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Event-related fMRI have been widely used in locating brain regions which respond to

specific tasks. However, activities of brain regions which modulate or indirectly participate

in the response to a specific task are not event-related. Event-related fMRI can’t locate

these regulatory regions, detrimental to the integrity of the result that event-related

fMRI revealed. Direct-current EEG shifts (DC shifts) have been found linked to the

inner brain activity, a fusion DC shifts-fMRI method may have the ability to reveal a

more complete response of the brain. In this study, we used DC shifts-fMRI to verify

that even when responding to a very simple task, (1) The response of the brain is

more complicated than event-related fMRI generally revealed and (2) DC shifts-fMRI

have the ability of revealing brain regions whose responses are not in event-related

way. We used a classical and simple paradigm which is often used in auditory cortex

tonotopic mapping. Data were recorded from 50 subjects (25 male, 25 female) who were

presented with randomly presented pure tone sequences with six different frequencies

(200, 400, 800, 1,600, 3,200, 6,400Hz). Our traditional fMRI results are consistent

with previous findings that the activations are concentrated on the auditory cortex.

Our DC shifts-fMRI results showed that the cingulate-caudate-thalamus network which

underpins sustained attention is positively activated while the dorsal attention network

and the right middle frontal gyrus which underpin attention orientation are negatively

activated. The regional-specific correlations between DC shifts and brain networks

indicate the complexity of the response of the brain even to a simple task and that the

DC shifts can effectively reflect these non-event-related inner brain activities.

Keywords: simultaneous EEG-fMRI, DC shifts, EEG, BOLD, auditory

INTRODUCTION

The entire response of the brain to a specific task is hard to study due to the complexity of the
brain’s response. Besides the event-related response in the core responding areas, there always be
some brain regions whose ongoing activities modulate the response of the core areas (Vuilleumier
et al., 2005; Crottaz-Herbette and Menon, 2006; David et al., 2017; O’Craven et al., 2018). Ongoing
activities of these regulatory areas do not fluctuate in the event-related way (Sadaghiani et al.,
2009; Walz et al., 2014). Traditional functional magnetic resonance imaging (fMRI) utilizes
blood-oxygen-level-dependent (BOLD) contrast to locating brain areas whose response complies
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with the event-related mode (Ogawa et al., 1992; Yuan et al.,
2013), whereas localization of these non-event-related activities
is beyond its capacity. EEG and fMRI have a notably complement
each other (Jorge et al., 2014), and so a combination of EEG and
fMRI may have the potential to locate these ongoing activities.

Selecting one meaningful EEG feature is often the first
challenge in EEG-fMRI studies. The most often used EEG
features are epileptic activity, single trial variability and fast
oscillations like alpha and beta activities, etc. (Murta et al., 2015).
Activities of EEG are commonly categorized as ultra-slow activity
(0∼0.1Hz), delta (0.1–4Hz), theta (4–8Hz), alpha (8–12Hz),
beta (12–30Hz), and gamma (>30Hz) (Speckmann and Elger,
2004). Due to historical reasons, naming of ultraslow activity of
EEG is somewhat confusing. The term DC shifts has been widely
used in older literature, while terms like infra-slow oscillations,
ultra-slow activities, slow waves, etc. are also often used in recent
papers. In order to conform to older literature, we used the
term DC shifts to refer to ultra-slow activity (0∼0.1Hz) of EEG.
DC shifts are often treated as noise in EEG studies (Palva and
Palva, 2012) and the connections between DC shifts and neural
activities are often neglected (Northoff, 2017).

However, it has to be noted that DC shifts-fMRI have the
potential to analyze inner brain activity. First, activity of cortex
induces hemodynamic fluctuations, meanwhile DC shifts can be
generated by hemodynamic fluctuations (Vanhatalo et al., 2003;
Voipio et al., 2003). Second, DC shifts were found to be regional-
specific in simultaneous EEG- magnetoencephalography (MEG)
studies (Leistner et al., 2007, 2010; Sander et al., 2007; Mackert
et al., 2008). Third, during the resting state, DC shifts were found
to reflect the fluctuations of intrinsic networks (Hiltunen et al.,
2014). Meanwhile, a task-state study (Haufe et al., 2018) using
audio-visual stimuli showed that there are links between fMRI
and DC shifts. Furthermore, brain computer interface studies
found connections between body movements and DC shifts
(Mackert et al., 2004; Banville and Falk, 2016). We reasoned that
DC shifts at least can index of part of inner brain neural activity.

