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In Brief
A multi-omics strategy was used
to map the proteome, miRNA,
metabolome, and lipidome of
EVs derived from human primary
tumor (SCC-9) cells and
matched lymph node metastatic
(LN1) cells. Differentially
abundant molecules associated
with the metastatic phenotype
were enriched for key processes
and pathways. An integrative
analysis revealed 11 ‘hub
proteins’ that are correlated with
reduced survival and tumor
aggressiveness in patients with
cancer according to public
databases. These EV molecules
are candidates as prognostic
markers in oral cancer.
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RESEARCH
A Reductionist Approach Using Primary and
Metastatic Cell–Derived Extracellular Vesicles
Reveals Hub Proteins Associated with Oral
Cancer Prognosis
Ariane Fidelis Busso-Lopes1, Carolina Moretto Carnielli1 , Flavia Vischi Winck2,
Fábio Malta de Sá Patroni1, Ana Karina Oliveira1 , Daniela Campos Granato1,
Rute Alves Pereira e Costa1 , Romênia Ramos Domingues1, Bianca Alves Pauletti1,
Diego Mauricio Riaño-Pachón2 , Juliana Aricetti3, Camila Caldana4, Edgard Graner5,
Ricardo Della Coletta5, Kelly Dryden6, Jay William Fox7, and Adriana Franco Paes Leme1,*
Oral squamous cell carcinoma (OSCC) has high mortality
rates that are largely associated with lymph node metas-
tasis. However, the molecular mechanisms that drive OSCC
metastasis are unknown. Extracellular vesicles (EVs) are
membrane-bound particles that play a role in intercellular
communication and impact cancer development and pro-
gression. Thus, profiling EVs would be of great significance
to decipher their role in OSCC metastasis. For that purpose,
we used a reductionist approach to map the proteomic,
miRNA, metabolomic, and lipidomic profiles of EVs derived
from human primary tumor (SCC-9) cells and matched
lymph node metastatic (LN1) cells. Distinct omics profiles
were associated with the metastatic phenotype, including
670 proteins, 217 miRNAs, 26 metabolites, and 63 lipids
differentially abundant between LN1 cell– and SCC-9 cell–
derived EVs. A multi-omics integration identified 11 ‘hub
proteins’ significantly decreased at the metastatic site
compared with primary tumor–derived EVs. We confirmed
the validity of these findings with analysis of data from
multiple public databases and found that low abundance of
seven ‘hub proteins’ in EVs from metastatic lymph nodes
(ALDH7A1, CAD, CANT1, GOT1, MTHFD1, PYGB, and SARS)
is correlated with reduced survival and tumor aggressive-
ness in patients with cancer. In summary, this multi-omics
approach identified proteins transported by EVs that are
associated with metastasis and which may potentially serve
as prognostic markers in OSCC.

Head and neck squamous cell carcinoma (HNSCC) exhibits
high incidence and morbidity, and oral squamous cell
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carcinoma (OSCC) comprises over 90% of all cases, showing
a 5-year survival rate of 50% (1). The presence of lymph node
metastasis in the neck remains a major prognostic factor
affecting patients with OSCC, which can decrease the 5-year
survival rates to lower than 50% (2). Thus, a deep profiling of
the molecular events in OSCC is crucial to understand disease
aggressiveness and identify additional parameters or molec-
ular markers that assist in determining patient outcome.
Extracellular vesicles (EVs) are important mediators in the

intercellular communication and in several physiological pro-
cesses (3). In fact, EVs comprise all types of secreted mem-
brane vesicles and can be divided into exosomes, which are
small membrane vesicles from endosome origin, 30 to 100 nm
in diameter, and microvesicles, which are plasma membrane
derived with a size range of 50 nm to 1000 nm (4, 5). EVs
harbor a specific subset of proteins, miRNA, sRNA, mRNA,
DNA, metabolites, and lipids, and their content is defined to
deliver specific messages to the recipient cells (3, 5, 6).
Different cell types, including cancer cells, can actively release
vesicles to the extracellular environment (7, 8), and increasing
evidence indicates that EVs are mediators of cancer devel-
opment, progression, and metastasis (7, 9, 10). Thus, EVs hold
great promise for the discovery of novel biomarkers for clinical
diagnosis and monitoring of cancer (11, 12).
The promotion of tumor growth and progression by tumor

