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ABSTRACT

Evaluating the impact of non-synonymous genetic
variants is essential for uncovering disease asso-
ciations and mechanisms of evolution. An in-depth
understanding of sequence changes is also funda-
mental for synthetic protein design and stability as-
sessments. However, the variant effect predictor per-
formance gain observed in recent years has not kept
up with the increased complexity of new methods.
One likely reason for this might be that most ap-
proaches use similar sets of gene and protein fea-
tures for modeling variant effects, often emphasiz-
ing sequence conservation. While high levels of con-
servation highlight residues essential for protein ac-
tivity, much of the variation observable in vivo is ar-
guably weaker in its impact, thus requiring evaluation
at a higher level of resolution. Here, we describe func-
tion Neutral/Toggle/Rheostat predictor (funtrp), a
novel computational method that categorizes protein
positions based on the position-specific expected
range of mutational impacts: Neutral (weak/no ef-
fects), Rheostat (function-tuning positions), or Tog-
gle (on/off switches). We show that position types do
not correlate strongly with familiar protein features
such as conservation or protein disorder. We also
find that position type distribution varies across dif-
ferent protein functions. Finally, we demonstrate that
position types can improve performance of existing
variant effect predictors and suggest a way forward
for the development of new ones.

INTRODUCTION

Mapping molecular function or pathogenicity effects of ge-
nomic variation is crucial to our understanding of evolu-
tionary, pharmacological, and disease mechanisms. Recent
decades have seen significant advances in high-throughput
experimentation, as well as growing sophistication in the
analyses of the resulting data for research and medical pur-
poses (1–3). However, our understanding of genomic vari-
ation is still lacking. For example, separate studies totalling
over 7,500 individuals (4,5), have found that less than three
percent of known disease-causing variants can actually be
deemed actionable pathogenic variants. On the other hand,
known disease-causing variants have been noted (6,7) in the
(likely) healthy individuals of the 1000 Genome Project (8).
Here, a key problem is the absence of an experimental gold
standard for identifying disease-causing variants (4). Thus,
identifying disease-association of the ∼10 000 protein se-
quence changing genetic variants of every individual (9) is
like looking for the proverbial needle in a haystack.

Focusing on an arguably better-defined task of finding
variants that alter protein function may help; however, vari-
ant effects are not all black and white, having a range of
outcomes (10). While some variants may only marginally
alter ligand affinity, others can induce drastic changes (11).
Moreover, while subtle molecular modifications are difficult
to detect, they can cause phenotypic changes if they occur in
concert with other mutation-driven changes (12,13). Exper-
imental techniques like deep mutational scanning (DMS)
(14) allow for simultaneous assessment of the effects of
hundreds of thousands of variants. DMS combines high
throughput sequencing with the ability to create large pro-
tein libraries, i.e. uniting high throughput selection and
high throughput sequencing methods. Still, large-scale mu-
tant library generation is limited by a number of factors,
such as bias in sequencing preparation, difficulties in de-
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signing accurate and meaningful screening methods (i.e. de-
ciding which changes are evaluated), as well as significant
time and cost requirements (15,16). Thus, it remains in-
feasible to experimentally assess, for example, the effects
of all non-synonymous Single Nucleotide Polymorphisms
(nsSNPs) of a given individual, much less a population.
However, large-scale mutational fitness landscapes resulting
from DMS analyses are an exciting resource for the devel-
opment of new accurate computational variant effect pre-
dictors (17).

Single amino acid substitutions caused by nsSNPs are of-
ten associated with specific traits (18–20), diseases (21,22),
and pharmacological responses (23). Moreover, targeted
mutagenesis of specific protein sites is an essential tool
in the synthetic biology toolkit (24). Given the broad
range of their possible applications, it is not surprising that
many computational algorithms for the prediction of single
amino acid substitution effects have been developed (>200;
as of January 2018). The different approaches range in algo-
rithm complexity (e.g. random forests (25) or meta-servers
(26)), training/development datasets (e.g. cancer (27) or sta-
bility changes (28)), and gene/protein features used (e.g.
conservation or protein structure (29–31)). However, there
is much room for progress (32–35), and despite their in-
creasing number and complexity, there has, arguably, not
been a significant improvement in prediction accuracy over
the last decade.

Our collaborators have previously established a classifi-
cation of protein sequence position types (36) - Toggle and
Rheostat - in accordance with the effects of mutations in
each position. Mutations in Toggle positions were mostly
severely disruptive of protein function, while mutations in
Rheostat positions had a broad range of effects. We fur-
ther demonstrated (37) that existing computational predic-
tors fall short of accurately differentiating between neutral
(no-effect) and non-neutral (effect) mutations in the two po-
sition types. For example, at a Toggle position, mutations
that have been experimentally shown to have no effect on
protein function, were often computationally identified as
having an effect by most predictors. We thus concluded that
knowledge of position type could potentially improve pre-
diction accuracy.

In an earlier work, protein sequence positions were char-
acterized as Toggles or Rheostats on the basis of the dis-
tribution of their experimentally validated variant effects
(38). However, experiments evaluating variant effects are
still very limited even in comparison to the number of ex-
periments annotating, for example, protein function or lo-
calization (e.g. 558 590 proteins in UniProtKB/Swiss-Prot
(39), release September 2018). Moreover, trivially, for the
purposes of computational variant effect predictors, once
the variant effect is experimentally determined, its predic-
tion becomes irrelevant. In other words, having to experi-
mentally establish the position type precludes using it as a
feature in a variant effect predictor.

Here, we present a new machine learning approach,
function Neutral/Toggle/Rheostat predictor (funtrp), which
identifies protein sequence position types using a curated
set of sequence-based features. funtrp categorizes sequence
positions based on the expected range of mutational im-
pacts possible at each position; i.e. at Neutral positions most

variation will have no or weak effect, at Rheostat positions
a range of effects is possible (i.e. functional tuning) and
at Toggle positions mostly strong effects are expected. We
found that protein regions important for molecular func-
tionality are enriched in Rheostats and Toggles, with the lat-
ter dominating crucial residues (e.g. catalytic sites). While
these findings are in line with the conservation landscape,
we observed lower than expected correlation between con-
servation and position types, particularly for Rheostats. Cu-
riously, we found that the distribution of position types var-
ied across protein classes, slightly differentiating enzymes
from non-enzymes and distinguishing enzyme functional
classes. We also showed that the predicted position types
correlated with the manually curated experimental effect
annotations for proteins extracted from the Protein Mutant
Database (PMD) (40,41); i.e. we were able to fairly accu-
rately predict the effects of variants in previously unseen
proteins simply by considering their funtrp-predicted posi-
tion type. Combining funtrp annotations with outputs of ex-
isting variant effect predictors further improved prediction
accuracy.

