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Purpose: Rare disease diagnosis is challenging in medical image-based artificial intelligence due to a natural
class imbalance in datasets, leading to biased prediction models. Inherited retinal diseases (IRDs) are a research
domain that particularly faces this issue. This study investigates the applicability of synthetic data in improving
artificial intelligence-enabled diagnosis of IRDs using generative adversarial networks (GANs).

Design: Diagnostic study of gene-labeled fundus autofluorescence (FAF) IRD images using deep learning.
Participants: Moorfields Eye Hospital (MEH) dataset of 15 692 FAF images obtained from 1800 patients with

confirmed genetic diagnosis of 1 of 36 IRD genes.
Methods: A StyleGAN2 model is trained on the IRD dataset to generate 512 � 512 resolution images.

Convolutional neural networks are trained for classification using different synthetically augmented datasets,
including real IRD images plus 1800 and 3600 synthetic images, and a fully rebalanced dataset. We also perform
an experiment with only synthetic data. All models are compared against a baseline convolutional neural network
trained only on real data.

Main Outcome Measures: We evaluated synthetic data quality using a Visual Turing Test conducted with 4
ophthalmologists from MEH. Synthetic and real images were compared using feature space visualization, simi-
larity analysis to detect memorized images, and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)
score for no-reference-based quality evaluation. Convolutional neural network diagnostic performance was
determined on a held-out test set using the area under the receiver operating characteristic curve (AUROC) and
Cohen’s Kappa (k).

Results: An average true recognition rate of 63% and fake recognition rate of 47% was obtained from the
Visual Turing Test. Thus, a considerable proportion of the synthetic images were classified as real by clinical ex-
perts. Similarity analysis showed that the synthetic images were not copies of the real images, indicating
that copied real images, meaning the GAN was able to generalize. However, BRISQUE score analysis indicated that
synthetic images were of significantly lower quality overall than real images (P < 0.05). Comparing the rebalanced
model (RB) with the baseline (R), no significant change in the average AUROC and k was found (R-AUROC ¼ 0.86
[0.85-88], RB-AUROC ¼ 0.88[0.86-0.89], R-k ¼ 0.51[0.49-0.53], and RB-k ¼ 0.52[0.50-0.54]). The synthetic data
trained model (S) achieved similar performance as the baseline (S-AUROC ¼ 0.86[0.85-87], S-k ¼ 0.48[0.46-0.50]).

Conclusions: Synthetic generation of realistic IRD FAF images is feasible. Synthetic data augmentation does
not deliver improvements in classification performance. However, synthetic data alone deliver a similar perfor-
mance as real data, and hence may be useful as a proxy to real data.
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an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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There is a lack of understanding of rare eye conditions due in access to care.1,2 A subtype of rare eye diseases are

to their data scarcity and a shortage of experts familiar with
these conditions, causing delays in diagnosis and disparities
ª 2022 by the American Academy of Ophthalmology
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inherited retinal diseases (IRDs), a diverse group of
monogenic retinal disorders causing visual impairment or
1https://doi.org/10.1016/j.xops.2022.100258
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blindness.3 A genetic diagnosis is considered crucial for the
management and care of these conditions. With advances in
retinal imaging technology, such as fundus autofluorescence
(FAF) scans, gene-specific patterns of photoreceptor
dysfunction and apoptosis in IRDs can be detected to help
guide genetic diagnosis.4 However, this pattern recognition
task remains challenging,5,6 since even in countries with
wide access to genetic testing and dedicated eye genetics
services, a genetic diagnosis is elusive in > 40% of the
cases.7e10 Therefore, Decision Support Systems, in the
form of deep learning (DL) based prediction models, may be
of assistance.11e13 Recently, we developed Eye2Gene, a DL
model that can assist a genetic diagnosis from input images
of either FAF, infrared, or OCT modalities.14 While
Eye2Gene was able to achieve expert-level performance
(top-5 accuracy, 85.6%), we found that the performance of
the classifiers is limited by the natural class imbalance in our
IRD dataset, where gene-associated disease classes such as
ABCA4 and USH2A are typical 10-fold more common than
NRE23 and TIMP3 (Supplementary Fig 1).15 As a result of
this imbalance, the prediction models tend to over predict
common classes and under predict rarer ones.16

Common DL solutions to this problem include data
augmentation via resampling techniques, random image
transformations, and class reweighting schemes; however,
their impact has been shown to be moderate on model
generalizability.17 An alternative strategy is to expand the
training dataset by generating synthetic examples of rarer
classes using generative adversarial networks (GANs), a
special type of DL framework.18,19 Generative adversarial
networks are composed of 2 simultaneously trained neural
networks: a generator, which creates a synthetic image
using a random input in the form of a noise vector and a
discriminator, which predicts whether the generator’s
output is synthetic or real. Over multiple training
iterations, the generator “learns” the complex distribution
of real data, from which new images can then be sampled.
This approach, which can be thought of as a more
sophisticated version of data augmentation, allows us to
represent more combinations of patterns within the
dataset, potentially improving the generalizability of DL
classifiers downstream.

