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Intracerebral hemorrhage (ICH) features extremely high rates of morbidity and mortality,
with no specific and effective therapy. And local inflammation caused by the
over-activated immune cells seriously damages the recovery of neurological function
after ICH. Fortunately, immune intervention to microglia has provided new methods and
ideas for ICH treatment. Microglia, as the resident immune cells in the brain, play vital
roles in both tissue damage and repair processes after ICH. The perihematomal activated
microglia not only arouse acute inflammatory responses, oxidative stress, excitotoxicity,
and cytotoxicity to cause neuron death, but also show another phenotype that inhibit
inflammation, clear hematoma and promote tissue regeneration. The proportion of
microglia phenotypes determines the progression of brain tissue damage or repair after
ICH. Therefore, microglia may be a promising and imperative therapeutic target for ICH.
In this review, we discuss the dual functions of microglia in the brain after an ICH from
immunological perspective, elaborate on the activation mechanism of perihematomal
microglia, and summarize related therapeutic drugs researches.
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INTRODUCTION

Intracerebral hemorrhage (ICH) has become one of the most common and lethal diseases in the last
decades (Zhou M. et al., 2019). It affects more than 2 million patients worldwide every year, with
the majority in developing countries (Cordonnier et al., 2018; Zhu et al., 2019). ICH represents
10–25% of all strokes but leads to more than 50% of the deaths (Lan et al., 2017b; Cordonnier et al.,
2018). 43–51% of patients with ICH die within 30 days, and only 12–39% of survivors keep living
independently which imposes an enormous burden upon healthcare systems (Zhou et al., 2014;
An et al., 2017). Neither internal medical managements, including hemostasis and intensive blood
pressure-reduction, nor surgery methods as hematoma evacuation, has been testified efficacious by
clinical randomized controlled trials (Mayer et al., 2008; Mendelow et al., 2013; Hemphill et al.,
2015; Baharoglu et al., 2016; Morotti et al., 2017; Cordonnier et al., 2018). However, inspiringly,
immune intervention promises a specific therapy strategy when neurologists shift attention to
ICH secondary injury. Lately, fingolimod has been demonstrated signally improved neurological
functional recovery in patients with ICH by means of regulating immunocytes number and activity
(Fu et al., 2014; Li Y.-J. et al., 2015).
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Microglia, as the resident immunocyte accounting for 5–10%
of all human brain cells (Ma et al., 2017; Liu et al., 2021),
take the lead in both tissue damage and repair processes after
ICH. The perihematomal activated microglia not only arouse
acute inflammatory responses, oxidative stress, excitotoxicity,
and cytotoxicity to damage neurovascular unit (M1 phenotype),
but also transform the phenotype to inhibit inflammation, clear
hematoma, and promote tissue regeneration (M2 phenotype).
M1 and M2 microglial phenotypes play opposite functions,
but they are actually complementary, interconnected, and can
be transformed into each other, work coordinately and even
interdependently (Hu et al., 2015; Orihuela et al., 2016),
just like yin and yang in ancient Chinese philosophy. Their
balance directly determines which way the pathophysiology
goes towards, brain tissue repair or excessive damage. Thus,
microglia may be a promising and imperative therapeutic target
for ICH.

In this review, we describe the dualistic roles of microglia
in ICH from an immunological perspective, expound on the
detailed mechanism of perihematomal microglial activation and
polarization, and summarize the related therapeutic researches.

MICROGLIA

German neuropathologist Franz Nissl firstly discovered
microglia with platinum stain in 1899 and called it
‘‘Staebchenzellen’’. Then, Spanish neurohistologist Del
Rio-Hortega coined the term ‘‘microglia’’ in 1919 and described
in detail its superior ability of rapid proliferation, migration, and
phagocytosis, which laid the groundwork for follow-up studies
(Ginhoux and Prinz, 2015; ElAli and Rivest, 2016; Smolders
et al., 2019).

After a century of exploration, microglia are customarily
regarded as the macrophage in the brain due to the similarity
in morphology, functions, and biomarkers (Nayak et al.,
2014; Ginhoux and Prinz, 2015). Microglia can be identified
with classical macrophage markers, such as ionized calcium
binding adapter molecule1 (Iba1), surface glycoprotein F4/80,
integrin CD11b, and the epitope of keratan sulfate 5D4
(Nayak et al., 2014; Dudvarski Stankovic et al., 2016; Lan
et al., 2017b). However, microglia have been demonstrated
to possess different embryological origin and transcriptional
profile from that of macrophage, which suggest the functions
of microglia and microphage are not identical. Microglia
are recognized as Tmem119-positive and CD45-low, while
macrophages are Tmem119-negetive and CD45-high (Li Q. et al.,
2018).

Activated microglia have been found to differentiate
into two broad subtypes with distinct cellular makers and
biological functions (Sica and Mantovani, 2012; Zhao H. et al.,
2015; Dudvarski Stankovic et al., 2016; Lan et al., 2017b;
Ma et al., 2017; Li Q. et al., 2018; Tschoe et al., 2020).
According to the M1/M2 dichotomy proposed by Mills in
2000, activated microglia are categorized into pro-inflammatory
M1 phenotype (classical activation) and anti-inflammatory
M2 phenotype (alternative activation). The process that resting
microglia differentiate into M1/M2 phenotype is referred to as

polarization. Recently, M2 microglia are alternatively divided
into M2a/M2b/M2c subtypes. Classical inflammatory factors
such as IL-1β, IL-6, and Tumor necrosis factor-α (TNF-α)
were used as the main markers of M1 microglia, while M2a
microglia markers are represented by anti-inflammatory factors
IL-4, IL-10, scavenger receptor CD36, and mannose receptor
CD206, M2b microglia express major histocompatibility
complex II (MCH-II), CD86, IL-10, and M2c microglia
express phagocytic receptor CD163, insulin-like growth
factor 1 (IGF-1), brain-derived neurotrophic factor (BDNF).
Different markers of microglia phenotypes show different
roles that they play after ICH. The particular information
on microglia subtypes is summarized in Table 1 (Lan
et al., 2017b; Ma et al., 2017; Tschoe et al., 2020; Liu et al.,
2021).