cell–derived exosomes has been demonstrated in mouse
models. It was evidenced that the control of metastatic pro-
gression may occur through the crosstalk between tumor-
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derived exosomes and bone marrow progenitor cells (10). In
addition, tumor-derived EVs are important factors to deter-
mine the future sites of metastasis by mediating the devel-
opment of premetastatic niches, a condition where the
microenvironment is prepared for the colonization of circu-
lating tumor cells. This was demonstrated for pancreatic
ductal adenocarcinomas–derived exosomes, which induced
liver premetastatic niche formation (9), as well as in a study
showing that exosomes from different tumor cells present a
predicted destination through the presence of integrins
inserted in the membrane (13), highlighting tumor-derived
exosomes as important factors in organ-specific metastasis.
Thus, targeting tumor-secreted vesicles has emerged as a
potential tool for the detection and understanding of human
cancer progression, including head and neck tumors.
An increasing number of vesicular components have been

identified in the last years, including proteins, mRNAs, miR-
NAs, and lipids (14). Therefore, screening of EVs by different
omics approaches represent a rich strategy to help deci-
phering the vesicular biology and its role in a specific disease.
Omics techniques have been broadly used to determine the
complexity of biological systems and uncover the molecular
signatures underlying the cellular phenotypes (15). The inte-
grative approach of multi-omics data may enhance the un-
derstanding of the molecular dynamics involved in the
pathophysiology of diseases and may lead to novel strategies
for early detection, prevention, and treatment in cancer
(16–19). In the present study, we examined the molecular
repertoire of EVs released by primary site tumor cells (SCC-9)
and their paired lymph node metastatic (LN1) cells to explore
how EVs play a significant role in OSCC dissemination and
lymph node metastasis. Using high-throughput multi-omics
techniques and data-integration strategies, we determined the
proteomic, miRNA, metabolomic, and lipidomic profiles of
SCC-9- and LN1-derived EVs and correlated with transcript
levels and prognosis using public databases. Our results
indicate that OSCC-derived EVs carry specific cargoes
associated with the metastatic phenotype. We also revealed a
set of central molecules, the ‘hub proteins’, that may be
secreted in blood and are candidates as prognostic markers in
patients with oral cancer.
EXPERIMENTAL PROCEDURES

Cell Line and Culture Conditions

Human OSCC cell line SCC-9 (ATCC CRL1629), human foreskin
fibroblast cell line BJ-5ta, and human umbilical vein endothelial cell
line HUVEC were obtained from the American Type Culture Collection.
The SCC9-LN1 (LN1) cell line is derived from metastasized cells
collected from primary lymph nodes of animals that received SCC-9
cells (20). A primary human oral fibroblast cell line was established
using tissue explants as described previously (21). SCC-9 and LN1
cells were cultured in Dulbecco's modified Eagle's medium (DMEM)
HAM's F12 media, HUVEC and primary fibroblasts were maintained in
DMEM, and BJ-5ta was cultured in DMEM 199. All the media
2 Mol Cell Proteomics (2021) 20 100118
contained 10% fetal bovine serum and antibiotics, such as penicillin
(100 mg/L) and streptomycin (100 mg/L), and were supplemented with
hydrocortisone (100 mg/L).

EV Isolation

EVs were isolated through differential centrifugation based on
previous methodology (22). Briefly, SCC-9 and LN1 cells were
cultured until 80% cell confluence in 150-mm-diameter plates,
washed three times with PBS, and further cultivated for 48 h in media
without fetal bovine serum, at 37 ◦C and 5% CO2. After serum
deprivation treatment, the conditioned media (200 ml) was collected
and centrifuged at 200g for 5 min, 2000g for 15 min, 3500g for 30 min,
and 10,000g for 90 min. The cleared supernatant was further ultra-
centrifuged at 100,000g for 90 min at 4 ◦C, and vesicle-containing
pellets were washed with PBS by ultracentrifugation for 1.5 h at the
same speed. The samples were stored at −80 ◦C until further use.