Prior to GANs, synthetic retinal imaging studies have
used mathematical models that describe the optic disk, the
fovea, and particularly the vascular trees, a technique known
as “retinal phantoms."20,21 In the last 3 to 4 years, synthetic
image generation has focused on generative DL-based
methods like GANs and Autoencoders.22-26 A notable
GAN approach is Pix2Pix GAN, where a binary vessel tree
map is fed as input and the synthetic image is generated with
the same tree structure.27 While this approach can be
effective, segmentation maps are time-consuming to obtain
and not always available with datasets. Moreover, in dis-
eases such as IRDs, where the blood vessels are not always
clearly visible due to lesions, this approach is challenging.

The generation of synthetic pathological retinal images in
the context of IRDs has not yet been explored, especially
with reference to modalities such as FAF. Additionally, the
evaluation of synthetic data quality is an ongoing challenge.
Generally, most medical and GAN studies rely on a
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combination of qualitative and quantitative metrics. Quali-
tative evaluation involves evaluator-dependent visual ex-
amination of images and is mostly feedback or description-
based.21,22 Quantitative metrics typically assess the images
in terms of 3 criteria: visual fidelity, diversity, and
generalization. Commonly used metrics that measure the
distance between the feature statistics of synthetic images
and real images are the Fréchet Inception Distance and
Inception Score. These metrics, while theoretically valid,
are difficult to interpret from a clinical standpoint.28,29

Finally, the clinical applicability of synthetic data is, to
our best knowledge, an underexplored area in
ophthalmology. Synthetic data could have potential
applications for improving data access for efficiently
developing predictive tools as well as medical education.

In our study, we investigate the applicability of synthetic
data in DL-based classification of IRDs. Our study is the
first, to our knowledge, to comprehensively evaluate the
reliability and utility of GAN-generated synthetic FAF
retinal scans in this domain.
Methods

Ethics Statement

This study was approved by the Institutional Review Board and the
United Kingdom Health Research Authority (20/HRA/2158)
“Advanced Statistical Modeling of Multimodal Data of Genetic
and Acquired Retinal Disease” Integrated Research Application
System project ID: 281957. All research adhered to the tenets of
the Declaration of Helsinki.
Moorfields Eye Hospital IRD Dataset

As part of the Moorfields Eye Hospital (MEH) IRD cohort, pre-
viously described in Pontikos et al., 2020,11e13 genetic diagnoses
and imaging studies including FAF, infrared, and OCT modalities
were retrospectively studied for 4236 individuals who had attended
MEH between May 2006 and May 2018. Patients received a
confirmed genetic diagnosis from an accredited genetic testing
laboratory. Our experiments focus on the subset of patients
examined using FAF imaging. Fundus autofluorescence retinal
scans were acquired following pupil dilation, achieved through the
administration of 2.5% phenylephrine and 1% tropicamide. Images
were acquired at a 55-degree field of view using a confocal scan-
ning laser ophthalmoscope (Heidelberg Spectralis, Heidelberg-
Engineering) with an excitation filter of 488 nm in automatic
real-time mode.

For the DL experiments subsequently described, we investi-
gated 36 genetic diseases comprising > 80% of the IRD dataset
(Fig 1). Various preprocessing and quality control steps were
performed beforehand to ensure the data are appropriately
formatted for model development (Supplementary Fig 3).
Following quality control, we had a dataset of 15 692 FAF
images. In terms of the patient demographics, this dataset
comprised of 1782 individuals from 1396 families across 16
different ethnicities, with majority of patients being of British
origin (information on race was obtained from the hospital
records). The average number of scans acquired per patient per
gene ranged between 5 and 19 scans. Further details are
provided in Supplementary Figure 4. For more information about
the MEH IRD cohort, please refer to Pontikos et al. 2020.15
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As part of the model development process, the dataset was
divided into a training set of 10 589 images (70%), a validation set
of 2650 images (15%), and a held-out (i.e., test) set of 2403 images
(15%). This splitting was done through stratified sampling, in order
to maintain a similar gene distribution across subsets and was also
done by patient ID to avoid the same patient appearing in multiple
subsets. The training set, specifically, was used for the GAN training
and the subsequent classifier model training with synthetic images
(detailed in section “DL Classifier Training with Synthetic Data”).
The validation set was used to select the best model during training
and the test set was used to evaluate the classifier’s performance,
which is described in further detail in the section “Classifier Statis-
tical Evaluation.” These subsets were kept the same for all classifier
training experiments. We note, however, in our test set specifically, 4
rare classes representing 3% of the entire dataset were not covered
due to the limited number of images in these classes and their
exclusion during the sampling process.