These findings suggest that knowledge of position types
is critical for evaluating functional effects of variants. Thus,
funtrp predictions could aid the development of improved
variant effect prediction methods.

MATERIALS AND METHODS

The funtrp training/development process is detailed in Fig-
ure 1. Training datasets are summarized in Supplementary
Table S1. The DOIs for all funtrp source data, Python code,
and Docker image of the final pipeline are listed in the Avail-
ability section below.

Training datasets and feature extraction

We extracted quantitative deep mutational scanning (DMS)
amino acid substitution effect data for five proteins (Table 1)
(42–46). For a given protein-coding gene, DMS generates a
large set of mutations and their impact estimates. The DMS
results for the five proteins used here for model training,
were a subset of 41 studies, which we were able to identify
in the literature. Studies were excluded from consideration
for a number of reasons, including (i) unavailability of raw
data (16 proteins), (ii) raw data that is difficult/impossible
to extract due to formatting (e.g. pdf files, four proteins),
(iii) experimental metrics incompatible with our approach
(e.g. binary effect classifications or effect evaluation for mul-
tiple instead of single mutants) (six proteins) and (iv) miss-
ing information about wildtype and knockout functionality
(three proteins). We also excluded studies whose reported
measurements were not directly in line with our focus on
functional effects, i.e. reporting changes at different expres-
sion levels or in different media types (three proteins). Fi-
nally, as the position types in the first step of our study
were annotated based on the distribution of their variant
effects, we also excluded proteins with the majority of posi-
tions having too few (<6) variants (four proteins). In to-
tal, our five selected proteins comprised 822 amino acids
and 11 130 substitutions with measured effect scores. We
removed from consideration the two unknown amino acids
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Figure 1. Schematic overview of the funtrp pipeline. In training, experimentally measured variant effect scores are extracted for all residues present in the
selected deep mutational scanning (DMS) datasets. These scores are used in the k-means clustering-based variant effect-labeling (VEL) step to initially label
a subset of all positions(residues) as either Toggle or Neutral. Annotated with a computed set of sequence-based features, the subset of labeled positions is
then used to train a Random Forest (RF) (52) classifier (ntModel) to predict the not yet labeled positions from the DMS datasets as either Toggle, Neutral,
or Rheostat. After filtering, these are combined with the original VEL-positions and used with the same set of sequence-based features to train the final
funtrpModel.

(labeled X in sequence), leaving 820 residues. Note that the
number of available experimental scores per residue varied
between and within datasets.

To test our model, we collected three additional DMS
datasets, covering the PTEN, TPMT and HSP90 proteins
(47,48) which were NOT used in training. Note, that for
HSP90 the knockout variant effect measures were not di-
rectly available; we thus approximated knockout scores as
the mean of the unnormalized effect scores (0.15) reported
for variants in eight critical positions, i.e. those where any
variant resulted in severe functional impact (R32, E33, N37,
D40, G94, G118, G121, G123).

For each protein, the effects (scores) of substitutions (in-
cluding the knockout variant scores) were then converted
into absolute distances to wildtype, without differentiating
beneficial and deleterious mutations (Equation 1).

mutscore = |mutscore − wtscore| (1)

We further computed ten sequence-based features (Ta-
ble 2 and Supplementary Table S2) for each protein. Fea-
tures were chosen based on biological relevance to reflect
a broad range of properties associated with protein func-
tion. These features include basic amino acid properties, as
well as structural properties generated using a virtualized
(Docker) version of PredictProtein (with default parame-
ters) (49). Note that for all homology searches, PredictPro-
tein uses an 80% redundancy reduced database combining
UniProt and the Protein Data Bank (PDB) (50) (see Avail-
ability section).

Toggle and Neutral variant effect-based labeling

For this stage in funtrp development we only considered
SNP-possible substitutions, i.e. those amino acid substitu-
tions requiring no more than one nucleotide change with re-
spect to the wildtype. Note that we did NOT go back to the
gene sequence to find the affected codon, but rather desig-
nated as SNP-possible any single nucleotide wildtype to mu-
tant amino acid codon changes. As SNPs are more common
than multi-nucleotide changes, using only the SNP-possible
variants more closely mirrors natural selection patterns. Ad-
ditionally, this approach excludes non-SNP-possible vari-

ants, i.e. the likely more severe results of multiple mutage-
nesis rounds. Note that only half of the variants in our set
(5423 of 11 130) were SNP-possible. We set aside the 171
(21%) positions with three to five variants (FewVariants set)
and removed from all further consideration the 56 (7%) po-
sitions with only one or two variants. We further used the
remaining 593 positions (72% of 820) with at least six SNP-
possible variants in our dataset (4769 variants across the five
proteins; Table 1).

To each protein’s set of experimental variant scores, the
protein specific wildtype and knockout scores were added.
K-means clustering (51) (with K = 3) was used to partition
each individual protein variant set into three clusters. Vari-
ants assigned to the same cluster as the knockout score were
labeled severe. Those assigned to the cluster containing the
wildtype score were deemed neutral. All other variants were
labeled intermediate.

We subdivided the protein sequence positions into Neu-
tral and Toggle types on the basis of their variant labels.
We previously defined Toggles (37) as positions intolerant
of any change, while Neutrals are defined here as positions
that can tolerate almost all substitutions without functional
changes. Each sequence position x was classified (Equation
2) as Toggle or Neutral. If all but at most one variant at x
were neutral, we labeled x Neutral (N; 153 positions). If all
but at most two variants were severe, we labeled x a Toggle
(T; 66 positions). If none of these two conditions held true,
x was deemed unknown (374 positions; Unknown set).

type (posx) =
⎧⎨
⎩

N, i f (variantsx − variantsx neutral ) ≤ 1
T, i f (variantsx − variantsx severe) ≤ 2
unknown otherwi se

(2)

We excluded all unknown positions from our set as well as
six Toggle and six Neutral positions with a noticeably higher
score variance and/or different score medians as compared
to other positions of the same type. We thus retained a con-
servative training set of variant effect-labeled (VEL) Toggle
and Neutral positions with comparable variance and medi-
ans of experimental variant scores (207 instances: 60 Tog-
gles, 147 Neutrals).