Tonotopic mapping of the human auditory cortex has been
investigated in great detail using neuroimaging methods (Saenz
and Langers, 2014). In these studies, pure tones or their varieties
in various frequencies were presented to subjects in random
or pseudorandom order (Lauter et al., 1985; Wessinger et al.,
1997; Bilecen et al., 1998; Talavage et al., 2004; Humphries
et al., 2010; Thomas et al., 2015; Leaver and Rauschecker, 2016).
Under this paradigm, auditory cortex, including Heschl’s gyrus
(HG), planum temporale (PT), part of superior temporal gyrus
(STG) and planum polare (PP), was the core area that activated,
while areas outside auditory cortex were either hardly activated
or neglected by researchers (Bilecen et al., 1998; Bendor and
Wang, 2005; Humphries et al., 2010; Langers and van Dijk, 2012;
Ahveninen et al., 2016).

It is questionable that only the auditory cortex was activated
during the paradigm of tonotopic mapping of auditory cortex.
Auditory cortex is not an isolated area but is tightly connected to
other cortexes, such as the somatosensory cortex (Budinger and
Scheich, 2009; Beer et al., 2011), olfactory cortex (Budinger et al.,
2006; Budinger and Scheich, 2009) and visual cortex (Eckert et al.,
2008; Beer et al., 2011). A former work (Li et al., 2017) proposed
that besides the auditory cortex, portions of parietal and occipital

lobes also take part in the late stage of processing of pure tones. In
this study, we performed a resting state and a pure tone listening
task to study the correlation between DC shifts and BOLD signal
during task/resting state. We hypothesis that the correlation
of DC shifts and BOLD signal should be different between
task/resting state. Besides, contrasting to resting state, a pure
tones listening task requires participants to focus and sustain
their attention to the incoming tones, and to maintain adequate
alertness during the whole study session. Thus, we hypothesize
that the sustained attention networks were correlated with DC
shifts during the pure tone listening task.

MATERIALS AND METHODS

Participants
Simultaneous EEG-fMRI data were collected from 50 right-
handed young and healthy subjects (25 male, 25 female; ages 17–
25years). Hearing thresholds of all subjects were tested to make
sure that none of the participants had hearing deficits (From
200 to 6,400Hz, hearing thresholds were better than 20 dB HL).
All the subjects were native Chinese speakers. This experiment’s
protocols were approved by the Institutional Review Board of
the Southwest University and all experiments were performed
in accordance with relevant guidelines and regulations. Each
subject signed the informed consent. For participants under the
age of 18 years old, informed consents have been obtained from
their parents.

Stimulus Presentation
We used a classical paradigm which is often used in tonotopic
mapping studies of auditory cortex (Nourski et al., 2014; Saenz
and Langers, 2014). Pure tones in six frequencies (200, 400,
800, 1,600, 3,200, 6,400Hz) were created in Matlab. All of them
were sine waves and last 0.4 s. If a tone in sinusoidal wave was
truncated suddenly there will exist a falling edge and produce
a strange sound. So we add a 10-ms exponential rise and fall
envelopes to the beginning and ending of all tones. The tones
need to be normalized, we used the Bruel and Kjaer 2236 sound
meter to test the loudness of the tones and adjust the sound
amplitude in matlab and finally all the tones were set to A-
weighted 78 dB. Pure tones were randomly presented and in
some trials there was no sound presented, these “silent” trials
were also randomly presented. To avoid the interference of scan
noise, all the tones were presented in the interval between scans
(see Figure 1). Experiments were conducted in three runs, and
each kind of stimulus including “silent” was repeated 24 times in
each run, so each kind of stimulus was repeated 72 times in total.
There was a 2–3min break between runs. During the experiment,
subjects were instructed to lie still, keep awake and listen to the
tones. No specific task was performed during the experiment.

FMRI Acquisition and Analysis
FMRI images were acquired at the imaging center of Southwest
University using a 3T Siemens scanner. To avoid the interference
of scanner noise to pure tones, echoplanar images (EPI) were not
continuously acquired but separated by a 1.4 s delay. Pure tones
were presented in these delays. By doing this, not only could the
scanner noise be avoided, but also the fMRI gradient artifacts to
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FIGURE 1 | Pure tones are presented during the delay of the EPI scans. This can avoid the acoustic and electromagnetic noise from the fMRI. Shade in this figure

represents EPI scans and color represents pure tones. The EPI scan is 2 s and the delay is 1.4 s. Pure tones were presented 0.7 s before the next scan. Stimuli were

randomly presented; each kind of stimulus was presented 72 times in total.

event-related response (ERPs) could be eliminated (Humphries
et al., 2010). The repetition time (TR) was 3.4 s,and taking into
account the 1.4 s delay time, the EPIs acquired time was 2 s. Echo
time was set as 26ms. Voxels were in 3∗3∗3mm scales, 32 slices
in total, flip angle was 90. After the fMRI scans, a high resolution
anatomical T1 scan was performed. T1 images were scanned in
1∗1∗1 scales, 176 slices in total. TR was set as 1900ms, TE was set
as 2.52 ms.