Implementation

Our study consists of 2 components: (1) synthesizing artificial FAF
images and evaluating their quality and (2) training a DL classifier
using real and synthetic data to evaluate diagnostic performance.

FAF Image Synthesis

We trained a StyleGAN2-ADA model developed by NVIDIA-
Labs, for creating synthetic retinal images (https://github.com/
NVlabs/stylegan2-ada-pytorch). This model was primarily chosen
due to its state-of-the-art image quality, short training time, and
relatively low compute cost. Additionally, from initial experiments
with multiscale gradient GANs, we found that the types of images
generated were not diverse in terms of the types of lesions and
anatomical structures (Supplementary Fig 5). Hence, we believed
that StyleGAN2, due to its adaptation of elements from the
neural style transfer domain, would be capable of higher-quality
and higher-diversity image generation.30,31 Details on model
training and hyperparameter selection are presented in
Supplementary Table 1. Using our trained StyleGAN2 model, we
generated new synthetic data by providing randomly sampled
Gaussian noise vectors and the gene class indices.

Synthetic Data Evaluation

Currently, the most popular metrics for synthetic data evaluation
include the Fréchet Inception Distance and Inception Score, which
analyze image quality with reference to feature statistics computed
over a set of synthetic and real samples. However, these metrics
express the notion of quality into a single number for which there is
no upper bound, which makes them difficult to interpret.28,29

Furthermore, with medical imaging data, it is essential that
synthetic images are studied on a dataset and pixel level to
ensure that samples are novel and clinically plausible and
specific patient imaging features are not memorized. With that in
mind, we put forward 3 primary considerations:
1) Fidelity: Do the synthetic images have a visual appearance
similar to the real images?

2) Diversity: Is the distribution of the synthetic data similar to
that of the real data?

3) Generalization: Has the GAN generated novel images or
merely copied the training images?
We use a panel of qualitative and quantitative approaches to
answer these questions, which we describe subsequently.
Subjective Visual Quality Evaluation

To address question (1), we define a visually coherent synthetic
image as one that experts, when not told it is synthetic, cannot
confidently classify as synthetic. This is studied by conducting a
Visual Turing Test with the help of specialists from MEH. Spe-
cifically, we developed a web-based quiz platform (https://syn-
theye.com/,1) for grading our images which was shared with 4
clinical experts, 2 junior, and 2 senior ophthalmologists with
expertise in IRDs. The quiz presents a user with a real or
synthetic image with 50% probability, which can be graded as
“Real,” “Synthetic,” or “Unsure.” For our quiz databank, we
focus on images from 3 disease classes, namely ABCA4, BEST1,
and PRPH2, as these have distinct and well-studied imaging phe-
notypes that trained ophthalmologists can recognize. The genetic
disease is provided along with the FAF image to the user for
grading, as this can be informative. Adapting the terminology from
Chuquicusma et al., 2018,32 we measure the True Recognition Rate
(TRR) and Fake Recognition Rate (FRR). Fake recognition rate is
the percentage of synthetic images that were classified as synthetic
and TRR is the percentage of real images classified as real.
Additionally, we study the interobserver agreement to see which
images were often confused as real and which images were
unanimously considered to be fake.

Quantitative Evaluation

For questions (2) and (3), we use a quantitative approach to
compare the real and synthetic images. First, a novel synthetic
dataset is generated, having the same class distribution as the
training set of real images. Next, we train an InceptionV3 classifier
to predict the genetic diagnosis based on a dataset of real FAF
images.33 As an initial empirical test of whether the synthetic
images were well represented by our GAN, we compute the
confusion matrix of this classifier evaluated on the synthetic
dataset. For a more detailed analysis, the penultimate layer
activations of this model, which represent the high-level features
relating to the disease, are used for comparing the images in feature
space. We visualize these real and synthetic features in 2D using
Universal Manifold Approximation and Projection (UMAP). This
is a dimensionality reduction technique that is mathematically
demonstrated to represent complex relationships between high-
dimensional data in lower dimensions.34 We set the number of
nearest neighbors to be 20 and the minimum distance to 0.99,
which effectively visualizes the clusters representing the 36
classes in 2D, as determined from a simple grid search.