e142 Nucleic Acids Research, 2019, Vol. 47, No. 21 PAGE 4 OF 14

Table 1. Deep mutational scanning datasets used in funtrpModel training and testing

Gene Domain Organism Measured Activity Set Variants Positions SNP-p* VEL** funtrp***

BRCA1 RING H. sapiens Ubiquitin ligase activity train 3080 303 142 42 128
PAB1 RRM S. cerevisiae mRNA binding specificity train 1188 75 75 34 53
UBE4B U-box H. sapiens Ubiquitin ligase activity train 926 102 80 31 50
TEM-1 - E. coli Ampicillin resistance train 5469 286 282 95 163
SPG1 GB1 Streptococcus sp. Binding affinity to IgG train 467 56 14 5 9
PTEN - H. sapiens Protein stability test 3880 357 144 40 256
TPMT - H. sapiens Protein stability test 3756 241 169 40 189
HSP90 ATPase S. cerevisiae Yeast growth test 4231 210 207 159 201

(*) Positions with ≥6 SNP-possible variants (**) Variant effect-labeled (VEL) Neutral and Toggle positions used in ntModel training
(***) VEL- and ntModel labeled Neutral, Toggle, and Rheostat positions used in funtrpModel training

Table 2. Set of sequence-based features used by prediction models

id Feature Source ReliefF** Rank

1 Solvent Accessibility PROF (*) 0.18 3
2 Secondary Structure PROF (*) 0.12 6
3 Residue Flexibility PROFbval (*) 0.15 4
4 Protein Disorder MD (*) 0.22 2
5 Amino Acid - 5e-5 8
6 Residue Size - 0 10
7 Residue Charge - 1e-7 9
8 SNP possible - 7e-4 7
9 Conservation ConSurf (*) 0.34 1
10 MSA Ratio - 0.14 5

(*) tools in the PredictProtein pipeline (Yachdav et al., 2014).
(**) Features ranked by importance using ReliefF (Kononenko, RobnikSikonja, & Pompe, 1996). Secondary structure scores were reported per position
for helix, sheet, and loops (pH, pE, and pL). Feature descriptions and default parameters are detailed in Supplementary Table S2.

ntModel and Neutral/Toggle scoring

Using the VEL set we trained a Random Forest (RF) (52)
classifier (ntModel) to predict Toggle vs. Neutral position
types on the basis of the ten features described above (Table
2). To account for the bias towards the Neutral type in the
training set, we used over-sampling and trained our model
on a balanced input set comprising 414 instances (200%
of the unbalanced input). We evaluated the model perfor-
mance using Leave-One-Out-Cross-Validation (LOO-CV).
The model prediction scores were in the [0, 1] range, such
that the sum of all type scores equaled 1. The LOO-CV
predictions were used to determine prediction score type
thresholds. We limited the number of false positive Toggle or
Neutral predictions to ≤3% (Figure 2). The resulting thresh-
olds were set at score ≤0.1 for Neutral and score ≥0.8 for
Toggle predictions.

Defining Rheostats

Here we defined Neutral and Toggle positions for the de-
velopment of our methods as positions containing mostly
neutral and mostly severe variants, respectively. Rheostats,
however, are positions of functional tuneability, encom-
passing positions that could contain a wide range of neu-
tral, intermediate, and severe effects. Thus, they can not
be defined explicitly by the number and type of variants
they house. We also can not simply define them ‘by ex-
clusion’ as non-(Toggle or Neutral) positions, as our VEL-
driven Toggle/Neutral position classification was based on
the analysis of incomplete experimental data. Effect mis-
labeling of even a single variant and/or missing variants,

could easily transform Rheostats defined ‘by exclusion’ into
Toggles or Neutrals.

Our ntModel was able to precisely distinguish Toggles and
Neutrals. The few incorrect predictions that it did make
were a likely indication of initial mislabeling of Rheostat
positions as one of the other two types. We thus hypothe-
sized that the ntModel predictions in the [0.35, 0.7] range
(containing ∼50% Neutral/Toggle mispredictions) were en-
riched in Rheostat positions.

funtrpModel and remaining residue labeling

The FewVariants (171 positions) and the Unknown (374 po-
sitions) sets comprised 545 (66% of 820) yet-unlabeled posi-
tions. We ran the ntModel and used score thresholds as de-
fined above to assign the N, R and T predictions to each po-
sition. Note that we excluded ntModel predictions in ranges
0.1 to 0.35 and 0.7 to 0.8, leaving only the most reliably pre-
dicted positions.

Within each protein, Toggle and Neutral position vari-
ant score distributions were compared between ntModel
and (variant effect-labeled) VEL-based assignments (Fig-
ure 3 and Supplementary Figure S1). We retained only
those ntModel-Neutral positions whose variant experimen-
tal score medians were less than or equal to the highest
median score of the VEL-Neutrals. Similarly, the ntModel-
Toggles were retained only if their experimental score medi-
ans were more than or equal to the lowest median score of
VEL-Toggles. We retained only those Rheostats whose me-
dians were in-between the highest VEL-Neutral and lowest
VEL-Toggle median scores. The resulting positions (72 Neu-
trals, 20 Toggles, 104 Rheostats) were added to the VEL set
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Figure 2. Determination of ntModel thresholds. LOO-CV predictions of
the ntModel were used to determine individual position type prediction
score thresholds. Positions with a Neutral label assigned in the VEL step
are shown in green, those labeled as Toggle - in red. Thresholds were set at
score ≤0.1 = Neutral and score ≥0.8 = Toggle, limiting the number of false
positive Toggle or Neutral predictions to ≤3%. Positions with prediction
scores in the range [0.35, 0.7] (containing 50% of all incorrect predictions
of the ntModel) were defined as Rheostats.

to form the funtrpTraining set (403 positions: 219 Neutrals,
80 Toggles, 104 Rheostats).

The funtrpTraining set was used to build funtrpModel, a
RF classifier trained as described above for ntModel, i.e. us-
ing the same ten features, over-sampling-based class balanc-
ing (806 instances; 200% of the unbalanced input set), and
LOO-CV evaluation.

The per position prediction score for the funtrpModel was
in the [0,1] range for each position type (N, R or T), such
that the sum total of all type scores equaled 1. By default,
each position was assigned to the highest-scoring type.