SPATIOTEMPORAL PATTERN OF
MICROGLIAL ACTIVATION AFTER ICH

As the immune monitor in the brain, microglia become activated
immediately after ICH, make morphological changes from a
highly ramified phenotype to a rod, spherical, and finally an
amoeba shape with contracting, thickening, and largening (more
than 7.5 µm in diameter; Walker et al., 2014; Yang S. S. et al.,
2016; Shtaya et al., 2019; Wei et al., 2020).

Spatially, microglia usually show different activation levels,
morphologies (ameboid, branched, or intermediate), and
directivities in different distances from the hematoma (Wang G.
et al., 2013; Yang S. S. et al., 2016). Amoeba microglia mainly
appear in close proximity to the hematoma, and partial
microglia are found activated away from the hematoma,
such as the ipsilateral cerebral cortex, corpus callosum, and
hippocampus.

In the time course, microglia activation begins within
1–4 h, peaks in 1–3 days, declines at day 7, and returns
to physiological level in 3–4 weeks after ICH (Zhou et al.,
2014; Wan et al., 2016; Zhu et al., 2019). As shown in
Figure 1, both M1 and M2 phenotypes of microglia are
presented in the perihematomal area throughout the course
of the disease, while the M1/M2 proportion is continually
changing. It stays in an M1-dominated state for a week after
ICH and deflects to an M2 preponderance within 1–2 weeks
(Wan et al., 2016). In animal models, M1 makers including
IL-1β, IL-6, TNF-α, including inducible nitric oxide synthase
(iNOS) increase dramatically within 3 days after ICH, while
interferon-γ (IFN-γ) mostly increase in the later phase. The
levels of M2 makers like Arginase-1 (Arg-1), resistin-like-α
(Fizz1), CD206 go up gradually within 1 week and decline
in 7–14 days except for transforming growth factor-β (TGF-
β), which remains relatively high at days 14 (Zhao H. et al.,
2015; Dang et al., 2017; Lan et al., 2017b; Taylor et al.,
2017).

Notably, despite the time point is different, almost all
microglial markers increase, whichmakes it difficult to faultlessly
describe the dynamic phenotypic changes. With regard to this
fact, it is better to evaluate microglial activation with as many
makers as possible at present.
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TABLE 1 | Particular information on microglia subtypes.

Phenotype Polarization agents Makers Roles

M1 LPS, IFN-γ, TNF-α, IL-1β, IL-17 IL-1β, IL-6, IL-12, IL-23 pro-inflammation
TNF-α pro-inflammation
iNOS oxidative damage
MHC-II antigen presentation
CCL2, CCL5, CCL20 chemokine
CXCL10 chemokine
MMP2, MMP9 matrix decomposition
CD16, CD32 phagocytosis, chemotaxis

M2
M2a IL-4, IL-13 IL-4, IL-10 anti-inflammation

TGF-β anti-inflammation
CD36 phagocytosis
CD206 phagocytosis
CCL22 chemokine
Arg-1 tissue regeneration
Ym-1 stabilizing extracellular matrix
Fizz1 tissue regeneration

M2b TLRs agonist, IL-1R ligands, Fc receptors MCH-II pro-inflammation
CD86 pro-inflammation
IL-1RA anti-inflammation
IL-10 anti-inflammation

M2c IL-10, TGF-β, glucocorticoid CD163 phagocytosis
IGF-1 tissue regeneration
NGF tissue regeneration
BDNF tissue regeneration
NT3, NT4/5 tissue regeneration
Arg-1 tissue regeneration
YM-1 stabilize extracellular matrix
Fizz1 tissue regeneration

LPS, lipopolysaccharide; IFN-γ , interferon γ ; TNF-α-II, tumor necrosis factor α; iNOS, inducible nitric oxide synthase; MHC-II, major histocompatibility complex II; MMP, matrix
metalloproteinase; Arg-1, arginine 1; Ym-1, chitinase 3-like 3; IGF-1, insulin-like growth factor 1; NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor; NT3, neurotrophin
3; NT4/5, neurotrophin 4/5; FIZZ1, resistin-like-α.

FUNCTIONS OF ACTIVATED MICROGLIA
AFTER ICH

After ICH, blood swarms into the brain parenchyma
causing an expanding hematoma which leads to immediate
neurological impairment and microglial activation. Respectively,
M1 microglia are commonly considered as the deleterious
phenotype, and M2 microglia as the beneficial one (Xi et al.,
2014; Zhou et al., 2014) , as shown in Figure 2. Microglia
possess phenotypic and functional plasticity. Promoting M1-M2
phenotypic transformation has become the mainstream strategy
of microglial intervention in ICH treatment.

M1 Microglia
M1 microglia secrete a large number of inflammatory
factors, proteases, chemokines, prostaglandins, and other
toxic substances. Since multiple damage-inducing factors
overlap, brain cells die in various forms such as apoptosis,
necrosis, pyroptosis, ferroptosis, which leads to the irreversible
destruction of brain structure (Xi et al., 2014; Zhou et al., 2014).