With the UMAP, however, the differences between the images
in this abstract 2D are not always representative of the actual dif-
ferences in images. To quantify the similarity between image
features, we perform a similar test as in Coyner et al., 2021,35 using
the Euclidean distance between the feature vectors (extracted using
the InceptionV3-based feature extractor described earlier) in each
class, comparing the distances between real and synthetic image
features to the distances between real image features. As an addi-
tional test, we implemented the Learned Perceptual Image Patch
Similarity metric. This is similar to our metric, in that DL-classifier
based features are extracted and compared, except that the Learned
Perceptual Image Patch Similarity classifier was specifically trained
on a dataset of human-perceptual similarity judgments.36

Finally, as an objective metric of overall image quality, we
compute the Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) score. This score is determined using pixel-based
features, particularly image statistics relating to the local normal-
ized luminance signals and neighborhood pairwise pixel relation-
ships, which are determined using image processing.37 A lower
value of BRISQUE indicates better perceptual image quality. To
3
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Figure 1. Distribution of the fundus autofluorescence (FAF) dataset for 36 genes, obtained from the Moorfields Eye Hospital inherited retinal disease cohort.
There is a significant class imbalance where ABCA4 dominates the remaining genes.
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compare the synthetic and real image quality scores per class, we
perform Levene’s test for equal variances between the groups,
after which we report Welch’s t test to compare means.

DL Classifier Training with Synthetic Data

To investigate the impact of synthetic data in DL model training,
we trained 10 different classifier models as shown in Table 1.
All models are based on an InceptionV3 network pretrained on
the ImageNet dataset, which are then fine tuned on our images.33

Details on the hyperparameter settings are shared in
Supplementary Table 3. As a baseline, we train a model first on
the training set of real images (“R”), which is the same training
set used for the GAN development. Next, we vary the relative
number of images per class by augmenting the baseline dataset
with 1800 and 3600 synthetic images (We call these augmented
datasets “R1800S” and “R3600S”). Next, we train a model on a
fully rebalanced dataset (“RB”). This dataset is created by
identifying the class with the largest number of examples
(ABCA4, 25% of IRD dataset) and then augmenting the
remaining N-1 classes to the same size as the majority class (N
is the total number of classes). This results in a dataset of size
N*M, where M is the number of images in the majority class.
Additionally, we wished to study the impact of synthetic data
augmentation in a much smaller real dataset, as this is a common
scenario in medical imaging and DL model development. For
this, we repeated the same experiments but with only 20% of the
real data training set. This would allow us to check if the impact
of synthetic data augmentation is correlated with real dataset
size. Note that the GAN, in this scenario, is also trained on the
subset of the training data. In summary, our first 8 training
experiments comprise of 2 regimes: Regime 1, which uses the
entire training set of 10 587 real images, and Regime 2, which
4

uses a subset of 2509 real images. The last 2 experiments in
Table 1, which we define as “Regime 1.5," study the value of
synthetic data as a proxy to real data. Particularly, the first
experiment “S” trains a model only on synthetic data, which is
then compared against the baseline to assess if performance is
similar. Empirically, this is to assess whether the synthetic data
contain similar content as the real data that is valuable to the
classifier. The second experiment, “RBProxy,” rebalances the
real dataset from Regime 2 with synthetic data generated by the
GAN in Regime 1. This is to assess whether synthetic data can
be used as a data proxy, since the Regime 1 GAN trains on the
entire training set, hence covering more image patterns than the
Regime 2 GAN. A diagrammatic summary of all our
experiments is presented in Figure 2.

Classifier Statistical Evaluation

Given that our holdout test set has an imbalanced distribution, our
statistical evaluation of the above DL models was conducted per
disease class. Specifically, we used a one-versus-rest stratification,
where the multiclass classifier was defined as separate binary
classifiers, i.e., Class 1 versus Not Class 1, Class 2 versus Not
Class 2, and so on. With this approach, we then determine the
receiver operating characteristic curves which describe the binary
classifier’s skill under various classification thresholds. To sum-
marize the performance, we determined the area under the receiver
operating characteristic curve (AUROC) for each classifier, where
a value of � 0.5 represents a low-skill classifier and a value closer
to 1 represents a perfect classifier. The overall performance of the
model was determined by averaging the AUROC over all binary
classifiers. Secondly, we computed Cohen’s Kappa for each model,
which is useful as an overall measure of the agreement between the
model’s predictions with the ground true labels. As per standard



Table 1. Novel datasets for training deep learning models for inherited retinal disease diagnosis task. Datasets comprise different com-
binations of real and synthetic data generated by StyleGAN2. The regime indicates the amount of real data used. Regime 1 uses the entire

training set and augments with different amounts of synthetic data, whereas Regime 2 uses approximately 20% of the training set.