Immunolabeling of EVs

EVs isolated from SCC-9 and LN1 cells (1 × 10e10 particles) were
incubated in 400 μl of the blocking solution (1% bovine serum albumin
in PBS) for 2 h at 4 ◦C. The primary antibody against protein Annexin-2
(BD Biosciences) or Flotillin-1 (Sigma) was added in the concentration
of 1:200 directly in the blocking solution containing the EVs and
incubated at room temperature (RT) for 1 h with gentle agitation. The
suspension of EVs was further cleaned by eluting the suspension by
centrifugation (50g, 30 s, 22 ◦C) through a mini spin column containing
Sephadex G-10 resin (50-mg dry weight prereconstituted in PBS) pre-
equilibrated for 2 h at 4 ◦C with the blocking solution. The secondary
antibody Alexa Fluor 568 (1:1000) (Life Technologies) was added to
the eluate, and the suspension was incubated for 1 h at RT with gentle
agitation in the dark. The EV suspension was again cleaned as
mentioned above using Sephadex G10, and the final eluate was
analyzed directly through fluorescence nanoparticle tracking analysis
(NTA).

NTA

NTA was performed using a NanoSight NS300 instrument (Nano-
Sight), equipped with a green laser illumination (532 nm laser). Aliquots
of the isolated EVs were diluted 500 times and measured at 18 ◦C in
the PBS solution for 60 s with gain adjustments. Data capture and
analysis were performed with the software NTA 2.3 Build 0013 with
equal parameters for the internal comparisons of nonfluorescence and
fluorescence profiles, except that camera gain was set to the
maximum value for the acquisition of fluorescence NTA profiles. For
fluorescence NTA, a 565-nm-long pass filter was used for specific
detection of immunolabeled EVs.

Transmission Electron Microscopy

For transmission electron microscopy, EVs from SCC-9 and LN1
cell lines were resuspended in PBS (2.5 × 10e8 particles per grid) and
adsorbed on an Ultrathin Carbon Film/Haley Carbon 400 mesh copper
grid positively charged with 15 mA for 25 s. The carbon grids were
stained with 2% uranyl acetate and analyzed in the transmission
electron microscope JEOL 1400 PLUS (JEOL Ltd) equipped with a
tungsten filament and operated at an acceleration voltage of 120 kV.
The images were acquired in an OneView camera (4K × 4K pixel) using
the Software Gatan DigitalMicrograph (Gatan Inc).

Cryo-EM

EVs from SCC-9 and LN1 cell lines (1 × 10e12 particles) were
vitrified by standard methods for cryo-EM. An aliquot was applied to a
glow-discharged, perforated carbon-coated grid (2/2-3C C-flats),
blotted with filter paper, and rapidly plunged into liquid ethane.
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Low-dose images were recorded on an FEI Tecnai F20 Twin Trans-
mission Electron Microscope (FEI) operating at 120 kV, at a magnifi-
cation of 29,000× or 62,000× with a pixel size of 0.37 nm or 0.18 nm,
respectively, at the specimen level, and at a nominal under focus
ranging from 1 to 4 μm. All images were recorded with a Gatan 4K ×
4K pixel CCD camera. The grids were stored in liquid nitrogen and
then maintained in the microscope at −180 ◦C using a Gatan 626 cryo-
stage.

EV Uptake

Cellular uptake of SCC-9 EVs and LN1 EVs was analyzed using the
Operetta High Content Imaging System (PerkinElmer). HUVEC, BJ-
5ta, and primary fibroblast cell lines were used as recipient cells.
EVs (6 × 10e7 particles) were labeled with 2 μM 1,1′-dioctadecyl-
3,3,3′,3′-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate
salt (emission at 660 nm) (Molecular Probes–Thermo Scientific) and
incubated with recipient cells (1 × 10e4) for 48 h at 37 ◦C and 5% CO2.
The cells were fixed with 4% paraformaldehyde for 20 min at RT and
labeled using 4′,6-diamidino-2-phenylindole (emission at 488 nm)
(Thermo Scientific) and CellTracker green CMFDA (emission at
517 nm; Thermo Scientific) before image acquisition.