Measuring model performance

Performance for both ntModel and funtrpModel was re-
ported as accuracy, precision, recall, and F-measure (F1
score, Equation 3). For each position type (N, R or T) at
every score cutoff, true positives (TP) were the correctly pre-
dicted position types. For each type (e.g. N), false positives
(FP) were the positions incorrectly predicted to be of that
type (e.g. R or T positions, predicted as N), while false neg-
atives (FN) were that type positions incorrectly predicted as
something else (e.g. N positions, predicted as R or T).

precision = T P
(T P+F P)

recall = T P
(T P+F N)

accuracy = T P+TN
(T P+F P+TN+F N)

F1 = 2∗ precision∗recall
precision+recall

(3)

To establish a random baseline for funtrpModel perfor-
mance we generated random predictions at each position in
our funtrpTraining set. Specifically, three scores were ran-
domly sampled from a uniform distribution in the [0,1]

range and each was divided by the sum of the three, result-
ing in Neutral, Rheostat and Toggle predictions that add up
to 1, analogous to our model. The highest score determined
the predicted position type for the random predictor.

funtrp pipeline implementation

We used a Java based implementation of the Random For-
est Classifier (WEKA, version 3.8) (52,53) to build funtrp-
Model and R (version 3.3.3) (54) for K-Means clustering,
performance and significance evaluations, and for visualiza-
tions. Protein features were computed using a Docker image
of the PredictProtein (49) pipeline. The funtrp prediction
pipeline, which runs all necessary funtrpModel feature ex-
tractions and the model itself, requires Python version 3.6
or later and is available as stand-alone version and as a web-
service. Docker image DOIs as well as those of the current
software release, source code and datasets can be found in
the Availability section.

Predicting position types in protein sets

Neutral, Rheostat, and Toggle position types were predicted
for various sets of proteins (Supplementary Table S3). All 20
410 manually curated (Swiss-Prot) human proteins were ex-
tracted from the UniProt Knowledgebase (UniProtKB re-
lease September 2018) (39). For 5% of these proteins (909;
32 enzymes and 877 non-enzymes) the required set of funtrp
input features in Table 2 could not be computed due to Pre-
dictProtein pipeline problems or compute limitations. The
remaining 19 501 sequences were processed with funtrp us-
ing clubber (55) to distribute computation among multiple
High-Performance Cluster (HPC) environments. The sub-
sets of this data were as follows:

1. The EXPV set: 1250 Swiss-Prot enzymes with experi-
mentally validated, unique, unambiguous EC (Enzyme
Commission) numbers (56).

2. All human enzymes with catalytic site annotations from
the M-CSA database (57), which also have binding site
annotations in UniProt (94 proteins; 419 catalytic and
214 binding sites).

3. A set of sahle spheres (crucial for metal binding; defined
as all residues within a 15Å radius sphere from the ge-
ometric center of the metal ligand (58)) extracted from
231 transition metal binding protein structures in the
PDB (Bromberg et al., unpublished data). PDB struc-
tures were mapped to UniProt; funtrp predictions were
available for 230 of these.

4. Disordered (6309) versus ordered (13 192) Swiss-Prot
proteins (labeled disordered if at least 50% of residues
were predicted disordered by the MetaDisorder predic-
tor; MD score threshold of ≥0.5 (59)).

5. Proteins containing variants with experimental effect an-
notations in the PMD database (40,41) were also col-
lected. We extracted 16 038 variants in 1224 proteins,
along with their SNAP (30), SIFT (29) and PolyPhen-
2 (31) predictions of effect from (60). We also extracted
precomputed effect predictions of Envision (17), a re-
cently developed method trained on DMS datasets.
Note, that Envision predictions where transformed into
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Figure 3. Distributions of experimental effect scores for E. coli TEM-1 protein positions. Positions are colored by assigned position type (green = Neutral,
blue = Rheostat, red = Toggle) and ordered by the median of the associated variant score distribution. VEL-classified positions are shown in solid color.
Those predicted by the ntModel are translucent - darker when the number of variants per position is ≥6 and lighter otherwise. The dashed horizontal
lines represent data set-specific knockout (red) and wildtype (green) scores. Positions removed during manual and automatic filtering steps are not shown.
Details for the remaining four proteins are available in Supplementary Figure S1.

a binary effect classification by labeling predictions with
scores ≥0.9 as no-effect and those <0.9 as effect. fun-
trp predictions were available for 1220 of these proteins
(the remaining four sequences failed feature extraction).
Within this set variants are experimentally labeled as ei-
ther benign (neutral), or having an intermediate (mild,
moderate) or strong effect (severe) on protein function.
We further extracted from the VarCards database (61)
the binary effect (deleterious) versus no-effect (benign)
predictions of 23 computational predictors. VarCards
predictions could be determined for 8,800 PMD variants
in 1042 proteins. For variants with fewer than 23 pre-
dictions available, we assigned random prediction scores
(uniformly distributed) and generated random binary
predictions (>0.5 = effect, ≤0.5 = no-effect). We defined
the per variant Ensemble Prediction Ratio as the num-
ber of effect predictions divided by 23 (the number of
predictors). Thus, a ratio above 0.5 (≥12/23) results in
an ensemble prediction of effect, while a ratio below 0.5
(≤11/23) results in a no-effect prediction. Finally, we de-
fined predictions based on the Ensemble Prediction Ra-
tio as either correct (the ensemble prediction agreed with
the annotated PMD effect) or as incorrect (ensemble pre-
diction in disagreement with PMD effect annotation).
Note, that Envision effect predictions were not available
for 34 of 8800 variants (overlap of VarCards and PMD).

Statistical evaluations

We calculated the standard error of the mean across pro-
teins in different subsets for all three position types. For
each subset, we randomly resampled 50% of the proteins
(without replacement) 100 times. For each protein we ex-
tracted the fraction of each position type (N, R or T) and
computed the type means and standard errors across pro-
tein subsets for the individual position (Equation 4; � =
standard deviation of means across subsets; N = total sam-

pling iterations = 100).

σM = σ√
N

(4)

Distributions of feature scores for the three position types
were analyzed for similarity using the one-way analysis of
variance (ANOVA) test.