In brain parenchyma, M1 microglia are the major source
of inflammatory mediators, such as IL-1β, IL-6, IL-12, IL-
23, and TNF-α (Jiang et al., 2020). Although inflammation is
essential for innate immunity, it is the chief culprit to the
sustained neurological deterioration in a sterile environment
(Zhu et al., 2019). While inflammatory cytokines diffuse,

FIGURE 1 | Dynamic changes of M1/M2 microglial activation levels after
intracerebral hemorrhage (ICH). It provides a visual expression that
M1/M2 microglia take on different activation characteristics. The red curve
represents M1 microglia while the blue curve represents M2 microglia. Yet,
the referenced researches about microglial spatiotemporal features are all
animal experiments, leaving the human brain as an unknown area.

functional neurons and neuroglia quickly die under the stress
condition (Shen et al., 2017). The diffused inflammatory
cytokines also promote polarization of surrounding microglia
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FIGURE 2 | Sketch map for the opposite function of M1/M2 microglia. In this Tai Chi-diagram, the half-filled-out symbols with left half black represent M1 microglia,
with the expression of MMPs, pro-inflammatory cytokine, and chemokine. And the right half white represents M2 microglia, with the expression of phagocytic
receptors, anti-inflammatory cytokine, and growth factors.

towards the M1 phenotype, cause the inflammatory region to
expand, which forms a vicious circle. In patients with ICH, the
levels of IL-1β, TNF-α, and IL-6 in plasma and brain tissues
are significantly increased within 1–3 days, and the increasing
degree is related to 90-days poor prognosis (Jiang et al., 2020).
During pathological processes, oxidative stress and inflammation
mutually reinforcing, which is no exception in ICH (Hu et al.,
2016; Yao et al., 2021). M1 microglia express large amounts
of peroxidases, iNOS, and reduced form of nicotinamide-
adenine dinucleotide phosphate (NADPH) oxidase, which
produce excessive free radicals and damage surrounding cells
by attacking cellular membranes and DNA (Yang et al., 2013;
Duan et al., 2016; Hu et al., 2016; Xiong et al., 2016).
Moreover, M1 microglia contribute to the activation of matrix
metalloproteinases (MMPs), including MMP2 and MMP9,
which markedly destruct the blood-brain barrier (BBB) and
cause severe vasogenic brain edema by degrading extracellular
matrix constituents and attacking endothelial claudin-family
tight junction proteins (Montaner et al., 2019). In ICH patients,
increased MMP2/9 levels were independently associated with
perihematomal edema volume (Li et al., 2013). In addition,
M1 microglia also release chemokines including CXCL8, CCL2,
and CCL5, which diffuse into peripheral blood through the
ruptured blood vessel and attract peripheral leukocytes such as
neutrophils, monocytes, and lymphocytes into brain parenchyma
through disrupted BBB (Trettel et al., 2020). It was reported that
chemokines concentrations in plasma were proportional to the
infiltration degree of peripheral immunocytes in ICH patients

(Guo et al., 2020). The infiltrated immunocytes not only express
and secrete inflammatory factors and aggravate inflammatory
response but also release toxic substances after their apoptosis
(Lambertsen et al., 2019). In ICH patients, CCL2 concentrations
in plasma within 24 h were associated with poor functional
outcomes at day 7 after ICH (Hammond et al., 2014). Also,
inhibiting CCL2 in animal models reduced brain edema and
improved neural function (Yan et al., 2020).

Noticeably, there is an evident cooperativity effect on
tissue damage induced by inflammatory cytokines, protease
MMPs, and chemokines. Inflammatory cytokines not only
attack vascular endothelial cells and tight junction proteins
but also induce endothelial cells to secrete intercellular cell
adhesion molecule-1 (ICAM-1), which promotes the adhesion
and infiltration of peripheral leukocytes (Aslam et al., 2012).
The direct damage on neurons induced by MMPs exacerbates
inflammatory response, disrupts BBB to facilitate peripheral
leukocytes infiltration (Kim et al., 2005). The infiltrated
peripheral leukocytes secrete inflammatory factors and MMPs,
which aggravates inflammatory response and BBB destruction in
turn (Tschoe et al., 2020).

Although the treatments aiming at inflammatory cytokines
are currently limited in animal experiments, TNF-α antibody has
shown huge therapeutic potential by significantly reducing the
number of perihematomal activated microglia and improving
neurological outcomes in mouse stroke models (Mayne et al.,
2001; Lei B. et al., 2013; Chen A.-Q. et al., 2019). Inhibition of
TNF-α not only reduces the microglial activation/macrophage
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recruitment via decreasing cleaved caspase-3 level (Mayne et al.,
2001; Lei B. et al., 2013; Chen A.-Q. et al., 2019) but also reduces
the activation of TNF receptor 1 (TNFR1) on endothelium
therefore reducing endothelium necroptosis and ameliorating
disruption of BBB (Mayne et al., 2001; Lei B. et al., 2013;
Chen A.-Q. et al., 2019). Predictably, inhibition of specific
inflammatory factors is becoming the central theme of ICH
therapeutic researches.

M2 Microglia
M2 microglia primarily express anti-s and facilitate tissue
regeneration (Lan et al., 2017b). Thereby, the injured brain
acquires comprehensive and effective recovery. Due to the large
amounts of anti-inflammatory cytokines and antioxidants, the
inflammatory response and oxidative become diminished tardily
(Zhu et al., 2019). More importantly, the anti-inflammatory
factors promote surrounding microglia and other immune cells
to transform into anti-inflammatory phenotype. It’s found that
patients with higher TGF-β levels in plasma had a better
prognosis at 90 days after ICH (Jiang et al., 2020).