Regime Model ID GAN Training Set Classifier Training Set Real Size Synthetic Size Total

1 R All real training images All real training images 10 589 0 10 589
1 R1800S All real training images All real training images þ 1800

synthetic images*
10 589 1800 12 389

1 R3600S All real training images All real training images þ 3600
synthetic imagesy

10 589 3600 14 189

1 RB All real training images Rebalanced dataset (all real training
images þ synthetic images)

10 589 87 007 97 594

2 R 20% of real training images 20% of real training images 2509 0 2509
2 R1800S 20% of real training images 20% of real training images þ 1800

synthetic images*
2509 1800 4309

2 R3600S 20% of real training images 20% of real training images þ 3600
synthetic imagesy

2509 3600 6109

2 RB 20% of real training images Rebalanced Dataset (20% of real
training images þ synthetic
images)

2509 21 108 23 617

Regime 1.5 RBProxy All real training images Rebalanced Dataset (20% of real
training images þ synthetic
images)

2509 21 108 23 617

Regime 1.5 S All real training images Synthetic data onlyz 0 10 589 10 589

GAN ¼ generative adversarial network; ID ¼ identification; R ¼ baseline model; RB ¼ rebalanced model; S ¼ synthetic data trained model.
*1800 images ¼ 50 new images added per class.
y3600 images ¼ 100 new images added per class.
zThe synthetic data has the same size and class distribution as the training set.

Veturi et al � Synthetic Data Applications in Ophthalmology
guidelines, a Kappa between 0 and 0.2 represents slight agreement,
0.21 and 0.4 represents fair agreement, 0.41 and 0.60 represents
moderate agreement, 0.61 and 0.80 as high agreement, and 0.81
and 1 as substantial agreement. For the average AUROC and
Kappa, we determined the 95% confidence intervals using stratified
bootstrapping with 500 replicates. To compare the AUROCs per
class for statistical differences, we used DeLong’s test. Lastly, we
recognize that with our test set, the presence of repeat imaging may
influence our results. Hence, as a simple sanity check, we perform
the statistical analyses on a test set with only 1 image per patient.
Specifically, we implement Wilcoxon’s signed rank test to compare
the AUROCs between the full test set and the alternative test set.

Code

All experiments were conducted in PyTorch using four NVIDIA
GeForce RTX 3090 GPUs. The codebase has been made open
source under an MIT license at https://github.com/pontikos-lab/
syntheye.

Results

Visual Quality Evaluation

Sample images for 9 different IRD classes generated by our
trained StyleGAN2 model are presented in Figure 3. A
larger grid of image samples for 36 classes is provided in
Supplementary Figure 8. While most of our images were
of reasonable quality, an initial visual inspection found
some abnormal generations including images with poor
exposure, noisy images, foreground leakage, and
fragmented retinal vessels (see Supplementary Fig 9).
Our Visual Turing Tests conducted with experts from
MEH found the average FRR and TRR to be 47% and 63%,
respectively, with per-user results showing a large vari-
ability (see the confusion matrix in Supplementary Table 4).
When excluding the images that were skipped (i.e., images
that the doctors marked as “Unsure”), we found the FRR
and TRR to be 53% and 69%, respectively. These results
indicated that while the doctors could reasonably
distinguish real images as real on average, a considerable
proportion of synthetic images were classified as being
realistic. For an unbiased result, we additionally computed
the Fleiss Kappa (k) score to determine the interobserver
agreement for the real and synthetic images, finding
k ¼ �0.012 for the real images and k ¼ 0.027 for the
synthetic images. Therefore, there was poor agreement
between the experts. With respect to the synthetic images
only, Supplementary Figure 10 shows images in the quiz
which were unanimously agreed by experts to be either
synthetic or realistic looking.
Quantitative Evaluation

Feature Space Analysis. The feature space visualization
using UMAP is shown in Figure 4 for 12 different IRD
classes. The results for all 36 classes are in Supplementary
Figure 12. We found that our synthetic images contain
class-specific features that overlap with the real data.
Especially, we saw a significant degree of visual overlap in
the rarer classes, which suggests that our SynthEye GAN is
able to learn the distribution of the rarer cases. Additionally,
5
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Figure 2. Diagrammatic representation of the pipeline for synthetic data generation and augmentation into our inherited retinal disease dataset.
Figure legend indicates the types of operations performed on the model or data. GAN ¼ generative adversarial network; R ¼ baseline model; RB ¼
rebalanced model; S ¼ synthetic data trained model.
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we provide the confusion matrix for the classifier evaluated
on the synthetic dataset (Supplementary Fig 13).