Traditional fMRI preprocess and analysis were performed in
surface space using FreeSurfer (http://surfer.nmr.mgh.harvard.
edu). T1 images were used to reconstructed cortical surface.
All the 50 subjects’ cortical surfaces were used to construct an
average surface to perform the statistical analyses and display the
results. The preprocess steps for fMRI data include head motion
correction, slice timing correction, skull stripping. Then fMRI
data were spatial normalized to the average surface which was
constructed by former steps. After that, a 5mm FWHM kernel
was used to smooth the fMRI data.

For each subject, the onset times of six kinds of stimuli and
‘silent’ trials were convolved with a Haemodynamic response
function (HRF) offered by FreeSurfer and entered into a GLM
to perform the first level analysis. Then the second level analysis
(random effects group analysis) was carried out based on the first
level results. A surface-based correction formultiple comparisons
was executed with cluster-based threshold. The data were initially
thresholded at p < 0.05 and then corrected at an alpha level
of 0.05.

The response frequency of a point was calculated with the
follow rules. If only one frequency was significant in a vertex, then
the vertex was marked with this frequency. But if more than one
frequencies were significant in a vertex, the weighted mean value
of these frequencies was calculated and was set as the response
frequency of the vertex, that isf̄ =

∑

1 : n

Tifi�∑

1 : n
Ti , n is the number

of frequencies that are significant in the vertex.

EEG Acquisition and Analysis
We used a 32 electrode non-magnetic MRI-compatible EEG
system (BrainAmp MR plus, Brain products, Munich, Germany)
to record the EEG data under simultaneous fMRI scans.
According to the Nyquist Theorem, the sampling rate must be
more than twice the maximum frequency component of the

signal being measured. The frequency range of fMRI noise could
reach 2 kHz (Allen et al., 2000), so the sample rate of EEG was set
at 5 kHz to record the fMRI noise and then eliminated it. Before
the scan, impedances of all electrodes were tested and all of the
values were kept below 10 k�. The locations where the electrodes
were placed was in accordance with the international 10/20
system. An electrocardiogram (ECG) electrode was attached to
the back of subjects near the position of heart to detect the ECG.
Signals were digitized at a passband of 0–250 Hz.

The EEG was processed offline using eeglab13 (Delorme
and Makeig, 2004) in matlab (Mathworks, Natick, MA) and
Brain Vision Analyzer (version 2.1, Brain Products). In Analyzer
2.1, EEG data was re-referenced to average TP9/TP10. FMRI
gradient artifacts were removed using a local average artefact
procedure (Allen et al., 2000) and a cutoff frequency of 70Hz
was selected. Then EEG was down-sampled to 500Hz. To
remove the ballistocardiogram (BCG) artifacts, EEG data was
exported to eeglab13. The toolbox FMRIB 2.0 (Niazy et al.,
2005) was used to detect and remove the BCG-related artifacts.
The parameter “number of PCs to use” was set as 7 (if less
than 3, the signal-noise ratio of ERP would be low). After
BCG artifacts removal, EEG was imported into Analyzer 2.1
again, to remove the ocular artifact using “Ocular remove
using ICA.” After that, EEG data was exported to eeglab13
for further analysis. Traditional ERPs were extracted for six
kinds of stimuli. In this study, we analysed ERPs from a pooled
electrode comprised of FC1, FC2, and Cz, all located in a
frontocentral area, an area whichhas been proven to be the area
of greatest N1 amplitude (Näätänen et al., 1988; Herrmann et al.,
2013b). Epochs were extracted from −200 to 600ms from the
onset of the pure tones. Baseline was set to the −200∼0ms.
The correlation between N1 amplitude and frequencies was
calculated (see Figure 3). EEG was then low passed (<0.1Hz)
to obtain the DC shifts of EEG and then entered the joint
EEG-fMRI analysis.

Joint DC Shifts-fMRI Analysis
The flowchart of joint DC shifts-fMRI analysis is shown in
Figure 2. In the joint DC shifts-fMRI analysis, the fMRI data
for each subject were analyzed in the volumetric space mni305
using Matlab (Mathworks Inc, Natick, MA). Data were pooled
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FIGURE 2 | Flowchart of the joint DC shifts-fMRI analysis. Raw EEG data were preprocessed (gradient artifacts remove, BCG artifacts remove, ocular artifacts

remove), and low passed (<0.1Hz). Then EEG data convolves with HRF and entered a GLM together with six kinds of stimuli. The EEG data comes from one subject,

it is the first 520 s of the total data. It can be seen that the DC shifts are obvious. The pure tones onset time is an example, it is not from the true data.

across runs. A standard preprocessing processing stream was
conducted to fMRI data under the guidance of the SPM12
Manual (http://www.fil.ion.ucl.ac.uk/spm/). The steps included
head motion correction, slice timing correction, coregistration to
anatomic structure, spatial normalization and spatial smoothing.