Proteomics Analysis of EVs and Cells

SCC-9 and LN1 cells (three processing replicates for each group)
and EVs (3 × 10e10 particles; three processing replicates for each
group; three technical replicates for each processing replicate) were
submitted to in-gel digestion with trypsin (23). Peptide desalting was
performed using StageTips method in C18 Empore disks (3M) (24).
Peptides from cell samples were quantified using the Pierce Quanti-
tative Colorimetric Peptide Assay (Thermo Scientific), and 2 μg was
submitted to subsequent analysis. The samples were analyzed by LC-
MS/MS on an ETD enabled Orbitrap Velos mass spectrometer
(Thermo Fisher Scientific) connected to the EASY-nLC system
(Proxeon Biosystems) through a Proxeon nanoelectrospray ion
source. Peptides were separated by a 2 to 90% acetonitrile gradient in
0.1% formic acid using an analytical column EASY-Column (10 cm ×
id 75 μm, 3-μm particle size) at a flow rate of 300 nl/min over 80 min.
The nanoelectrospray voltage was set to 2.2 kV, and the source
temperature was 275 ◦C. All instrument methods were set up in the
data-dependent acquisition mode. The full-scan MS spectra (m/z
300–2000) were acquired in the Orbitrap analyzer after accumulation
to a target value of 1e6. Resolution in the Orbitrap was set to r =
60,000, and the 20 most intense peptide ions with charge states ≥2
were sequentially isolated to a target value of 5000 and fragmented in
the linear ion trap by low-energy CID (normalized collision energy of
35%). The signal threshold for triggering an MS/MS event was set to
1000 counts. Dynamic exclusion was enabled with an exclusion size
list of 500, exclusion duration of 60 s, and repeat count of 1. An
activation q = 0.25 and activation time of 10 ms were used. Identifi-
cation of proteins was performed with MaxQuant v.1.5.8.0 (25, 26)
against the UniProt Human Protein Database (92,180 protein se-
quences, 36,693,332 residues, released March 2016) using the
Andromeda search engine. Carbamidomethylation was set as fixed
modification and N-terminal acetylation and oxidation of methionine
as variable modifications; maximum two trypsin missed cleavage and
a tolerance of 4.5 ppm for precursor mass and 0.5 Da for fragment
ions were set for protein identification. A maximum of a 1% false
discovery rate was set for both protein and peptide identification.
Protein quantification was performed using the label-free quantitation
algorithm implemented in MaxQuant software, reflecting a normalized
protein quantity deduced from all peptide intensity values. A minimal
ratio count of 1 and a 2-min window for matching between runs were
required for quantitation. Proteoforms were automatically merged in a
single protein group, except when identified by at least one unique
peptide. Protein identifications assigned as ‘Reverse’ and ‘Only
identified by site’ were excluded from further analysis. Contaminants
were not removed from the dataset because keratins are of special
interest in the study of squamous cells. The raw data obtained for cells
and EVs were run independently and combined in a unique MaxQuant
search to further compare the proteomes from both sources. Label-
free quantitation intensity values were used for statistical tests.

miRNA Sequencing of EVs

Total RNA was extracted from SCC-9- and LN1-isolated EVs using
TRIzol reagent, according to manufacturer’s instructions (Life Tech-
nologies). Quality was accessed by Bioanalyzer 2100 instrument with
the Agilent RNA 6000 Nano kit (Agilent Technologies Inc). Small RNA
sequencing was performed by the Macrogen Inc, through the con-
struction of six libraries (three processing replicates from SCC-9 EVs
and three processing replicates from LN1 EVs) and sequencing of 50-
nt single-end reads, with generation of approximate 2.5 million reads
per sample on average using Illumina MiSeq instrument (Illumina). The
sequencing data were extracted from FASTQ files and processed
using miRDeep v. 2.0.0.7 (27). Illumina adapter sequences were
trimmed using Trimmomatic (28), and reads with size ranging from 15
to 31 nucleotides in length were kept for mapping purposes. Mature
and hairping miRNA sequence reads from Homo sapiens were ob-
tained from the miRBase database (http://www.mirbase.org/) and
used for mapping purposes and miRNA identification.