Image Similarity with Training Set. Comparing pairs of
synthetic and real feature vectors using the Euclidean Dis-
tance, we identified the most similar pair with a distance of
8.85. In contrast, the real images, when compared with each
other (disregarding identical real images), had a minimal
distance of 0.65. This finding suggests that the most similar
pair in the real-versus-synthetic comparisons is still not as
similar as in the real-versus-real cases. Hence, the generated
6

synthetic images are not copies of the real dataset images.
We further validated this by examining some real-synthetic
pairs in Figure 5. While the synthetic images share a similar
grayscale profile and structure to their real counterparts,
there are differences in the vessel trees and subtle
differences in the lesions, showing that the synthetic
images are not exact copies. Comparatively, we found that
the Learned Perceptual Image Patch Similarity metric was
not as useful for detecting structurally similar cases as it
mostly picked the noisier and poorer quality images as



Figure 3. Synthetic images produced by StyleGAN2. Images are sampled from 9 inherited retinal disease classes, as indicated by the rows.
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Figure 4. Visualization of synthetic and real image features in low-dimensional space using the Uniform Manifold Approximation and Projection algorithm.
The gray point cloud depicts all the synthetic and real points collectively. Within the cloud, the colored points of each subfigure indicate the distribution of
the real versus synthetic features within that class.

Ophthalmology Science Volume 3, Number 2, Month 2023
similar. These results are shown in Supplementary
Figures 15 and 16.

BRISQUE Score Comparisons

The distribution of BRISQUE scores for the synthetic and
real datasets is compared in Figure 6 (see Supplementary
Fig 18 for all 36 classes). The overall quality of the
synthetic data is significantly lower than that of the real
data (P < 0.05) for all classes, as indicated by the higher
BRISQUE score of the synthetic data.

DL Classifier Performance

The receiver operating characteristic curves for the DL
classifiers trained with different datasets in Table 1 are
presented in Figure 7 for 10 classes (see Supplementary
Figs 20 and 21 for full results). The results for AUROC
and Cohen’s Kappa when averaging over all classes are
presented in Table 2. Comparing the AUROC for the real
and rebalanced model for Regime 1, we find that both
models have similar AUROCs, indicating no change in
performance. The Kappa values also show minimal
change, indicating that both the real and rebalanced
models have a similar level of agreement with the true
labels. With Regime 2, we observe similar results, which
demonstrate that the impact of the synthetic data
8

augmentation is not correlated with real dataset size.
However, we do find that the model trained only on
synthetic data achieves similar diagnostic performance on
the test set as the model trained on the real dataset. These
findings, combined with the findings from the augmented
datasets, suggest that our synthetic data do not degrade
classifier performance. Furthermore, comparing the
Regime 2 RB performance with the RBProxy model, we
see a significant improvement in the average AUROC
(0.80 e0.89). Finally, our sanity check with the smaller
test set having 1 image per patient finds no significant
difference in the results for most models (P < 0.05,
Wilcoxon’s signed rank test), which indicates that the
repeat imaging samples in our test set do not cause over-
optimistic performance in our models. For further refer-
ence, we provide the confusion matrices for our models in
Supplementary Figures 22-31.
Discussion

The natural class imbalance in rare disease datasets such as
IRDs causes DL models to be biased towards the more
common diseases. Our study investigates a data-centric
approach to address this problem by augmenting datasets
with GAN-generated images of rare diseases. We first
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acknowledge that with our dataset, there are several con-
founding factors such as repeat imaging samples per patient,
the differences in genetic etiology of the IRDs in the rep-
resented individuals, and the correlations between in-
dividuals from the same family, that can bias our DL
algorithms towards particular groups. From our experi-
ments, we conclude the following: (1) SynthEye has the
ability to generate synthetic IRD images of high visual fi-
delity, (2) SynthEye generated images are similarly diverse
like real images and are not exact copies of real images;
therefore, they are appropriate for downstream analysis
tasks, but, (3) synthetic data augmentation does not improve
downstream IRD classification performance. However,
training models with synthetic data alone provide a similar
classification performance as real data and could potentially
be used as a proxy for real data.