At the same time,M2microglia engulf the hematoma and cells
debris, remove harmful substances and provide space for tissue
regeneration. With the increase of the number of M2 microglia,
the volume of the hematoma is eliminated promptly in 7–21 days
after ICH. B-scavenger receptor CD36, one of the M2 microglial
makers, is the main executive of microglial phagocytosis activity,
which is obviously induced to upregulate by IL-10 (Fang et al.,
2014; Yang et al., 2015; Li et al., 2021). In the mouse ICH model,
CD36 knockout significantly inhibits hematoma absorption, and
leads to the aggravation of neurological disorders (Fang et al.,
2014). Instead, adoptive transferring CD36-positive microglia
to CD36 knockout mice showed a significant improvement of
neurological function after ICH (Yang et al., 2015). In fact,
M2 microglia express CD163 and CD91 to absorb hemoglobin
and heme, respectively (Dang et al., 2017; Garton et al., 2017).
It should be noted that CD163 levels expressed by microglia
may not be the only limiting factor in hematoma clearance. As a
protective mechanism against severe hemolysis, the Haptoglobin
(Hp) secreted by oligodendrocytes can capture free hemoglobin
(Hb) to form a stable Hp-Hb complex, which is then englobed
through CD163, thus reducing the toxicity of Hb. Similarly,
hemopexin (Hx), secreted by neurons, binds with heme and is
devoured via CD91 (Ma et al., 2016).

Particularly, M2 microglia are the drivers of brain tissue
regeneration and remodeling. M2 microglia express various
growth factors and trophic factors, such as insulin-like growth
factors-1 (IGF-1), Brain-derived neurotrophic factor (BDNF),
glial cell line-derived neurotrophic factor (GDNF), neurotrophin
3 (NT-3), NT-4/5, which could promote neurogenesis and
neural circuit reframing (Xi et al., 2014; Ma et al., 2017).
IGF-1 promotes the proliferation, migration, and differentiation
of the neuro precursor cells in the subventricular zone, and
facilitates the regenerated neurons’ functional integration into
a new neural circuit (Thored et al., 2009). In a mouse ICH
model, IGF-1 antibody promotes microglial M1 polarization,
leading to more residual behavioral defects (Sun et al., 2020).
BDNF and GDNF stimulate axon regeneration, which takes

part in new neural connections (Madinier et al., 2009). The
neurotrophic factors, including NT3 and NT4/5, are not only
beneficial to the survival of residual neurons but also essential
for the improvement and stability of the newborn neuron (Ma
et al., 2017). During the remodeling of brain tissue, M2 microglia
secrete clotting substance chitinase 3-like 3 (Ym-1) to prevent
the degradation of extracellular matrix components (Girard
et al., 2013). M2 marker Arg-1 not only converts arginine into
polyamine which contributes to extracellular matrix subsidence
but also competes with iNOS for reaction substrates to inhibit
the excessive oxidative stress (Munder, 2009).

In general, M2 microglia resist inflammation and engulf
hematomas to create a calm and stable microenvironment, which
contributes to the neuro-angiogenesis and matrix deposition,
and allows brain tissue to regain structure and function.
Nevertheless, because of M1 microglia domination, only a
third of new neurons survive inflammation in the acute
phase. Therefore, promoting a beneficial microglial phenotypic
transformation is a promising way in ICH treatment.

POLARIZATION MECHANISM OF
MICROGLIA AFTER ICH

In order to regulate microglial polarization accurately and
effectively, it is necessary to understand the mechanism of
microglial polarization, including the source of extracellular
stimuli and intracellular signaling pathways, which has been
briefly summarized in Table 2.

Extracellular Agents
After ICH, blood carrying red blood cells (RBCs) and plasma
proteins including thrombin and fibrinogen infiltrate into the
brain parenchyma, and trigger the initiation of early cellular and
molecular pathological processes. Hematoma not only contains
the agents that directly activate microglia but also promote
microglial M1-polarization indirectly through tissue damage.
Figure 3 provides an overview of M1-polarization.

Because of energy exhaustion and cytotoxicity, RBCs in the
hematoma begin to lyse within 1 day and continue for weeks
after ICH (Righy et al., 2016). The damaged RBCs release Hb,
peroxiredoxins (Prxs), and Carbonic Anhydrase-1 (CA-1), which
induce microglia differentiating into M1-phenotype (Guo et al.,
2012; Liu et al., 2016; Bian et al., 2020). Hb and the decomposed
product hemin can directly promote microglial M1-polarization
through Toll-like receptors (TLRs; Lin et al., 2012; Wang
et al., 2014). Therefore, clearing hematoma is of importance in
reducing brain damage. Since no reliable clinical benefits are
provided from surgical hematoma removal at present, promoting
hematoma devouring by microglia is of great significance.

During the formation of hematoma, thrombin and
complements are produced in the brain, which are also
important factors for M1-polarization. Thrombin, a serine
protease that promotes blood clotting, is detected in the
brain within 1 h after ICH (Zhu et al., 2019). Thrombin
directly activates M1 microglia by binding to the proteinase-
activated receptor-1 (PAR-1; Wan et al., 2016). In mouse
models, delayed administration of thrombin inhibitor hirudin
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TABLE 2 | Signaling pathways of microglia polarization.

