteins can 

bind to CREs as homodimers or as heterodimers with CREB/
ATF displaying similar functional outcomes to those of CREB 
(91). Remarkably, it has been shown that CREB and CREM 
associate with the proximal rather than the distal StAR promoter 
upon cAMP analog treatment (47, 48). Sugawara and cowork-
ers compared the implication of CREB and CREM in cAMP-
mediated StAR gene expression and identified CREM as the 
main mediator in H295R cells (101). In contrast, another group 
showed that CREB and ATF-1, but not CREM, mainly bound to 
the StAR promoter upon ACTH/cAMP stimulation (47). Besides 
CREB and CREM, also the CRE-binding protein, ATF-1 is a key 
regulator of StAR gene expression. ATF-1 differs from CREB and 
CREM as it lacks the glutamine-rich Q1 domain, although this 
does not affect its ability to work as a transcriptional activator (91, 
102). Interestingly, two paralogs of ATF-1, called CRE-binding 
protein 1(CRE-BP1 or ATF-2) and ATF-a, display alternative 
exon splicing and bind to CREs, but they are not able to mediate 
cAMP-responsive transactivations (91).

cAMP response element-binding protein/CREM/ATF are 
activated by PKA, PKC, and other kinases that phosphorylate 
them at specific residues within their N-terminus. Indeed, 
phosphorylation of CREB at Ser133/119 or CREM at Ser117 
leads to CREB–CREM interaction with coactivators like CREB-
binding protein/p300 (CBP/p300) (see below) with subsequent 
stimulation of their transcriptional activity (47, 103–105). It 
has been reported that cAMP analogs increase CREB phospho-
rylation in a time-dependent manner in steroidogenic cells. This 
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phosphorylation event correlates with the association of both 
phosphorylated CREB and CBP to the proximal promoter of 
the StAR gene (47, 48, 106). The phosphorylation of Ser133 is 
required for CREB activation; however, it is not sufficient for 
full activation of the protein. Indeed, it has been shown that a 
short region C-terminal to the PKA phosphorylation site within 
CREB protein is required for CREB transcriptional activation 
(91, 107, 108). The crucial role of CREB phosphorylation by 
PKA has been also observed in  vivo where transgenic mice, 
which express a non-phosphorylatable mutant of CREB (called 
CREB-M1, Ser133Ala), exhibit somatotroph hypoplasia and 
dwarfism (109). Moreover, expression of CREB-M1 in adrenal 
and gonadal cells strongly decreases cAMP-induced StAR gene 
expression (6, 7, 101).

cAMP response element-binding protein participates together 
with GATA-6 and AP-1 to the SF-1- and AP-2-dependent CYP11A1 
gene transcription in rodent placenta and ovary (110). Interestingly, 
the ACTH-stimulated transcription of the human CYP11B1 gene 
depends on the CREB family member ATF-2 (52). Moreover, as 
reported above, ACTH/cAMP signaling regulates CYP11B2 gene 
transcription via a CRE and a SF-1-binding site (56). Similarly, 
CREB binds to a CRE at the level of the mouse Cyp11b1 gene 
promoter to drive ACTH-dependent transcription (55).

CCAT/enhancer-Binding Proteins
CCAT/enhancer-binding proteins are a family of transcription 
factors containing a highly conserved bZIP at the C-terminus that 
is involved in dimerization and DNA binding. C/EBPs bind with 
different affinities to a consensus site consisting of a dyad symmet-
rical repeat (A/GTTGCGC/TAAC/T) (111). At least six members 
of the family have been cloned and characterized, named from  
C/EBPα to C/EBPζ. C/EBPα and C/EBPβ are expressed in ster-
oidogenic cells, the expression levels of C/EBPβ being increased 
in the nucleus by the action of LH and analogs of cAMP (112, 
113). The cAMP-inducible domains of C/EBPs, with the exception 
for C/EBPβ, lack a PKA phosphorylation site, which implies that  
C/EBPs are able to mediate cAMP-dependent responses by indi-
rect mechanisms. In contrast, C/EBPβ phosphorylation by PKA 
within its bZIP domain affects its DNA-binding activity (114).