Our Visual Turing Test conducted with clinical experts
found an average FRR of 47% and TRR of 63%. This means
that 47% of the synthetic images in our quiz were correctly
classified as synthetic. The remaining 53% consisted of
synthetic images which the graders were unsure about
(11%) or incorrectly classified as real (42%). As a com-
parison to this result, the TRR indicates that 63% of the real
images were identified as real. These results suggest that our
images are of a reasonable quality that is appropriate for
downstream analysis tasks; however, we also note that our
data are not impeccable in terms of the retinal anatomical
structures. One artifact we do find to be problematic are the
blood vessel discontinuities (Supplementary Fig 9), which
are potentially due to the patch-based processing by con-
volutional operators of the generator network which lack
oversight of the global structure of the vessel tree. Typically,
this would be addressed via a Pix2Pix strategy using binary
images of vascular trees as input to the GAN; however, this
is not available with our dataset. Alternatively, enforcing a
global coherence in the “vessel” tree through a vessel-ness
based objective function may address this artifact. Un-
paired image translation methods (CycleGAN) may also be
worth exploring as we can use vessel trees from domains
other than IRDs.38 Other image quality issues identified in
the synthetic dataset, such as low exposure and
background leakage (Supplementary Fig 8), are most
likely due to the retention of poor-quality images even af-
ter the data cleaning process, which the GAN learned to
reproduce. Some of these issues could potentially be fixed
through postprocessing methods such as applying a circular
mask to remove background leakage or rescaling low-
exposure images. At a broader level, we also note that our
qualitative evaluation is highly subjective, as seen by the
large variance in the quiz scores and negative k between
evaluators. Especially with IRDs, even the relatively com-
mon ones like ABCA4, PRPH2, and BEST1, which were
Figure 5. Most similar synthetic and real image pairs from 10 sample
inherited retinal disease classes, based on Euclidean distance. Image pairs
have a similar color profile and structure, but there are differences in the
vessel structure and lesions, validating that our generative adversarial
network has not copied images from the training set.

9



Figure 6. Distribution of Blind/Referenceless Image Spatial Quality Evaluation (BRISQUE) scores for the synthetic (dark blue) and real (light blue) images.
BRISQUE evaluates the overall quality of an image as a function of pixel-wise statistics. The BRISQUE score of the synthetic data is significantly greater
than that of the real images (P < 0.05) for all classes, indicating that synthetic data is of a lower quality than the real data.
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tested in this quiz, can have overlapping phenotypes and
outlier cases, which may confuse trained ophthalmologists.
With this in mind, further qualitative studies with a larger
panel of ophthalmologists are crucial to obtaining a stronger
consensus on the synthetic data quality.

In order to compare our synthetic and real data more
concretely, we additionally used quantitative approaches.
Due to the lack of a widely adapted quantitative metric for
evaluating synthetic data quality, we primarily focused on
feature space analysis using UMAP visualization and
similarity analysis with the Euclidean distance to detect
memorized images. Overall, our SynthEye-generated im-
ages showed similar feature content to real images, as
evidenced by the overlap between real and synthetic fea-
tures in the UMAP in Figure 3. However, we notice that
many of the disease classes overlapped in the feature
space, suggesting that it is possible for the GAN to
incorporate information from similar classes. This is
expected to some extent, considering that distinct IRD
genes can still have similar imaging phenotypes, for
example in the retinitis pigmentosa genes RPGR, RP1,
and RHO. A naive solution may be to train a separate
GAN for each class, although this can be
computationally expensive with several classes. Another
strategy would be to attach an auxiliary classifier to the
GAN’s discriminator by incorporating a penalty function
into the loss function such that the generator is penalized
10
for generated images that do not contain the specific
features of that class.

Similarity analysis found that the synthetic data were not
memorized as the smallest Euclidean distance between real
and synthetic images was larger than when comparing real
images with themselves. While this is a simple empirical test
for detecting image copies in the synthetic dataset, it does
not necessarily imply that GAN will always produce novel
images. In fact, studies have demonstrated that GANs can
potentially memorize images or even capture subtle attri-
butes depending on dataset size and training duration.39,40

Hence, further investigation into automated evaluation
methods that specifically rely on (computationally
extracted) retinal anatomical features as guides may be
worth exploring.