RESULTS AND DISCUSSION

funtrp accurately recognizes position types

Both RF classifier models were evaluated using LOO-CV
(Equation 3; Supplementary Table S4 A,B) using the la-
bel with the highest score as the prediction. The ntModel
achieved an overall accuracy of 92.3% while the funtrp-
Model accuracy was 85.1% (Table 3 and Figure 4; also bet-
ter than random accuracy of 55.5%). Interestingly, the fun-
trpModel differentiated Toggles and Neutrals better (97.8%
accuracy) than the ntModel. However, its performance de-
creased when considering the additional Rheostats. Note
that the higher prediction scores of the funtrpModel corre-
lated with higher precision (reliability) of the predictions,
albeit lower recall.

A funtrpModel performance discrepancy among position
types was also expected. After all, while Toggles and Neu-
trals are explicitly defined, Rheostats are not. As such, they
encompass a much larger range/variability in residue prop-
erties. In our training set, a position containing three inter-
mediate variants would be as much a Rheostat if it addition-
ally contained three neutral variants or three severe ones.
Additionally, truly neutral mutations are often subjective (as
opposed to mild effect variants) and always more difficult
to identify, experimentally or computationally, than severe
ones. Thus, the differentiation between Rheostat and Neu-
tral positions is arguably more complex even when using
experimental data. Indeed, the majority (80%; 16 of 20) of
the incorrectly predicted Rheostats were labeled Neutral and
more than half of these predictions were unreliable (scores
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Table 3. Performance of funtrp models for training and independent test sets

ntModel funtrpModel random PTEN TPMT HSP90

Precision Neutral 0.94 0.90 0.53 0.84 0.91 0.90
Rheostat - 0.73 0.28 0.70 0.64 0.34
Toggle 0.88 0.88 0.20 0.87 0.88 0.73

Recall Neutral 0.95 0.91 0.32 0.87 0.90 0.73
Rheostat - 0.77 0.36 0.78 0.71 0.62
Toggle 0.85 0.80 0.35 0.73 0.83 0.67

Overall Accuracy 92.3% 85.1% 55.5% 79.3% 84.1% 70%

Model performance was evaluated separately for training sets using Leave-One-Out-Cross-Validation (LOO-CV) and three independent test sets not seen
before. Performance measures were calculated using Equation (3).

Figure 4. funtrp type prediction performance. Precision-Recall curves for
LOO-CV predictions of Neutral (green), Rheostat (blue) and Toggle (red)
positions for the funtrpModel (solid lines) and random predictions (dashed
lines). The funtrpModel performance for all three position types is indi-
cated at different cutoffs. Performance was calculated per position type vs.
the other two types combined.

in the 0.4–0.49 range). Similarly, of the incorrectly predicted
Neutral positions, 80% (19 of 24) were labeled as Rheostats.

Position type labeling is robust in additional proteins

Our position labels are not experimentally derivable and we,
thus, do not have a gold standard set of Neutrals, Rheostats,
and Toggles to truly evaluate funtrp performance. How
could we then know whether our method performs well for
proteins that it has not seen? To address this concern, we as-
sumed that our initial position labeling is correct, i.e. SNP-
possible filtering plus VEL and ntModel (Materials and
Methods) results can be used as the ground truth for new
DMS datasets never used in training (PTEN, TPMT and
HSP90). We found that the distribution of identified posi-
tion types across these sets (646 positions: 51% Neutrals,
27% Toggles, 22% Rheostats) was very similar to that of
funtrpTraining (54% Neutrals, 20% Toggles, 26% Rheostats).
The minor discrepancy in the type ratios between sets was
likely due to the absence of filtering for the test set. Note that
filtering the training dataset (on the basis of variant exper-
imental effect variance; Materials and Methods) affected

Toggles the most (74% excluded) while Rheostats were af-
fected least (31% excluded) (Supplementary Table S1).

We further used funtrp to predict the test set position
types. We found that funtrp predictions could re-create the
(VEL- and ntModel) position labels with an average ac-
curacy of 75.9% over all three datasets. The PTEN and
TPMT DMS datasets both reporting structural stability,
could be predicted with accuracies of 79.3% and 84.1%, re-
spectively, comparable to the overall funtrp performance of
85.1% (Table 3). This performance on new data suggests,
that the DMS datasets selected for training were sufficiently
diverse for our model training. Larger training sets are of-
ten preferred as they include a larger number of feature-
observation combinations, resulting in more complete mod-
els. However, adding more data can also introduce new bi-
ases and increase noise, and potential errors. Thus, as ex-
pected, the results of the re-prediction of position types for
both PTEN and TPMT suggest that adding either protein
to training would not drastically change our model perfor-
mance.

Unfortunately, for HSP90 funtrp was only 70% accurate
(Table 3). We note that as opposed to directly measuring
the effect of mutations on protein function and/or struc-
ture, the HSP90 dataset reflects how mutants in Hsp90, a
chaperone protein, impact the growth rate of budding yeast.
This reduced performance is thus very likely due to two crit-
ical experimental design decisions. First, chaperones assist
in correct (un)folding of other proteins. The measured and
reported effect of yeast growth is therefore not directly cou-
pled to the mutagenized protein function, but rather to its
ability to facilitate function of other proteins. Second, the
reported fitness measure of overall growth rate is more re-
moved from direct variant effect than what was evaluated
for other proteins in our set, i.e. ligand binding affinity or
protein stability. These observations can likely explain why
the re-labeling of HSP90 could lead to the observed model
variability and highlight the need for standardized selection
of experimental training data.

Position types are not ticks on the same effect scale

The concept and characteristics of Rheostat and Toggle po-
sitions were first introduced in earlier work by our col-
laborators (36). The key finding of that work highlighted
Rheostats as positions that can be altered to produce vari-
ation in protein functionality. We further elaborated on the
associated problem of computationally predicting variant
effects across different position types (37). Computational
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methods were unable to differentiate effect severity, as op-
posed to effect vs. no-effect: in Toggles variants are nearly
guaranteed to be of severe effect, while in Rheostats the ef-
fect can be varied. Thus, they mispredicted most neutral
variants in Toggle positions and many of the mild effect
variants in Rheostat positions. Here we additionally intro-
duced the Neutral position type, aiming to highlight posi-
tions where most variants are neutral. Note that using a
single scale of protein position types was not possible be-
cause (i) if the scale enumerated the number of variants of
any effect size, Rheostats and Toggles would be grouped
together opposite of Neutrals and (ii) if the scale repre-
sented the number of severe effect variants, both Neutrals
and Rheostats would be at one end and Toggles at another.
A totality-of-variant-effect scale, as opposed to counting
variants, could run from 0 (Neutral) to 1 (Toggle) but raises
the question of how to evaluate the scores in-between. At
0.5, for example, half of the variants may have a severe effect
and half be neutral OR all variants can have an intermediate
effect. The first situation is indeed halfway between Neutral
(most variants are neutral) and Toggle (most have a severe
effect) - but is, arguably, biologically rare. The second, on
the other hand, indicates a true Rheostat, but does not even
belong on the same scale as intermediate effects are not part
of Toggle or Neutral understanding. That is, a position that
scores 0.4 is just as much a Rheostat as the one that scores
0.6, as opposed to being more Neutral in the first case and
more Toggle in the other. Instead of using a single scale, our
three-state classification scheme allows for a measure of pre-
diction reliability of each position type, i.e. a Rheostat with
a prediction score of 0.6 (75% precision; Figure 4), is more
likely truly a Rheostat than one with a score of 0.4 (47%
precision).