Preprocessed fMRI data then entered the joint analysis with EEG
DC shifts. A general linear model (GLM) was applied to each
voxel time series.

Two kinds of regressors were made. One kind of regressors
were designed for conventional fMRI analysis, formed by
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FIGURE 3 | ERP and tonotopy maps. (A) Bilateral hemisphere tonotopy map for the group mean. Colored regions are areas that showed significant differences

across the six conditions (p < 0.05, corrected). Regions are color-coded according to the frequency responded. STG, Superior Temporal Gyrus; HG, Heschl’s Gyrus;

PP, Planum polare; PT, Planum Temporale. (B) ERP to six conditions in pooled electrode FC1/FC2/Cz, N1 is obvious and the amplitude of N1 decreases with

frequencies increase. (C) Correlation of N1 amplitude and frequency.

convolving the onset times of each kind of pure tones and
a canonical hemodynamic response function. Another kind
of regressors were designed for the DC shifts-fMRI analysis,
which were extracted from each electrode’s DC shifts amplitude.
The extracting time point was set at the beginning of

each EPI. These regressors were convolved with a canonical
hemodynamic response function to enter GLM for DC shifts-
fMRI analysis. Both these two kinds of regressors entered into
single-subject fixed-effects regression analyses; on the group
level, random effects analyses were performed using one-way
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ANOVA. Activations to targets are significant at P <0.05,
cluster-extent family-wise-error (FWE) corrected (voxel-height
threshold P < 0.005, extent 10 voxel). This analysis method was
adapted from Eichele et al. (2005).

Correlation Between Time-Shifted DC
Signal and BOLD Signal
To get a more detailed picture of the relationship between the DC
signal and BOLD signal, we selected six seed points according
to the results of 2.5 Joint DC shifts-fMRI analysis. We forward
shifted the DC signal with time shift from 0 to 6 s, 0.2 s each space,
and calculated the correlation between the DC signal and BOLD
signal in those six seed points with GLM. It’s worth noting that
in this analysis, the time-shifted DC signal was not convolved
with HRF, but rather they directly entered GLM together with
traditional regressors. Besides this, the other steps are all the same
with 2.5. The names, locations and MNI coordinates of these six
seed points were A: Caudate_R (20, −6, 26), B: Thalamus (−12,
−8, 14), C: Caudate_L (−14, 24, 4), D: Frontal_Mid_R (50, 12,
4), E: Precuneus_R (18, −74, 52), F: Precuneus_L (−22, −82,
38). Each seed point concluded with 3 × 3 × 3 = 27 voxels and
the correlation result was the mean value of the T value of these
27 voxels.

RESULTS

To prove DC shifts-fMRI can reveal a more complete response of
the brain to stimuli, we acquired simultaneous recorded fbEEG-
fMRI from 50 young and healthy subjects during a classical
paradigm of tonotopic mapping of auditory cortex. Plenty of
fMRI studies have showed that the response of the brain to this
paradigm is concentrated on auditory cortex (see Introduction)
while our DC shifts-fMRI results revealed that there are other
activations that can’t be neglected. Traditional fMRI and ERP
were also analyzed to compare with previous findings.

FMRI Results
Tonotopy maps were displayed in Figure 3A. The bilateral
tonotopy maps were similar. It could be seen that the Heschl’s
gyrus (HG) divided the high frequencies response areas into
two parts. HG mainly responded to the 200Hz (blue), while
another area responding to 200Hz was at the lateral posterior
STG. Two high frequencies response areas (red) were located
anterior and posterior to the HG, in planum polare and planum
temporale. Intermediate-frequency areas were located between
low and high areas.

Average ERPs
Figure 3B depicts the time courses of the averaged response
to each tone, in each condition in a fronto-central electrode
cluster FC1/FC2/Cz showed the strongest responses in the
ERP. The most obvious components are P1 (10∼50ms), N1
(100∼120ms), P2 (200∼240ms), N4 (400∼450ms). Figure 3C
depicts the correlation between N1 amplitude (pooled electrode
FC1/FC2/Cz) and frequency (log-scaled). Correlation is
significant (r = 0.9815, p = 0.0005). Correlation between P1,
P2, N4 and frequency (log-scaled) are not significant, with P1

FIGURE 4 | Joint DC shifts-fMRI results. (A) Brain networks that positively

correlated with DC shifts in C3, CZ, FC1, and CP1. (B) Brain networks that

negatively correlated with DC shifts in F4 and P4. CG, cingulate gyrus; TH,

thalamus; CN, caudate nucleus; SFG, superior frontal gyrus; MFG, middle

frontal gyrus; DAN, dorsal attention network.