Microglia phenotype Intracellular signal molecule Extracellular agents Effect molecules

M1 TLRs-NF-κB Hb, hemin NLRP3; IL-1β, IL-6, TNF-α
fibrinogen
HMGB1, nucleic acids, heat shock protein
Prxs

MAPK-NF-κB IL-1β, IL-6, TNF-α
thrombin
glucocorticoid

STAT1 IL-1β, IL-6, TNF-α
M2 PPAR/Nrf2 Peroxisome Arg-1, IL-4, CD36, HO-1

STAT4/6 IL-4, IL-10 Ym-1, Fizz1

in 7–28 days after ICH significantly reduced the number of
pro-inflammatory microglia (Li et al., 2019). However, thrombin
regulation is difficult to apply to clinical therapy because of its
two-sided effects. Though the inhibition of thrombin shows a
beneficial effect in inflammation reduction, a suitable thrombin
concentration is necessary for helping stop hemorrhage
and protect neurons. Complements, anaphylatoxins, are
activated within 24 h through various proximal cascaded
pathways (Ducruet et al., 2009; Yuan et al., 2017). Complement
composition C3a activates microglia cells by binding to the
specific receptor C3aR. Membrane attack complex (MAC), the
end product of complement cascade, attacks cell membrane, and
leads to erythrocyte lysis and neuronal death, which indirectly
exacerbates microglial M1-polarization. In animal models,
complement inhibitor N-acetyl heparin inhibits microglia
activation and ameliorates neurological deficits (Wang M. et al.,
2019).

Besides, brain tissue primary damage also contributes
to microglial polarization (Zhang et al., 2017). Neurons
and astroglia around the hematoma express inflammatory
factors such as IL-15 and IL-17, playing a vital role in
M1 polarization (Yu et al., 2016; Shi et al., 2018, 2020).
Likewise, damaged neurons and glia release damage-associated
molecular patterns (DAMPs), including high mobility group
protein-1 (HMGB1), heat shock proteins, and extracellular
matrix fragments (Mracsko and Veltkamp, 2014; Bobinger
et al., 2018). HMGB1 is a non-chromosome-related protein
widely expressed in the nucleus of all eukaryotic cells (Mu
et al., 2018). Under physiological conditions, HMGB1 helps
stabilize chromosomes and regulate the transcription of many
survival-based genes, but once it is dissociated from the
nucleus and released outside the cell, HMGB1 becomes a
powerful inflammatory mediator that promotes microglial
M1 polarization by binding to TLRs on microglia (Ohnishi
et al., 2011; Wang D. et al., 2017). In rodent ICH models,
glycyrrhizin attenuates intracerebral hemorrhage-induced injury
in a concentration-dependent manner via inhibiting HMGB1
(Ohnishi et al., 2011; Mu et al., 2018). HMGB1 inhibitor
Ethyl-pyruvate significantly reduced microglia activation and
inflammatory factors levels via inhibiting nuclear factor kappa
B (NF-κB) DNA binding activity (Su et al., 2013).

In the later phase of ICH, an anti-inflammatory pathway,
enlisting native microglia, occurs alongside neuroinflammation
(Shtaya et al., 2021). Anti-inflammatory factors such as

FIGURE 3 | The activation mechanism of M1 microglia after ICH. In ICH
acute phase, M1 microglia are activated on account of the blood composition
and neuron primary damage. Meanwhile, microglia up-express corresponding
receptors for activation.

IL-4, IL-33, IL-10, TGF-β increase distinctly around the
hematoma, which are mostly released by macrophages,
mature lymphocytes, and mast cells (Taylor et al., 2017;
Zhou et al., 2017; Chen Z. et al., 2019). The immune
microenvironment changes shift microglial polarization
from M1 to M2. Intraventricular injection of IL-4 in mice
increases the proportion of M2 microglia and accelerates
the recovery of neurological function after ICH (Yang J.
et al., 2016). Some other molecular targets have also
been recently identified up-regulated on microglia during
M2-polarization after ICH, including Dopamine D1 receptor
(DRD1), Cannabinoid receptor-2 (CB2R), Melanocortin
receptor 4 (MC4R), and especially sphingosine-1-phosphate
receptor (S1PR; Xu et al., 2013; Li L. et al., 2015; Zhang et al.,
2015).

Intracellular Signal Transduction
To recognize extracellular agents and transduce extracellular
signals, microglia express various membrane receptors,
nuclear receptors, and executive proteins to play roles in
morphological and functional changes such as secretion,
phagocytosis, and movement. Understanding microglial signal
transduction is beneficial to the exploration of clinical targets.
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Here, we briefly introduce several important receptors and
signaling molecules.

TLRs-NF-κB
TLR is a type I transmembrane protein that plays an important
role in the innate immune and inflammatory response (Alvarado
and Lathia, 2016). So far, 10 functional TLRs have been found
in humans, and microglia mainly express TLR4, TLR2, and
heterodimer TLR2/4 (Fang et al., 2013; Hayward and Lee, 2014;
Wang et al., 2014). Hb, hemin, fibrinogen, HMGB1, heat shock
protein, Prxs, and nucleic acids generated during ICH are all
TLRs ligands (Lin et al., 2012; Fang et al., 2013; Zhou et al., 2014;
Wan et al., 2016; Fu et al., 2021). After binding to these ligands,
TLRs signaling is activated. TLR4 simultaneously activates two
parallel downstream pathways of myeloid differentiation factor
88 (MyD88) and TIR-domain-containing adapter-inducing
interferon-β (TRIF) while TLR2 recruits only MyD88. Both
of them lead to the activation of transcription factor NF-κB
(Sansing et al., 2011; Wang Y.-C. et al., 2013; Fei et al., 2019).
NF-κB is a crucial signal for microglial M1-polarization and
inflammatory factors expression. During the process, inhibitors
of NF-κB kinase (IKK) are activated firstly, which cause the
phosphorylation and degradation of NF-κB inhibitor (Iκb; Fei
et al., 2019). After that, NF-κB dimer is released and enters the
nucleus to regulate transcription for M1-polarization. Of note,
NF- κB can be detected in the peripheral circulation, which is a
biomarker to determine the severity of brain damage.