Individual sequence-based features are not sufficient to de-
scribe position types

Using the ReliefF (62) feature selection algorithm we
ranked the importance of funtrp features for labeling se-
quence positions in Swiss-Prot (Table 2). As expected, evo-
lutionary conservation was ranked most important. How-
ever, the assigned weight was only slightly higher than
other important features: protein disorder, solvent accessi-
bility, and residue flexibility. These results suggest that none
of these features alone can explain the predicted position
types.

Conservation is widely used as an approximation for
residue importance (63,64); i.e. the more conserved a
residue is, the higher the likelihood that its substitution by
another amino acid will result in function/structure disrup-
tion. We compared position-specific conservation scores de-
fined by ConSurf (65) across all positions of experimen-
tally verified enzymes (EXPV); by default, ConSurf uses
up to 150 homologous sequences to build its multiple se-
quence alignments (MSA). As expected, these scores were
significantly different between the three position types (Fig-
ure 5; medians in bold; ANOVA P-value < 2e−16). Con-
Surf scores are normalized by default, so that the aver-
age score over all residues of one protein is zero, and
the standard deviation is one; here, lower scores indicate
more conserved residues. Toggle positions were predomi-

Figure 5. Sequence conservation does not fully reflect position types. Vi-
olin plots of sequence conservation (ConSurf) compared across position
types; distribution medians are highlighted in bold. ConSurf scores are by
default normalized, such as 0 depicts the average score over the entire pro-
tein and the standard deviation is 1.

nantly conserved while Neutral positions were mostly non-
conserved. Rheostats, however, were in-between the other
position types and often showed similarly high conservation
as the Toggles. Moreover, on average, significantly fewer se-
quences were aligned at Neutral positions (107) compared
to Rheostats (125) and Toggles (128).

To further establish how well a predictor of position types
could perform using conservation alone, we computed the
number of positions in Swiss-Prot proteins that could be
correctly identified as a funtrp Rheostat, Toggle or Neutral
at a fixed cutoff. The lowest cutoff (lower score = more
conserved) for Neutrals was selected by taking the mean
of the distribution medians of Neutral and Rheostat con-
servation scores. Similarly, the highest cutoff for Toggles
was at the mean of Rheostat and Toggle conservation score
medians. Rheostats were assigned all other conservation
scores. The overall accuracy for this thresholding was 61%
(Neutrals = 0.80/0.70, Toggles = 0.45/0.80, Rheostats =
0.44/0.39 precision/recall, respectively; Supplementary Ta-
ble S5). Note, that we observed the same trends for the fun-
trpTraining dataset (Supplementary Figure S2).

Thus, evolutionary conservation - despite being the
highest-ranking feature - was not solely representative of
position types. Furthermore, none of the remaining fea-
tures was likely to perform better than conservation in-
dicated by their consistently lower ReliefF rankings (Ta-
ble 2). Moreover, arguably, for a given position in a
given protein establishing the conservation thresholds for
each of the three types would be infeasible as the num-
ber of available homologs used for an alignment, as well
as evolutionary distances between them, vary by protein
family.

Position type profiles differ across protein classes

Swiss-Prot (Figure 6A) enzymes had proportionately more
Toggle and fewer Neutral positions than non-enzymes.
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Figure 6. Distribution of position types per protein class. Distributions are
based on the entire Swiss-Prot (A) and EXPV sets (B). Colors are accord-
ing to position type (green = Neutral, blue = Rheostat, red = Toggle). Per-
centages in (A) are rounded to the nearest integer and thus do not add up
to 100%. Fractions in (B) are averaged on a per-protein basis and differ
significantly among enzyme classes.

However, there was no difference in the number of
Rheostats between enzymes and non-enzymes. As Rheostats
allow for functional and evolutionary flexibility while
adapting to different environments, the latter result is ex-
pected. The increase of Toggles in enzymatic proteins, i.e.
positions critical for defining protein activities: active sites,
ligand specificity, etc., is very likely due to enzymes having
evolved to implement a set of very specific functionalities.
These mutation sensitive key positions are thus enriched in
comparison with non-enzymatic proteins. Note that this in-
crease in Toggles at the expense of the reduction in Neutral
sites is unlikely due to resolution limits of the funtrp predic-
tor, as this would likely produce fewer (more Toggle-similar)
Rheostats.

We further compared the mean per-protein fraction of
position types between the six main enzyme classes of the
experimentally annotated EXPV set: Oxidoreductases (EC
1), Transferases (EC 2), Hydrolases (EC 3), Lyases (EC 4),
Isomerases (EC 5) and Ligases (EC 6). Although the gen-
eral trend of more Neutrals than Rheostats than Toggles
was maintained across all enzyme classes, the classes dif-
fered significantly in the actual fractions per position type
(Figure 6B). For all EC classes, Toggles made up less than
a quarter of all positions per protein, suggesting that en-
zymes are fairly robust to mutation. We observed similar
trends for the full Swiss-Prot dataset (Supplementary Fig-
ure S3), with slight differences in position type distributions
likely explained by the latter dataset sequence redundancy.
Note that the EXPV proteins are experimentally annotated
and, thus, tend to be less redundant (98% of the sequences
are <90% sequence similar).

Distribution of position types varies by residue function

We compared the distribution of position types for catalytic
sites, binding sites, and other residues in Swiss-Prot enzymes
(Figure 7A). Note, that here we included only the 47 pro-
teins containing both binding and catalytic site annotations,
which were non-overlapping, i.e. annotated in different po-
sitions of the protein.