(r = 0.0544, p = 0.9185), P2 (r = −0.8194, p = 0.046), N4
(r = 0.5490, p = 0.2592). The individual’s N1 amplitude was
showed in the Supplementary Material.

DC Shifts–fMRI Results
After removing fMRI and physiological artifacts from raw EEG
data, we low-pass filtered (<0.1Hz) the EEG to acquired DC
shifts. DC shifts were down-sampled to the same frequency of
FMRI of 1/3.4Hz. Sampling times were set at the beginning of
each EPI. The down-sampled DC shifts were convolved with
HRF and entered the GLM analysis with fMRI time series. Two
results were shown in Figure 4 and Table 1.

A cingulate-caudate-thalamus network consisting of the
cingulate gyrus, the caudate nucleus, the thalamus and the
superior frontal gyrus was found to be positively correlated with
DC shifts in electrodes of C3, Cz, FC1, CP1. In C3, bilateral
caudate nucleus, the cingulate gyrus and the thalamus were
activated. In Cz, the superior frontal gyrus, the cingulate gyrus,
bilateral caudate nucleus and the thalamus were activated. In FC1
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and CP1, the activated regions are lesser, with bilateral caudate
nucleus and thalamus mainly activated.

The dorsal attention network was found to be negatively
correlated with DC shifts in P4 and F4. The middle frontal
gyrus was also found negatively activated in these two electrodes’
results. It’s worth noting that all these results passed FWE
(p < 0.05) correction.

Correlation Between Time-Shifted DC
Signal and BOLD Signal
The second level analysis results between time-shifted DC signal
and BOLD signal in seed points are shown in Figure 5, with
Figure 5A showing the results of seed points A, B and C, with
their BOLD signals correlated with DC signal of electrode C3.
Figure 5B shows the results of seed points D, E and F, and their
BOLD signals are correlated with DC signal of electrode P4. It
can be seen that for both these six seed points, the correlation
between time-shifted DC signal and BOLD signal peaked when
the time shift was about 3.4∼4 s.

DISCUSSION

Generally, the auditory cortex is thought to be the dominantly
activated area under the paradigm of tonotopic mapping in the
auditory cortex and the activation of other areas is negligible. In
the current study, we used DC shifts-fMRI in combination with
traditional fMRI and ERP analyses to investigate amore complete
response of the brain during this paradigm. Participants were
asked to listen to the tones and no other task was performed.
Our traditional fMRI results showed that the auditory cortex
was the only area that activated during the paradigm and the
tonotopy organizations were in line with early findings of other
researchers (Humphries et al., 2010; Saenz and Langers, 2014).
Our DC shifts-fMRI results showed that BOLD signals in a
cingulate-caudate-thalamus network were positively correlated
with scalp recorded DC shifts in electrode of C3, CZ, FC1, CP1.
While BOLD signals in the dorsal attention network and the
right middle frontal gyrus were negatively correlated with DC
shifts in F4 and P4. The cingulate-caudate-thalamus network is
the neural substrate of sustained attention (Petersen, 1990; Pardo
et al., 1991; Sarter et al., 2001; Oken et al., 2006; Sadaghiani et al.,
2010b) while the dorsal attention network and the right middle
frontal gyrus are related to attention orientation (Corbetta et al.,
2008; Japee et al., 2015). Resting state data was acquired before the
paradigm, but both traditional fMRI and DC shifts-fMRI showed
that there was no activation during resting state.

In line with previous findings, the conventional fMRI analyses
showed pronounced activation in the auditory cortex. The
tonotopy organization of our work is consistent with the typical
tonotopic patterns (Lauter et al., 1985; Pantev et al., 1988; Bilecen
et al., 1998; Talavage et al., 2004; Humphries et al., 2010; Saenz
and Langers, 2014). The low frequencies areas are mainly located
at HG, flanked by two high-frequency zones posteromedially
toward the planum temporale and anteromedially toward the
circular sulcus. The ERP results are also consistent with previous
findings. The N1 component has been shown to be modulated

as a function of sound frequency (Picton et al., 1978; Näätänen
et al., 1988; May et al., 1999; Herrmann et al., 2013a,b), and our
ERP results nicely converge with these findings.