C/EBPβ targets a binding region in the promoter of the 
mouse Star gene (281/272  bp), which is also bound by CREB/
ATF (see above) and Fos/Jun (see below). Further, two putative 
C/EBP-binding sites have been identified within the human 
StAR promoter (43). Consequently, an implication for both  
C/EBPα and C/EBPβ in StAR gene transcription has been 
reported (43, 115, 116). C/EBPβ phosphorylation on Thr325 
increases its association to the proximal StAR promoter, thus 
inducing StAR transcription (117, 118). Interestingly, it has been 
shown that GATA-4 and C/EBPβ directly interact in  vitro and 
in vivo and synergistically activate the StAR promoter only in the 
presence of PKA (95, 117). This suggests that GATA-C/EBP tran-
scriptional cooperation might promote ACTH/cAMP-dependent 
StAR transcription in all steroidogenic tissues, as this kind of 
PKA-dependent synergy has been shown for other members 
of GATA and C/EBP families. Finally, the disruption of either  
C/EBPα or C/EBPβ impairs normal reproductive development in 

female mice, with consequent reduced or altered ovulation and 
corpus luteum formation inability (112, 119).

AP-1 Family of Transcription Factors
The AP-1 family of transcription factors participates in the 
regulation of cellular responses to multiple stimuli regulating 
proliferation, transformation, and cell death (120). It recognizes 
and binds to a DNA sequence known as the AP-1/phorbol 
12-O-tetradecanoate 13-acetate responsive element [AP-1/TRE; 
TGA(C/G)TCA]. AP-1 is composed by a mixture of homo- and 
hetero-dimers formed between Jun (c-Jun, JunB, and JunD) and 
Fos (c-Fos, FosB, Fra1, and Fra2) family members (121–123). 
Fos members heterodimerize with Jun proteins and with specific 
members of the CREB/ATF family, but they are not able to form 
homodimers, whereas Jun members function as homodimers 
or heterodimers among themselves or with members of the Fos 
and CREB/ATF families (124). Both Jun and Fos family proteins 
belong to the bZIP group of DNA-binding transcription factors 
and their dimerization is necessary for specific and high affinity 
binding to the palindromic DNA sequence TGAC/GTCA (see 
above) (125). Studies carried out on the mouse Star promoter 
identified a highly conserved element (TGACTGA, −81/−75 bp), 
which shows homology with the AP-1/TRE sequence and over-
laps also with the CRE2 sequence (6). Interestingly, it has been 
shown that Fos and Jun bind to this element, called CRE2/AP-1, 
thus regulating Star gene transcription (46, 96, 126). Moreover, 
two additional putative AP-1-binding sites have been identified 
within the rat Star promoter. c-Fos reduces basal, cAMP-, and 
c-Jun-mediated rat Star gene transcription in Y-1 adrenocortical 
cells (127). Indeed, a functional comparison between Fos and Jun 
revealed that c-Jun is the most powerful AP-1 family member for 
Star gene transactivation. Accordingly to this, it has been shown 
that only c-Jun, but not other AP-1 members, plays a pivotal 
role in the regulation of PKC-mediated Star transcription and 
steroidogenesis in Leydig and adrenal cells (96, 128).

Not only Protein kinase A but also PKC phosphorylate 
several Ser and Thr residues on c-Jun and c-Fos. In particular, 
the treatment with a cAMP analog or a growth factor increases 
the phosphorylation of c-Jun Ser63 and c-Fos Thr325. Those 
phosphorylation events are associated to StAR gene transcrip-
tion and steroidogenesis in mouse Leydig cells (47, 96, 126, 
129). Interestingly, ACTH/cAMP-dependent c-Jun and c-Fos 
phosphorylation increases the association between p-c-Jun/ 
p-c-Fos and the CBP/p300 cofactors (see below), with consequent 
recruitment of CBP/p300 to the StAR promoter (47, 96, 126). The 
phosphorylation of c-Fos and c-Jun can alter their capacity to 
interact with other transcription factors, affecting their dimeriza-
tion and DNA-binding specificity (124). This explains why the 
crosstalk between CREB and c-Fos/c-Jun can be associated with 
both gain and loss of function on the same cis-element in the 
context of a fine regulation of the transregulatory elements which 
participate in StAR gene transcription (126).