Figure 7. Distribution of position types across protein sites. (A) Enzymes,
(B) Metal binding proteins. Colors are according to position type (green
= Neutral, blue = Rheostat, red = Toggle). Percentages are rounded to the
nearest integer and thus do not add up to 100%.

As expected, the majority of catalytic sites were Toggles
and only 1% were Neutral. Note, that Rheostat and Neu-
tral prediction scores were rather low on average (0.54 and
0.6 respectively), suggesting that these are unreliable. Note,
however, there is sufficient evidence in the literature high-
lighting variation that is compatible with persistent, albeit
changed, functionality of enzymes (66,67). Thus, it is en-
tirely possible that some of the catalytic sites are in fact
Rheostats by our definition. Binding sites were less fre-
quently Toggles than catalytic sites, but much more fre-
quently so than the other residues, which were predomi-
nantly Neutral. Curiously, unlike fractions of Neutrals and
Toggles, the fraction of Rheostats across catalytic sites,
binding sites, and the other residues set was similar, likely
indicating the presence of allosterically relevant residues
present outside critical binding/active sites.

Notably the catalytic site primary actors - the charged
amino acids (D, E, R, K, H; Supplementary Figure S4) (68)
were unexpectedly low among the Toggles and Rheostats of
the other residues; i.e. they were very important in functional
sites, but not as relevant elsewhere in the protein. This find-
ing is particularly interesting in the light of the generic as-
sumptions made about irreplaceability of charged residues.
Outside the functional sites, the more commonly structure-
relevant large hydrophobic amino acids (C, W, Y, M, F) were
most often Toggles, while the smaller (A, I, L, V) were en-
riched in Rheostats (Supplementary Figure S4).

Distribution of position types varies by metal-ligand binding
proximity

We evaluated the composition of position types of residues
located in the proximity of metal-containing ligands (sahle
3D-structure spheres, Methods) for Swiss-Prot proteins. As
for functional sites above, we defined three sets of residues:
those annotated in Swiss-Prot as metal binding, sahle sphere
residues within 15Å of the ligand center, and other residues
(Figure 7B). We excluded from consideration any residues
annotated as metal binding and not located within a sahle
sphere.

Metal binding residues showed a similar distribution of
position types as catalytic sites (80% Toggle, 5% Neutral).
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Notably, sahle spheres were more enriched in Rheostats
(38%) than were the binding sites described above (26%).
However, the latter were more frequently Toggles (59%)
than the former (44%). This result suggests that binding
sites are critical features of function, while sahle spheres
encompass residues relevant to functional flexibility. More-
over, outside of sahle spheres Toggles were the least abun-
dant and more than half of the residues were Neutral, sug-
gesting that most of the other residues are significantly less
involved in protein function.

Preferred residues for metal binding are C, H, D and E
(69), which is confirmed by our data (Supplementary Fig-
ure S5). Toggles were the dominant position type for all
of these amino acids except glutamic acid (E), which were
mostly Neutrals or Rheostats. One possible explanation for
the observation that the variants affecting glutamic acids
only slightly impact protein function, is the length of its
side chain, which introduces greater flexibility and allows
for a larger range of possible substitutions than a more rigid
structure.

Position type profiles enable identification of disordered pro-
teins

Based on MetaDisorder predictions (Methods) we labeled
6309 Swiss-Prot proteins as disordered and 13 192 as or-
dered and compared the ratios of position types between
these sets. The two classes of proteins were clearly separa-
ble by distribution of position types (Supplementary Figure
S6).

Ordered proteins contained more than twice as many
Toggles as disordered proteins (19% vs. 8%), while dis-
ordered proteins were preferentially Neutral (68% versus
46%). Of the 668 proteins, where Neutrals made up over
80% of all residues, 94% (650) were disordered. This result
is, to a certain extent, expected due to frequent modulation
of function, i.e. Rheostatic activity, achieved via structural
changes; e.g. changes in residue solvent accessibility or sec-
ondary structure may, and often do, modulate functionality
(70). However, this finding may also indicate that disordered
proteins are poorly predicted by funtrp, as our method relies
on structural features. Another hypothesis based on this ob-
servation may be that our definition of position types is not
directly applicable to disordered proteins, where changes
in functionality may be harder to objectively measure and
evaluate.

Experiments focus on high impact variants

We evaluated the relationship of position types with ex-
perimental annotations of variant effects extracted from
the literature (PMD effect annotations as reported in (60)).
Note that the number of PMD variants was the same across
position types, i.e. 33% affecting Neutrals, 33% Rheostats,
and 34% Toggles. Note that, as mentioned above, position
type ratios per protein are not at all similar, i.e. Swiss-Prot
proteins had, on average, ∼53% Neutral positions, ∼33%
Rheostats and ∼14% Toggles. This emphasis on Toggles in
variant distribution suggests a strong preference in exper-
imental studies towards evaluating the most likely severe
variants and/or the most likely functionally or structurally

important regions, in contrast to the unguided DMS ap-
proach.

Based on PMD effect annotations, variants could be
categorized into three main experimentally-defined impact
groups: neutral, mild/moderate, and severe (Supplementary
Figure S7). In line with the above reasoning, there were
more severe variants (43%) than mild/moderate variants
(36%), and significantly more of either than of the neu-
tral variants (20%). We further evaluated the PMD variant-
affected position types. As expected, most of the Toggle po-
sitions (90%) had variants of at least some impact (severe
or mild/moderate; 58% severe only). The fraction of Rheo-
stat positions having non-neutral variants was slightly lower
(80% any effect; 50% severe only). However, even as much
as a third (35%) of the Neutral positions had severe variants
(67% any impact). This high level of variant impacts across
all evaluated protein positions underlines the exaggerated
specific selection in experimental studies for expected-to-be-
observed impact.

These observations of the bias in the reported variant im-
pacts highlight the need for variant effect predictors to take
into account or, at least, be mindful of, their effect-focused
training/testing/development data.

Position types can improve variant effect prediction

Changing the perspective to examine variant localization
per position we observed that roughly half (52%) of 3254
experimentally defined neutral variants were in funtrp pre-
dicted Neutral positions, while 18% affected Toggles (Sup-
plementary Figure S7). Of the severe (6872) variants 41%
affected Toggles and were least abundant in Neutrals (25%).
The variants in the mild/moderate group were nearly evenly
distributed (33%, 32%, 35% Neutrals, Rheostats, Toggles, re-
spectively) across all three position types. Note that find-
ing some neutral variants in Toggle positions and some se-
vere variants in Neutral positions is not unexpected, as our
position type definitions allow for some variety of effects.
However, because funtrp has not been trained to recognize
variant effects, the dominant trend of finding variants of ex-
pected impact in the right position types, i.e. neutral vari-
ants in Neutrals and severe variants in Toggles, highlights
our method’s ability to recognize functionally relevant pro-
tein positions.