Mechanisms Linking DC Shifts and fMRI
The DC shifts may come from two mechanisms: the neuronal
and non-neuronal mechanisms, both of which link DC shifts
to BOLD signals. At early times, DC shifts were thought to be
generated by neuronal mechanisms. Basing on epileptic activity
in animal experiments, (Birbaumer et al., 1990; Roland, 2002;
Speckmann and Elger, 2004) research supported the opinion that
DC shifts are generated by tonic depolarization of the apical
dendrites of cortical pyramidal neurons. Besides somatodendritic
neuronal dipoles, the epileptic activity of glial cells (Caspers
et al., 1987; Laming et al., 2000) and extracellular potassium
concentration (Staschen et al., 1987; Voipio and Kaila, 2000) are
also involved in the generation of DC shifts. All of the above
can be simplified as neuronal mechanisms of the generation of
DC shifts.

However, currently, the more prevailing hypothesis regarding
the mechanisms of DC shifts generation is the non-neuronal
mechanisms, to be specific, it comes from the fluctuations
of potential difference across blood brain barrier. By directly
manipulating intracranial hemodynamics, Vanhatalo et al. (2003)
found that hemodynamic changes could arouse DC shifts and
these shifts are apparently not related to neuronal activities.
They deduced that these DC shifts are produced by changes in
potential difference across blood brain barrier. (Voipio et al.,
2003) found that hypo- and hypercapnia can elicit DC shifts and
they thought that these DC shifts are not from a neuronal origin
but from the potential difference across the blood-brain barrier
that can be recorded on the scalp. Recent DC shifts-fMRI studies
support the view that scalp recorded DC shifts stem from blood
brain barrier (Palva and Palva, 2012; Hiltunen et al., 2014). Blood

brain barriers linked DC shifts and hemodynamic fluctuations,
vesting the ability of DC shifts in revealing inner brain activities.

Attention Networks Fluctuate During the
Pure Tones Listening Task
In addition to our fMRI and ERP results, which are highly
consistent with previous findings, the DC shifts-fMRI revealed
that the cingulate-caudate-thalamus network which underpins
sustained attention and the dorsal attention network and the
right middle frontal gyrus which underpin attention orientation,
were also activated during the paradigm. Sustained attention,
tonic alertness and vigilance are three terms with the same
meaning, and psychologists use these terms to describe an
ability to sustain attention to a task for a period of time (Oken
et al., 2006). Sustaining attention to the task at hand, such
as following a lecture at school or maintaining focus while
driving, is a crucial part of everyday life (Jangraw et al., 2018).
It has been claimed that maintaining attention and engagement
on a relatively monotonous task over time requires sustained
attention (Unsworth et al., 2018). The pure tones listening task
is a typical scenario that need sustained attention.

The cingulate-caudate-thalamus network, including the
anterior, middle, and posterior cingulate gyrus, bilateral
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TABLE 1 | DC shifts-fMRI analysis results.