Sp Family of Transcription Factors
The Sp family of transcription factors is characterized by the 
presence of three conserved Cys2His2-type zinc fingers at their 
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C-terminus that form the sequence-specific DNA-binding 
domain (130). They can bind and exert their action through 
GC/GT-rich promoter elements to regulate the expression of 
multiple target genes (130, 131). Sp1 is the most well charac-
terized member of the family and it exhibits similar structure 
and a high homology with Sp3 at the level of its DNA-binding 
domains, both being able to enhance ore repress promoter 
activity. However, although Sp1 and Sp3 recognize the same 
consensus-binding sites, it has been reported that both their 
DNA-binding properties and regulatory functions differ and 
depend on the promoter context and cellular background (130, 
132, 133).

Regulatory elements for Sp1 and Sp3 have been identified 
within the human TSPO proximal promoter (134). They have 
been demonstrated to be strong positive elements for the pro-
moter activity, although differences have been detected in the 
mechanism by which TSPO is regulated in non-steroidogenic 
versus steroidogenic cells (134). Sp1 is also involved in the cAMP-
dependent transcription of the CYP11A1 gene in human (135), 
bovine (136, 137), and porcine (138) adrenals. Furthermore, a 
cooperation between SF-1, Sp1, and CBP has been reported to 
drive cAMP-dependent CYP11A1 transcription in bovine adrenal 
(136). Sp1 and Sp3, together with the nuclear fator-1C (NF-1C), 
bind to the second basal element of the CYP17 gene promoter. 
This event is crucial for optimal basal transcription (59). Sp1 
can also form a complex with GATA-4 or GATA-6 to regulate 
the expression of CYP17 in the adrenal gland (139). Finally, 
Sp1 and adrenal-specific protein (ASP) bind to the CYP21 gene 
promoter to regulate its cAMP-dependent transcription (140). 
This synergistic action seems to be required for maximal CYP21 
induction (140).

DAX-1
DAX-1/NR0B1 encodes an unusual member of the nuclear hor-
mone receptor family of transcription factors. Its mutations cause 
adrenal hypoplasia congenita (AHC) associated with hypogon-
adotropic hypogonadism (HHG) (141, 142). DAX-1 expression 
pattern, mostly restricted to steroidogenic tissues, suggested that 
it may have a role in the regulation of steroidogenesis. Indeed, in 
adrenocortical cells, DAX-1 works as a global negative regulator 
of basal and cAMP-regulated transcription of steroidogenic genes, 
both through direct binding to gene promoters and interaction 
with SF-1 and other transcription factors [(143–145); reviewed in 
Ref. (146)]. In addition, consistently with DAX-1 negative action 
on steroidogenesis, activation of the PKA pathway by ACTH in 
adrenocortical cells (147) and FSH in Sertoli cells (148) down-
regulates Dax-1 expression.

ROLe OF COReGULATORS

Transcriptional coregulators are crucially implicated in nuclear 
receptor-mediated transcriptional activation (149–151) and 
transactivation by other factors, exerting their roles in multiples 
processes, like histone modification (152–154), chromatin 
remodeling (155), post-translational modification of transactiva-
tion complex members (156, 157), and ordered recruitment of 
basal transcriptional machinery (158, 159).