MAPK
Mitogen-activated protein kinase (MAPK) is a member of the
serine/threonine kinase family, which includes P38, Extracellular
Signal-Regulated Kinase1/2 (ERK1/2), c-Jun N-terminal kinase
(JNK) pathways (Sun and Nan, 2016). MAPK not only enters the
nucleus to regulate the transcription processes but also increases
the activity of NF-κB in the cytoplasm (Wei et al., 2019). After
ICH, MAPK is activated by inflammatory factors, thrombin, and
glucocorticoid, MAPK signaling plays a critical role in microglia
survival and M1-polarization.

NLRP3
Inflammasome NLR Family, Pyrin domain containing protein
3 (NLRP3) is a kind of intracellular multi-molecular protein
complex that is involved in inflammation (Walsh et al., 2014;
Luo et al., 2019). NLRP3 activates lyase caspase-1, an enzyme that
trims microglia secreted pre-IL-1β and pre-IL-18 into mature IL-
1β and IL-18 (Ren et al., 2018), which makes NLRP3 a promising
target of inflammatory regulation. In the mouse ICH model,
intraventricular injection of NLRP3 siRNA immediately reduced
inflammatory response and brain damage.

PPAR-γ and Nrf2
Peroxisome proliferator-activated receptor (PPAR-γ) and
Nuclear erythroid 2 related factor 2 (Nrf2) are important signals
of M2-polarization (Zhao X.-R. et al., 2015). Nrf2 is a basic
leucine zipper (bZIP) protein that enters the nucleus to regulate
transcription. PPAR-γ is a highly-expressed nuclear hormone
receptor in microglia. PPAR-γ and Nrf2 actually work together
with overlapping functions. They enhance the expression of

Arg-1, IL-4, and CD36, which enables microglia in phagocytosis
and tissue repair (Xia et al., 2015; Wang J. et al., 2018). Except
for that, PPAR-γ and Nrf2 jointly regulate the expression of
hundreds of antioxidant genes including heme oxygenase-1
(HO-1; Culman et al., 2007; Shang et al., 2013).

STATs
As a common transcription signal for cytokines, signal
transducer and activator of transcriptions (STATs) family exert
their effect on bothM1 andM2 polarization (Tschoe et al., 2020).
Microglia express a large number of cytokine receptors, such
as IL-1R, TNFR, IL-4R, which activate the downstream Janus
kinase (JAK)-STATs signal. Among STATs, STAT1 promotes
M1 polarization and inflammatory factors expression (Bai et al.,
2020). STAT4/6 promotes M2 polarization and the expression
of Ym-1 and Fizz1 (Righy et al., 2016). Intriguingly, STAT3 was
demonstrated to be involved in both M1/M2 polarization (Hu
et al., 2015).

M1-M2 Phenotypic Transformation
It is observed that single microglia express both
M1/M2 phenotypic markers (Ransohoff, 2016; Tschoe et al.,
2020). Neither M1 nor M2 should be considered as a microglial
final differentiation form. The ability of microglia to switch
between M1/M2 phenotypes is always a fascinating topic.
However, the mechanism for this phenotypic transformation is
really elusive. M1 and M2 microglia not only perform distinct
cellular functions but also have incompatible polarization
processes. For example, in vitro, PPAR-γ significantly inhibits
the activation of NF-κB and STAT1/3 (Fang et al., 2014). In like
manner, inflammatory cytokines and TLRs inhibit microglia in
CD36 expression (Zhou et al., 2014; Yuan et al., 2015).

Recently, the relationship between microglia phenotype and
metabolic status has attracted much attention. Microglia in
different phenotypes show different oxidative metabolism (Eun
Jung et al., 2020). Compared to M1 microglia, M2 microglia
have significantly lower oxygen consumption (Orihuela et al.,
2016). Therefore, it has been speculated that intracellular stress
environment and energy crisis promote M2 polarization by
influencing mitochondrial metabolism. The reactive oxygen
species (ROS) released by M1 microglia has been found to
activate Nrf2, which contributes to microglial M2 polarization
(Duan et al., 2016; Hu et al., 2016; Qu et al., 2016). In addition,
Adenosine 5‘-monophosphate activated protein kinase (AMPK),
as a key molecule regulating bioenergy metabolism, is activated
under cellular energy crisis and oxidative stress (Saikia and
Joseph, 2021). Evidence indicates that AMPK contributes to
Nrf2 activation as well (Zhao et al., 2018; Zheng et al., 2019).
In other words, the initiative activation of M2 microglia may
be a type of self-protection when M1 phenotype creates an
immoderate oxidative stress (Barakat and Redzic, 2015). More
in-depth research in the mechanism of microglial phenotypic
transformation may provide insights into innovative therapeutic
strategies for ICH.