Finally, we study the impact of synthetic data
augmentation for DL-based IRD diagnosis by comparing
the DL model performance when trained on several types
of augmented datasets. While our experiments alleviate the
class imbalance in the dataset, we remark that this strategy
combines existing features represented in real images, and
does not introduce new information about the diseases. In
this regard, we consider synthetic augmentation to be a
more sophisticated version of traditional data augmentation
and resampling, which are typically done in limited data
scenarios. From our experiments, we found that synthetic
data augmentation provides no significant improvement in



Figure 7. Receiver operating characteristic curves for 10 inherited retinal disease (IRD) classes. (A) Models shown are real only (R), R1800S (real þ 1800
synthetic images), R3600S (real þ 3600 synthetic images), rebalanced dataset (RB), and synthetic only (S). (B) Models shown are same as in (A) but with
20% of the real data used. RBProxy is a model with 20% of the real data and synthetic data learned from the 100% of the real data. Each model has an area
under curve (AUROC) value indicated in legend which describes the diagnostic performance of the classifier. * indicates significant difference between the
AUROC of the model and the baseline R model of that plot (P < 0.05, Delong’s test).
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the average AUROC score, indicating that the diagnostic
ability of the classifier is similar across all dataset types.
The Cohen’s Kappa values, which describe the overall
agreement between predictions and ground truth, also show
no change across the different models. Despite this, we see
that performance is not degraded when using synthetic data
in both training regimes, which demonstrates that our
synthetic images retain similar content as the real images.
Our RBProxy model, in particular, demonstrates this pos-
itive finding as we notice an AUROC improvement from
0.80 to 0.89 when combining the limited real data from
Regime 2 with synthetic data generated in Regime 1. This
leads us to believe that synthetic data can be useful as a
proxy for real data.

Our results with SynthEye prompt further research into
the beneficial applications of synthetic data in IRD model
development. Aside from addressing the aforementioned
issues in our image generations, we hope to further study
the benefits of synthetic data generators in a federated
learning setting. Specifically, rather than trying to gain
direct access to external IRD datasets, synthetic data
generators can be trained on these real datasets and then
11



Table 2. Average AUROC and Cohen’s Kappa values for all 10
classifier models. Values are reported along with their 95% CI. CIs
were determined using stratified bootstrapping with 500 replicates.

Regime Model Average AUROC (95% CI) Kappa (95% CI)

1 R 0.86 (0.85e0.88) 0.51 (0.49e0.53)
1 R1800S 0.86 (0.85e0.87) 0.52 (0.49e0.54)
1 R3600S 0.86 (0.84e0.87) 0.52 (0.50e0.54)
1 RB 0.88 (0.86e0.89) 0.52 (0.50e0.54)
2 R 0.79 (0.78e0.81) 0.45 (0.43e0.47)
2 R1800S 0.79 (0.77e0.80) 0.45 (0.42e0.47)
2 R3600S 0.81 (0.80e0.82) 0.44 (0.42e0.47)
2 RB 0.80 (0.79e0.82) 0.43 (0.41e0.46)
1.5 RBProxy 0.89 (0.88e0.90) 0.40 (0.38e0.42)
1.5 S 0.86 (0.85e0.87) 0.48 (0.46e0.50)

AUROC ¼ area under the receiver operating characteristic; CI ¼ confi-
dence interval; R ¼ baseline model; RB ¼ rebalanced model; S ¼ synthetic
data trained model.
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used for downstream AI model training. This will allow
for multi-institutional data access in a privacy-preserving
manner. Recently, diffusion models have also grown
popular within the image synthesis community due to
their ease to train high-resolution high-quality images,
which may make them a suitable alternative to GANs.41

Considering the biases in our dataset, we also aim to
improve our synthetic images by incorporating prior
12
knowledge like the mode of inheritance, age, and
gender, which can correlate with the imaging
phenotypes. This would allow us to cover the under-
represented attributes. Furthermore, while our current
synthetic augmentation experiments have not shown sig-
nificant improvement in classification performance, we
believe there is scope to explore other augmentation
strategies. For example, decision-boundary aware
augmentation has recently shown to be beneficial due to
the incorporation of edge cases that are more challenging
to classify, therefore potentially improving the classifi-
cation ability.42,43 Finally, our work with generative
models can open interesting research avenues into
disease progression modeling with IRDs and outlier
detection in genetic diseases using imaging phenotypes.44

Overall, our study has demonstrated that generation of
high-quality synthetic FAF images of IRDs is a feasible
task. Synthetic data augmentation, however, when applied
to real imbalanced IRD data, does not deliver improvements
in disease classification. But synthetic data alone do deliver
similar performance to real data, and therefore could be used
as a proxy for real data.
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