The VarCards Ensemble Prediction Ratio/Score (Meth-
ods), which reflects the agreement of commonly used
variant effect prediction tools, correlated with the sever-
ity of PMD impacts (Figure 8) across position types;
i.e. there were more experimentally defined non-neutral
(mild/moderate and severe) variants at higher ensemble pre-
diction scores than at lower ones, while the opposite was
true for experimental neutral variants. The no-effect recall
of the ensemble predictor was highest at Neutral positions
(0.66 in Neutral, 0.44 in Rheostats, and 0.23 in Toggles; Fig-
ure 8 and Supplementary Table S6). In Toggles, the ensemble
predictor more frequently incorrectly identified the experi-
mentally non-neutral variants as being no-effect than the ex-
perimentally neutral variants (0.30 no-effect precision). This
suggests that no-effect predictions at Toggle positions are
less reliable than at Neutral positions (F1no-effect = 0.48 and
= 0.26, in Neutrals and Toggles respectively; Equation 3).
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Figure 8. VarCards ensemble predictions correlate with PMD variant ex-
perimental effects in corresponding funtrp position types. Each column re-
flects the fraction (y-axis) of the correct (blue) and incorrect (red) ensemble
predictions (x-axis) per PMD variant effect group (light = neutral, medium
= mild/moderate, dark = severe). The ensemble prediction ratio signifies the
fraction of tools predicting variant effect (no-effect prediction = 0/23, all
methods predict effect = 23/23). Thus, more correct no-effect predictions
are made in Neutral positions, while effect predictions are better at Toggle
positions.

As expected, the prediction of neutral variants at Rheostat
positions is less reliable than in Neutrals, but more reliable
than in Toggle positions (F1no-effect = 0.39 in Rheostats).

Due to the limited number of experimental neutrals in
PMD, they made up only a small fraction of all effect pre-
dictions per position type (effect precision 0.93 in Toggles,
0.89 in Rheostats, and 0.80 in Neutrals). However, effect re-
call was still significantly higher in Toggles than elsewhere
(0.95 in Toggles, 0.85 in Rheostats, and 0.56 in Neutrals),
suggesting that effect predictions at Toggle positions are
more reliable than at Rheostat or Neutral positions (F1effect
= 0.66, = 0.87, = 0.94 in Neutrals, Rheostats, and Toggles
respectively)

To demonstrate the potential impact of position type
knowledge on individual variant effect predictors we evalu-
ated the per position type performance for effect and no-
effect predictions of SNAP, SIFT, PolyPhen-2 and Envi-
sion. As with VarCards scores, effect predictions were con-
sistently better at Toggle compared to Neutral positions
(Figure 9, left panel) while no-effect predictions were bet-
ter at Neutral compared to Toggle positions (Figure 9, right
panel). Notably, this was the case for all three traditional
variant effect predictions methods as well as for Envision,
i.e. the more recent DMS data trained approach. These find-
ings unambiguously show that incorporating position types
leads to much more reliable variant effect prediction.

To further highlight the relationship between funtrp posi-
tion type predictions and annotated variant effects, we cal-
culated the experimental neutral vs. non-neutral ratios per
type across a range of funtrp prediction scores (Figure 10).

Figure 9. Performance of variant effect predictors significantly improves
when considering affected position type. Performance (F1 score) of five
variant effect predictors for effect (left panel) and no-effect (right panel)
predictions of PMD variants, evaluated overall (black crosses = all) and
per position type (green = Neutral, blue = Rheostat, red = Toggle).

Figure 10. funtrp predictions correlate with PMD effect annotations. Ratio
of experimentally neutral vs. non-neutral PMD variants (y-axis) per posi-
tion type (green = Neutral, blue = Rheostat, red = Toggle) at respective
funtrp prediction scores (x-axis). Higher number of positions at a certain
score is represented by more opaque dots. Trendlines are shown in the po-
sition type color scheme.

In line with the above results, we found that reliably pre-
dicted Toggle positions were more likely to have more non-
neutral variants (a lower ratio of neutral to non-neutral vari-
ants), while reliably predicted Neutrals had more neutral
variants (a higher ratio).

Thus, we suggest that variant effect predictors could im-
prove significantly if trained/developed separately for each
funtrp position-type and/or accounting for the reliability of
position type prediction. We expect that prediction could
be most improved for Rheostats, where increased resolution
is likely once the obvious Toggle and Neutral variants are
no longer the main focus. We note that Rheostat positions
are the most likely proverbial evolutionary fireplaces (60),
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i.e. locations where a multitude of tiny changes optimize a
functionality best fit to the particular environment. Tracing
the conversion of Rheostats into Neutrals or Toggles across
homologs can likely highlight the evolutionary paths taken
or currently in place for any given molecular functionality.
Thus, our new definition of position types will likely con-
tribute to the understanding not only of biophysics of pro-
tein folding and related epistatic mutation effects, but will
also highlight prime candidate residues for directed evo-
lutionary pathways, and help shine light on pathogenicity
mechanisms.

DATA AVAILABILITY

The Java based implementation of Random Forest Classifi-
cation is part of the WEKA library (53) and can be found
at https://sourceforge.net/projects/weka.

R is a free software environment for statistical comput-
ing and graphics and can be downloaded at https://www.r-
project.org.

The PredictProtein Docker image used for feature gen-
eration can be found at https://doi.org/10.5281/zenodo.
3018245. The latest release is available via Docker Hub
(bromberglab/predictprotein). The source code is accessi-
ble at https://bitbucket.org/bromberglab/predictprotein.

The Big80 sequence database used in the PredictProtein
pipeline is available at http://rostlab.org/rost-db-data/big,
prefix big 80.

The funtrp prediction pipeline Docker image used in
this work can be found at https://doi.org/10.5281/zenodo.
3020352. The latest release is available via Docker Hub
(bromberglab/funtrp). The source code is accessible at
https://bitbucket.org/bromberglab/funtrp.

funtrp training data can be found at https://doi.org/10.
5281/zenodo.3066344.

funtrp is also available as webservice at https://services.
bromberglab.org/funtrp.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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