MNI coordinates

Electrodes Region Cluster size T ± x y z

C3 Thalamus 590 6.43 pos −12 −8 14

Caudate_L 246 5.49 pos −14 24 4

Caudate_R 159 5.43 pos 18 26 2

Caudate_R 173 5.50 pos 20 −6 26

Corpus callosum 111 6.01 pos 0 −46 10

Posterior cingulate 40 5.19 pos 2 −38 22

Anterior cingulate 21 4.76 pos 0 28 28

Middle cingulate 52 5.05 pos 2 −20 34

Cz Caudate_R 397 5.96 pos 8 20 −2

Caudate_L 246 6.27 pos −10 20 0

Thalamus 284 6.70 pos −2 −8 10

Anterior cingulate 175 5.66 pos 0 52 2

Anterior cingulate 115 5.33 pos 0 32 24

Superior frontal cortex 58 5.22 pos −26 52 34

Superior frontal cortex 107 5.38 pos 18 44 46

Superior frontal cortex 142 6.01 pos −4 36 60

Middle cingulate 135 5.46 pos 2 −20 34

FC1 Thalamus 178 6.46 pos −2 −10 12

Posterior cingulate 72 5.28 pos 2 −44 10

Caudate_L 24 5.12 pos −8 20 −2

Caudate_R 25 4.89 pos 18 24 6

CP1 Thalamus 135 6.60 pos −2 −10 10

Caudate_R 125 5.74 pos 20 30 −2

Caudate_R 65 5.26 pos 20 −6 26

Caudate_L 53 5.20 pos −20 8 20

Superior frontal gyrus 16 5.05 pos −2 36 60

F4 Middle frontal gyrus 114 5.44 neg 48 16 36

Precuneus_R 26 4.92 neg 20 −82 32

Parietal_sup_R 31 5.3 neg 22 −74 54

P4 Precuneus_L 127 5.45 neg −22 −82 38

Precuneus_R 118 6.45 neg 34 −76 36

Frontal_mid_R 98 5.96 neg 50 12 40

Precuneus_R 193 6.46 neg 18 −74 52

Parietal_sup_L 164 5.55 neg −30 −52 56

Parietal_sup_R 54 5.40 neg 26 −56 56

Postcentral_R 76 5.54 neg 38 −44 62

Precuneus_L 94 5.75 neg −8 −48 64

Postcentral_L 53 5.81 neg −22 −38 70

caudate nucleus, the thalamus, and the superior frontal cortex,
was found to be positively activated during the tonotopic
mapping paradigm. Previous studies revealed that this network
underpins the maintenance of sustained attention. Despite the
subtle differences, this network is consistent with the intrinsic
connection network proposed by (Dosenbach et al., 2007;
Seeley et al., 2007). They proposed that this network controls
goal-directed behavior through the stable maintenance of task
sets. Coste and Kleinschmidt (2016) found a cingulate-opercular
network whose higher pre-stimulus activity results in a faster
response speed to targets and thus underpins the deployment
of sustained attention. This is a cingulate-opercular overlap

with the cingulate-caudate-thalamus network in the thalamus
and the cingulate cortex. In a study of detecting auditory near-
threshold stimuli, (Sadaghiani et al., 2009) found that the higher
prestimulus activity of a cingulate-insular-thalamus network
facilitates the performance of perception. In the later paper
of Sadaghiani et al. (2010b), they proposed an interpretation
that the cingulate-insular-thalamus network underpins the
maintenance of sustained attention. In an auditory alertness
study (Sturm et al., 2004), a network including cingulate,
thalamus and inferior parietal structures was found subserving
sustained attention. Similar to our results, Sturm et al. (1999)
found a frontal-parietal-thalamus network activated during a
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FIGURE 5 | (A,B) Correlation between time shifted DC and BOLD.

visual intrinsic alertness study. Hinterberger and colleagues used
simultaneous EEG-fMRI recordings to uncover the relevant
areas of brain activation during self-regulation. Event-related
slow waves were successfully related to the BOLD response
in the caudate nucleus and thalamus (Hinterberger et al.,
2003, 2005). The structure of the cingulate-caudate-thalamus
network is appropriate for underpinning sustained attention.
The thalamus connects closely with the whole cerebral cortex,
suited for maintenance of alertness (Scheibel and Scheibel,
1967). The caudate nucleus constitutes a part of the sustained
attention network (Sadaghiani et al., 2010b). It is structurally
tightly connected with the thalamus (Alexander, 1986) and
plays an important role in transporting information between
the thalamus and the prefrontal cortex (Rothwell, 2011).
The cingulate cortex is the major cognitive control region,
playing roles in adaptive top-down control (MacDonald et al.,
2000; Kerns et al., 2004). Above all, it could be concluded
that the cingulate-caudate-thalamus network functionally and
structurally underpins the maintenance of sustained attention.

The DC shifts-fMRI results also showed that during the
tonotopic mapping paradigm, the dorsal attention network
is negatively correlated with DC shifts in P4 and F4. The
dorsal attention network consists of intraparietal sulcus and

the junction of the precentral and superior frontal sulcus (Fox
et al., 2006). This network is generally believed to be involved in
top-down orienting of attention (Corbetta and Shulman, 2002;
Fox et al., 2006; Proskovec et al., 2018; Zhou et al., 2018).
The activity of this network increases when there is a cue
indicating when, where, or to what participants should pay their
attention (Giesbrecht et al., 2003; Corbetta et al., 2005; Fox et al.,
2006). Other than the role in attention orientation, the dorsal
attention network was also thought to anti-correlated with the
sustained attention. In a resting state experiment, the dorsal
attention network was found negatively correlated with the alpha
global field power which is the most consistent reported EEG-
hallmark of sustained attention (Sadaghiani et al., 2010b). In
the near-threshold stimuli task, (Sadaghiani et al., 2009) found
the higher prestimulus activity of the dorsal attention network
disrupted the perception performance. They explained that the
dorsal attention network supported the processing of attention
orientation and this function might compete with processing
of sustained attention. Besides the negative activation of dorsal

attention network, the right middle frontal gyrus was also
negatively activated during the tonotopic mapping paradigm.
Similar to the function of the dorsal attention network, the
right middle frontal gyrus has also been found playing a role in
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attention orientation (Corbetta et al., 2008; Japee et al., 2015).
Taken together, our results support the view of (Sadaghiani et al.,
2009) that there is competitive relationship between attention
orientation networks and sustained attention networks.