Preclinical Researches Targeting Microglia
In view of the serious inflammatory brain injury, whole microglia
population deletion by knocking out microglial survival signal
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receptor colony-stimulating factor 1 receptor (CSF1R) achieved
an early therapeutic effect in rodent experiments (Li et al., 2017;
Shi et al., 2019). Of course, increasing the M2/M1 phenotypic
proportion of microglia usually brings more satisfactory results
(Wang J. et al., 2018; Bai et al., 2020), and it has become
the most frequently studied therapeutic method. Relying on
the aforementioned targets, experimental therapeutic studies on
the precise regulation on microglia phenotype are developing
rapidly, and relevant drugs are summarized in Table 3 (Hu
et al., 2011; Ohnishi et al., 2013, 2019; Yang et al., 2014a,b, 2018;
Iniaghe et al., 2015; Zhao et al., 2015a,b, 2018; Flores et al., 2016;
Shi et al., 2016; Sukumari-Ramesh and Alleyne, 2016; Zhang
et al., 2016; Anan et al., 2017; Chen-Roetling and Regan, 2017;
Lan et al., 2017a; Wang J. et al., 2017; Wei et al., 2017; Xu et al.,
2017; Zeng et al., 2017; Chen C. et al., 2018; Chen S. et al., 2018;
Fu et al., 2018; Han et al., 2018; Li X. et al., 2018; Qiao et al., 2018;
Ren et al., 2018; Wang et al., 2018b; Liang et al., 2019; Song and
Zhang, 2019; Xi et al., 2019; Zhou F. et al., 2019; Cheng et al.,
2020; Ding et al., 2020).

CLINICAL RESEARCHES TARGETING
MICROGLIA

Translational research in medication development has never
been effortless. Although many preclinical researches have
got positive results in ICH treatment, large clinical trials on
microglia intervention are second to none. Conservatively, the
therapeutic effect of minocycline, deferoxamine, fingolimod,
thiazolidinediones (TZDs), and statins are relatively promising.
Related clinical researches have been briefly summarized in
Table 4.

Minocycline is an ordinary broad-spectrum antibiotic. It
could pass through the blood-brain barrier freely and has a
neuronal protection effect (Yang et al., 2019). With pleiotropic
properties, minocycline scavenges free radical and promotes
M1-M2 phenotypic transformation of microglia in piglet and
rodent ICH models (Möller et al., 2016; Dai et al., 2019;
Wang G. et al., 2019). When applied in ICH clinical trials,
minocycline has not been demonstrated to produce favorable
outcomes on 3-month functional independence and behavior
score, but significantly depresses the levels of circulating
inflammatory components (Fouda et al., 2017; Malhotra et al.,
2018). It may be due to the fact that oral administration
does not produce sufficient potency concentrations in brain
parenchyma.

Deferoxamine is a classical iron-chelating agent. Except for
reducing oxidative damage, it effectively reinforces the function
of M2 microglia (Hu et al., 2019). RBC CD47 is a signal that
stops itself from being swallowed by microglia (Song et al., 2021;
Ye et al., 2021). Deferoxamine inhibited CD47 expression on
RBCs and accelerated hematoma absorption conspicuously in
pig models (Cao et al., 2016; Hu et al., 2019). In patients with
spontaneous ICH, consecutive administration of deferoxamine
mesylate for 5 days significantly reduces hematoma volume and
brain edema progression (Yu et al., 2017).

Fingolimod is an S1PR agonist previously used for multiple
sclerosis, which can directly activate M2 microglia. In ICH

preclinical experiments, fingolimod has been demonstrated to
inhibit brain edema and reduce the numbers of apoptotic
cells (Rolland et al., 2013; Lu et al., 2014; Sun et al.,
2016). When applied to clinical trials, 3 days consecutive
oral administration of fingolimod shows beneficial effects on
decreasing the numbers of lymphocytes and NK cells in
circulation, controlling perihematomal brain edema (PHE), and
ameliorating neurological deficits (Fu et al., 2014; Li Y.-J. et al.,
2015).

TZDs, including pioglitazone and rosiglitazone, have a
function in activating M2 microglia as PPAR-γ agonist (Song
et al., 2018). In the rodent model, intraperitoneal injection of
rosiglitazone increases the expression of CD36 on microglia,
promotes hematoma clearance, and inhibits inflammatory
factors expression (Chang C.-F. et al., 2017; Mu et al., 2017).
TZDs have long been designed for clinical trials (Gonzales et al.,
2013), but have not yet shown significant results.

Statins (HMG-CoA reductase inhibitors) are
widely prescribed medications for the management of
hypercholesterolemia. The potential of Statins for ICH treatment
has been revealed recently (Chen Q. et al., 2019). Mechanistically,
Statins regulate microglial phenotype by inhibiting inflammatory
signals and enhancing PPAR-γ activity (Wang et al., 2018a;
Bagheri et al., 2020). Although stains have been doubted for the
safety of ICH treatment, they are ultimately deemed applicable
in promoting neurological rehabilitation (Ribe et al., 2019). It
has been demonstrated that statins improve the neurological
function of ICH patients and reduce the mortality at 6 months
(Tapia-Pérez et al., 2013; Witsch et al., 2019).

PERSPECTIVE

The Balance of Yin and Yang
Though how to regulate microglia to promote brain recovery
remains worth pondering in some sense, there are latent
misgivings that excessive inhibition of M1 microglia and
promotion of M2 microglia may turn into adverse effects in ICH
treatment, where we should keep watchful eyes.

On the one hand, the immunoreactivematerials secreted from
M1 microglia appear to have delayed beneficial effects on brain
repair. Solid evidence indicates that MMPs are necessary for
angiogenesis, myelin remodeling, and axonal regeneration in
ICH later stage (Lei et al., 2015; Fields, 2019). As well, infiltrating
neutrophils and monocytes have been found conducive to
hematoma clearance and inflammation regression (Lambertsen
et al., 2019). Besides, the over-suppressed inflammatory status
may increase brain infection risk since the systemic immunity
also decreases after ICH (Saand et al., 2019).