The role of coactivators and corepressors in the transcriptional 
regulation of steroid hydroxylase genes and StAR has been shown 
by several studies (74, 76). CBP and its functional homolog p300 
are transcriptional coactivators that contain multiple functional 
domains and display intrinsic histone acetyltransferase activity 
(151, 160), by which they increase transcription factor acces-
sibility to nucleosomal DNA. Classically, ACTH/cAMP signaling 
triggers the phosphorylation of specific transcription factors, 
which in turn can bind and recruit CBP/p300 (105, 160–162). 
As already reported (see above), when phosphorylated at Ser133 
CREB is able to interact with CBP (104, 105). Interestingly, CBP/
p300 contain PKA consensus sites, the phosphorylation of which 
is involved in regulating their functions. CBP/p300 play a key 
role in the transcriptional regulation of the StAR gene. Different 
studies have shown that cAMP-dependent phosphorylation of 
CREB at Ser133, c-Jun at Ser63, and c-Fos at Thr325 promotes 
the association and recruitment of CBP/p300 to the proximal 
StAR promoter (47, 48, 95, 126). cAMP-stimulated phosphoryla-
tion of C/EBPβ at Thr325 also increases C/EBPβ association to 
the proximal StAR promoter (117). Other factors like SF-1 
and GATA-4 (see above), that are bound to the proximal StAR 
promoter, once phosphorylated in response to ACTH might 
enhance CBP/p300 recruitment to the promoter. This correlates 
with the CBP/p300-dependent increased effects of C/EBPβ and 
GATA-4 on StAR expression (95). Further, when overexpressed, 
CBP/p300 potentiated CREB, Fos/Jun, C/EBPβ, and GATA-4 
transcriptional activity on the StAR gene (95, 126). This event 
is attenuated by the adenovirus E1A oncoprotein, which acts 
impairing CBP/p300 histone acetyltransferase activity and/or 
their interaction with other transcription factors or with the basal 
transcription machinery.

As already reported, coactivators and corepressors also play a 
key role in the transcriptional regulation of steroid hydroxylase 
genes. We report here some examples. Coexpression of CBP/
p300 with the zinc finger protein TReP-132 has an additive effect 
on human CYP11A1 gene promoter activity (163). Similarly, it 
has been shown that the coactivators CBP/p300, steroid receptor 
coactivator (SRC)-1, and transcriptional intermediary factor-2 
(TIF-2) enhance SF-1-mediated bovine CYP17 transcription, 
whereas the corepressors nuclear receptor corepressor (N-CoR) 
and the silencing mediator of retinoic acid and thyroid hormone 
receptor (SMRT) increase the repressive activity of chicken 
ovalbumin upstream-transcription factor 1(COUP-TF-1) (164).

Finally, Sewer and coworkers have shown that a corepressor 
protein called mSin3A inhibits human CYP17 gene transcription 
by the recruitment of a histone deacetylase to the SF-1/NonO/
PSF complex that binds to the CYP17 promoter (58). They have 
also described that coregulator exchange and sphingosine-
sensitive cooperativity of SF-1, general control non-derepressed 
5 (GCN5), p54, and p160 coactivators regulate cAMP-dependent 
CYP17 transcription rate in H295R cells (165). The same group 
has shown that ACTH/cAMP signaling pathway promotes acid 
ceramidase (ASAH1) gene transcription via the binding of CREB 
to multiple region of the ASAH1 promoter. This event triggers the 
recruitment of CBP/p300 with a related increase in the trimeth-
ylation of Lys4 on histone H3 (H3K4) on the ASAH1 promoter 
in H295R cells (166).
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ROLe OF PHOSPHATASe ACTiviTY  
ON ACTH/cAMP-DePeNDeNT 
STeROiDOGeNiC GeNe TRANSCRiPTiON