Reasons why Attention Networks Fluctuate
During the Pure Tones Listening Task
In the paper of (Hiltunen et al., 2014), DC shifts were discussed
in two categories: event-related DC shifts and spontaneous
DC shifts. Event-related DC shifts were found in situations of
sensory stimuli (Walter et al., 1964), motor actions (Kornhuber
and Deecke, 1965), cues preceding to-be-attended-to stimuli
(Gonzalez-Rosa et al., 2011; Werner et al., 2011; Zanto et al.,
2011), long-term memory (Khader et al., 2007; Kizilirmak et al.,
2012), etc. Spontaneous DC shifts refer to DC shifts present
during resting state. Both event-related and spontaneous DC
shifts were found correlated with BOLD signals (Leistner et al.,
2007, 2010; He and Raichle, 2018).

However, it has to be noted that the DC shifts presented
during the pure tone listening task are neither event-related nor
spontaneous. The traditional event-related fMRI doesn’t have
the ability to locate these two sustained attention networks,
indicating that the activities of these two networks and the
DC shifts induced by them are not event-related. In a resting
state, these two networks were not found by DC shifts-fMRI,
indicating that the activities of these two networks are not
spontaneous. Each system of the brain is not an independent
section. Perception process of a system, e.g., auditory system,
is not isolated but correlates with ongoing activity fluctuations
of other cerebral cortexes (Sadaghiani et al., 2010a,b). There
are some ongoing activities of the cerebral cortex’s impact the
information process while the ongoing activities themselves
contain no specific information (Oken et al., 2006). It could
be inferred that the activities of these attention networks and
the DC shifts induced by them modulate the response of the
auditory cortex.

The participants were asked to listen to the pure tones played,
with the constant tones during the paradigm prompting the
subjects maintain sustained attention. It is reasonable that the
sustained attention network is activated during the task. The state
of readiness to respond to stimuli is termed as ‘sustained attention
level’, the sustained attention level is not static over time (Sarter
et al., 2001). The tonotopoic mapping paradigm lasts nearly
40min, and although the stimuli rarely change, the sustained
attention level inevitably fluctuates over time. The fluctuations of
the attention networks induce the fluctuations of hemodynamics,
and hence induce the fluctuations of potential differences across
the blood brain barrier. These potential difference fluctuations
spread through the skull and are recorded by the fbEEG. There
is competitive relationship between sustained attention and
orientation of attention, which can explain why during the task
the neural substrates underpin these two functions fluctuate
inversely. With DC shifts offering the index of inner brain
ongoing activity and fMRI offering the location, DC shifts-fMRI
hence has the ability to localize ongoing activity which couldn’t
be localized by traditional event-related fMRI.

This pure tone listening process is not the only cognitive
process that is found accompanied by slow oscillations, slow
oscillations were also found in some other cognitive processes
(Kucyi et al., 2018). Using a unique continuous performance
task, Kucyi et al. (2016) found that the intense mind-
wandering co-occurred with high-amplitude slow oscillations
of the default mode network. In some behavioral fluctuation
studies, spontaneous fluctuations in response-time variability
have been found correlated with slow oscillations of the default
network, dorsal and ventral attention networks (Esterman et al.,
2012; Rosenberg et al., 2015; Kucyi, 2018). Moreover, many
perception fluctuation studies found that perception fluctuation
is correlated with slow ongoing activity in large-scale higher
order brain networks (Boly et al., 2007; Coste et al., 2011;
Sadaghiani et al., 2015).

It’s worth noting that when DC shifts were moved forward
around 3.8 s, the T-value would reach the max value in selected
seed points. This phenomenon suggests that when listening to
pure tones, DC shifts are leading BOLD signal about 3.8 s. The
delay of BOLD signals may stem from the slow signature of
BOLD (Jorge et al., 2014), and that neuronal activity needs a
complicated process and several seconds to cause fluctuation of
BOLD (Smith et al., 2001). This finding, to some extent, is in
line with the resting state study of Grooms et al. (2017). They
found that in a resting state, some brain networks’ BOLD signal
was correlated with some electrodes’ DC shifts, and part of these
correlations reached the peak when the time shift was around 4 s.
Besides, some invasive studies investigating correlation between
LFP and BOLD proposed that amoved forwards (∼4 s) DC signal
is correlated with BOLD (Pan et al., 2013; Thompson et al., 2014;
Li et al., 2015), and our results are strongly in accordance with
their findings.

CONCLUSIONS

In contrast to other EEG features, the DC shifts-fMRI have
been rarely studied. To our knowledge, until now DC shifts-
fMRI has not been used in studies involving tasks. Using DC
shifts-fMRI, we found that the brain responds to a simple
pure tones listening task in a more complicated way than
previously thought. Networks related to sustained attention and
attention orientation were also activated besides the traditional
activation in the auditory cortex during the task. Our results
show that the traditional fMRI has limitation and DC shifts-
fMRI can be a meaningful supplement in locating continuously
fluctuating networks.
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