On the other hand, the early organizational disruption may
build the basis of neogenesis. M1 microglia destroy dying
and defunct neurons in pieces, which lends a convenience
for M2 phagocytosis (Hu et al., 2015). In addition, the
deconstruction of dense tissue matrix made by M1 microglia
provides space for the migration of neural precursors and
synaptic remodeling (Lei C. et al., 2013). Also, M1 microglia
impair BBB integrity, which is in favor of the hematoma
clearance by free diffusion, especially whenmicroglial phagocytic
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TABLE 3 | Preclinical researches on microglial regulation for ICH therapy.

Drugs Targets Species/Models Results

Ginkgolide B TLR4 rats/autologous blood reduce inflammatory cytokine, lessen neuronal cell
apoptosis.

Ligustilide TLR4 mice/autologous blood reduce inflammatory cytokine, induced neurological deficits.

Magnolol TLR4 rats/collagenase reduce the brain water content, attenuated neurological
deficits.

Pinocembrin NF-κB mice/collagenase reduce lesion volume and neurologic deficits.

Sparstolonin B NF-κB mice/autologous blood reduce inflammatory cytokine and brain edema.

Curcumin NF-κB mice/autologous blood inhibit inflammation and neurological impairment.

Protocatechuic acid NF-κB mice/collagenase inhibit oxidative stress, inflammation and apoptosis.

Annexin A1 MAPK mice/collagenase attenuate brain edema, improved short-term neurological
function.

Sesamin MAPK rats/collagenase suppress microglial activation, prevent neuron loss.

Fisetin NF-κB mice/collagenase reduce inflammatory cytokine, brain edema and cell
apoptosis.

Theaflavin NF-κB rats/collagenase alleviate the behavioral defects, inhibit the neuron loss and
apoptosis.

fimasartan NLRP3 rats/collagenase attenuate brain edema and improve neurological functions.

dexmedetomidine NLRP3 mice/autologous blood reduce inflammatory cytokine, improve neurological
function.

AC-YVAD-CMK NLRP3 mice and rats/collagenase reduce brain edema and improve neurological function.

MCC950 NLRP3 mice/autologous blood and collagenase attenuate neuro-deficits and perihematomal brain edema.

Dimethyl fumarate Nrf2 mice and rats/collagenase and autologous blood improve neurological deficits.
Nicotinamide mononucleotide Nrf2 mice/collagenase suppress neuroinflammation and oxidative stress.

Shogaol Nrf2 mice/collagenase suppress oxidative stress and improve neurological
function.

sulforaphane Nrf2 mice and rats/ autologous blood improve hematoma clearance.

Tert-butylhydroquinone Nrf2 mice/collagenase suppress oxidative stress and improve neurological
function.

Isoliquiritigenin Nrf2 rats/collagenase alleviate neurological deficits.

Andrographolide rats/autologous blood alleviate neurobehavioral disorders and brain edema.

monascin Nrf2 rats/collagenase improve neurological deficits.

Sinomenine Nrf2 mice/autologous blood improve neurological deficits.

TABLE 4 | Clinical researches on microglial regulation for ICH therapy.

Drugs Continent No. of patients Outcomes Efficacy References

minocycline North America 10 NIHSS, mRS, mortality NO Chang J. J. et al. (2017)
North America 8 mRS NO Fouda et al. (2017)

deferoxamine mesylate Asian 47 hematoma volume, edema YES Yu et al. (2017)
fingolimod Asian 23 hematoma volume, NIHSS YES Fu et al. (2014)

Asian 11 edema YES Li Y.-J. et al. (2015)
statins Europe 29 NIHSS, mortality YES Tapia-Pérez et al. (2013)

North America 38 hematoma volume; edema YES Witsch et al. (2019)

NIHSS, National Institute of Health stroke scale; mRS, modified Rankin Scale.

receptors are of inefficiencies in the ICH early phase (Righy et al.,
2016, 2018).

As for M2 microglia, superfluous and prolonged existing
growth factors will predictably cause abnormal tissue repair.
Overexpression of Arg1 has been found to cause tissue scarring
and brain dysfunction (Hesse et al., 2001), and excessive
polyamines extraordinarily promote inflammatory response
(Dudvarski Stankovic et al., 2016). Resting microglia plays a
special role in tissue repair and remodeling (Cherry et al.,

2014), andM2-M0may be a necessary functional transformation
after ICH.

In summary, it is really improper to consider that M1 and
M2microglial phenotypes are thoroughly opposite. Instead, their
interaction, cooperation, and even codependency are waiting to
be explored in the future. A balance of M1 and M2 microglial,
rather than extremely choosing M2 over M1, ought to be
achieved for ICH individualized treatment, just like the balance
of yin and yang.
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Targeting Strategy
Although drugs with the pleiotropic ability of immune
regulation may bring more benefits, not a few medical
experiments failed just because of uncontrolled side effects.
It is a neglected consensus that many microglial receptors
and signaling molecules are meanwhile expressed or activated
in other brain cells, such as astrocytes, oligodendrocytes,
endothelial cells, and neurons. It is unwise to judge the holistic
functions of concerned targets in the brain by taking only
microglia into account. For example, CD163 helps microglia
engulf and break down hemoglobin, whereas, inhibition of
CD163 in the ICH acute phase unexpectedly reduces brain
damage, possibly because inhibition of CD163 expressed on
neurons decreases the Hb neurotoxicity induced neuronal death
(Righy et al., 2018).

Hence, we need a kind of drug that has a high targeting
specificity to microglia. Preferably, it’s expected to have
sufficient liposoluble ability to pass through BBB and
concentrate on microglia. Furthermore, it’s recommended
to conjunctive use advanced medical technology such

as intranasal administration, nanomaterials, and genetic
technologies to achieve better intervention results for
ICH treatment.
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