As already discussed, the ACTH-dependent increase in intracel-
lular cAMP levels leads to the activation of PKA, which, in turn, 
phosphorylates specific nuclear factors to drive steroidogenic 
gene transcription. Remarkably, in the adrenal cortex ACTH 
regulation of steroidogenesis depends not only on PKA-mediated 
Ser/Thr phosphorylation, but also on the activity of protein tyros-
ine phosphatases (PTPs), which have been implicated in StAR 
expression and steroidogenesis (167–172). Indeed, the phospho-
dephosphorylation of intermediate proteins is considered as a key 
event in the regulation of steroid biosynthesis. In 1999, Paz and 
coworkers showed that in vivo treatment with ACTH leads to an 
increase in total PTPs activity in adrenal zona fasciculata. The 
stimulation was characterized by a rapid onset (5 min), reached a 
peak after 15 min of ACTH administration (around twofold) and 
returned to basal levels after 30 min (168). They showed that the 
increase in PTPs correlated with a decrease in phosphotyrosine 
proteins (168). Moreover, the PTPs inhibitors pervanadate (PV) 
and phenylarsine oxide (PAO) inhibited ACTH- and 8Br-cAMP 
(a permeant analog of adenosine 3′,5′-phosphate)-dependent 
steroidogenesis in a dose-dependent fashion, whereas they did 
not affect steroid production supported by a cell-permeant 
analog of cholesterol (168). Those studies clearly indicated that 
PTPs activity has a key role in ACTH/cAMP signaling pathway, 
acting downstream of PKA activation and upstream of choles-
terol transport across the mitochondrial membrane. The same 
group evaluated steroid production and StAR protein levels in 
Y1 cells upon PTP inhibition. They reported that PAO reduced 
ACTH-dependent stimulated steroidogenesis in those cells in a 
concentration-dependent manner and abrogated StAR protein 
induction (169). Those effects have been reproduced by a second 
PTPs inhibitor, benzyl phosphonic acid, which has a different 
mechanism of action (169). Altogether, those results show that 
PKA-mediated PTP activation in the steroidogenic system exerts 
the functional role of mediating StAR protein induction (169). 
The ACTH/cAMP/PKA signaling pathway stimulates also the 
release of arachidonic acid (AA) in adrenal and Leydig cells by 
the concerted action of two enzymes: an acylCoA-thioesterase 
(Acot2) and an acyl-CoA-synthetase (ACS4) (170, 173). Several 
reports have shown that AA and its metabolites play a key role in 
the hormonal control of steroidogenesis by regulating both the 
expression and function of StAR protein (174, 175). The ACTH/
PKA system has been shown to control this pathway upregulating 
the ACS4 protein levels in adrenal and Leydig cells (175). Two 

PTP inhibitors both abrogate the ACTH/PKA-dependent ACS4 
induction and reduced the effects of cAMP on steroidogenesis 
and StAR protein levels (175). Interestingly, exogenous AA is 
able to overcome this PTP-dependent inhibitory effect on StAR 
protein expression and steroidogenesis (176, 177). Furthermore, 
Sewer and Waterman have shown that PTP activity is essential 
for cAMP-dependent transcription of the human CYP17 gene in 
H295R cells (178). They also investigated whether the inhibition 
of PTP activity can impair cAMP-dependent mRNA expression 
of other steroidogenic genes in the adrenal cortex. They have 
reported that CYP11A1, CYP11B1/2, and CYP21A1 also require 
PTPs for cAMP-dependent mRNA expression, as the inhibition 
of both serine/threonine and tyrosine phosphatase activities 
negatively affected this event (178). Those evidences led those 
authors to propose a model whereby PKA phosphorylates and 
activates a dual-specificity phosphatase (DSP), which is able to 
mediate ACTH/cAMP/PKA-dependent transcription of steroi-
dogenic genes (178, 179). The specific DSP has been identified as 
mitogen-activated protein phosphatase 1 (MKP-1), whose levels 
are increased by ACTH and cAMP in H295R cells (180). Moreover, 
the evidence showing that MKP1 overexpression promotes the 
transcriptional activity of a human CYP17 promoter-reporter 
construct and its silencing decreases cAMP-stimulated CYP17 
gene expression, suggest a role for MKP-1 in cAMP-dependent 
CYP17 transcriptional activation (180).

SUMMARY AND CONCLUSiON

The studies outlined here have given an important contribution 
to the understanding of the impact of ACTH on the regulation 
of steroidogenic gene expression in the adrenal cortex. Given 
the pivotal role played by ACTH/cAMP signaling in the acute 
and chronic regulation of steroid secretion and the implication 
of those hormones in diverse arrays of fundamental physiologi-
cal processes, an in-depth investigation is needed to completely 
elucidate the ACTH-dependent transcriptional regulatory 
mechanisms that control steroid secretion. Indeed, some aspects 
addressed in this review still represent a challenge for future 
studies, which might provide the scientific community with a 
broader picture of the complex signaling pathways and the intri-
cate transcriptional circuitries that coordinately ensure optimal 
hormonal output.
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