Metabolomics Analysis of EVs

Primary metabolites were extracted from SCC-9- and LN1-derived
EVs (5 × 10e10 particles; five processing replicates for each group)
using methyl-tert-butyl-ether extraction buffer (29). Internal standards
(C13 sorbitol) were spiked in the extraction buffer for assessing
extraction performance and metabolite recovery. Polar fractions were
concentrated, derivatized with N-methyl-N-trimethylsilyltri-
fluoroacetamide, and analyzed by GC (7890 N, 210 Agilent) coupled to
TOF-MS (Pegasus HT, LECO) in both split (1:15 and 1:50) and splitless
modes (30). Processing replicates, quality controls (i.e., mix of
chemical standards), and blank samples were randomized and
included in the running queue. Chromatograms were exported from
LECO ChromaTOF software (version 3.25) to R v3.2.2 (https://www.r-
project.org) for subsequent analysis. Peak detection, retention time
alignment based on FAMEs, and mass spectral comparison with an in-
house reference library were performed using TargetSearch (31).
Metabolite identification was also manually supervised. Metabolites
were quantified based on the peak intensity for a selected mass and
subsequently normalized to total ion count.

Lipidomics Analysis of EVs

Lipidomic profiles were determined in EV samples from SCC-9 and
LN1 cell lines (1 × 10e10 particles; three processing replicates for
each group) by metaSysX company (Germany). Sample preparation
was performed according to metaSysX standard procedure (29). The
samples were measured with an ACQUITY Reversed-Phase Ultra
Performance Liquid Chromatography (Waters) coupled to a Q Exactive
mass spectrometer (Thermo Fisher Scientific). Chromatograms were
recorded in full-scan MS-positive and MS-negative modes (mass
range 100–1500 m/z) as well as in dd-MS2 top three mode (data-
dependent MS) with the following settings: full-scan MS mode (mass
range 100–1500 m/z) and normalized collision energy 25 for the
identification of the fatty acid composition. Extraction of the LC-MS
data was accomplished with the software Refiner MS 10.5 (Gene-
data, http://www.genedata.com). Alignment and filtration of the
LC-MS data were completed using an in-house software. The anno-
tation of the content of the samples was accomplished by matching
Mol Cell Proteomics (2021) 20 100118 3

http://www.mirbase.org/
https://www.r-project.org
https://www.r-project.org
http://www.genedata.com


Extracellular Vesicles Proteins and Oral Cancer Prognosis
the extracted data from the chromatograms with a library of reference
compounds in terms of accurate mass and retention time. In addition,
the fatty acid composition was accessed using an in-house–devel-
oped algorithm.

Statistical Analysis and Functional Characterization

Proteins, miRNA, metabolites, and lipids data were log2 trans-
formed and used to determine differentially abundant molecules be-
tween LN-1- and SCC9-derived EVs and/or cells in Perseus v. 1.3.0.4
software (Student's t test; p-value ≤ 0.05) (32). SCC-9 EVs and LN1
EVs were grouped according to molecular profiles using principal
component analysis (PCA) in the web server MetaboAnalyst 4.0 (33),
and hierarchical cluster heat maps in R environment. The overlay
between molecules for each condition was visualized in Venn dia-
grams generated in FunRich tool (34). miRNA target gene prediction
was done for differentially expressed miRNAs using the miRNet plat-
form (35), which contains experimentally validated miRNA-target in-
teractions from ten databases (miRTarBase, TarBase, miRecords,
SM2miR, Pharmaco-miR, miR2Disease, PhenomiR, StarBase, EpimiR,
miRDB). Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
base (36) was used to map overrepresented pathways among the
miRNA-targeted mRNAs. Meaningful Gene Ontology (GO) biological
processes significantly enriched in proteomics and metabolomics
data were determined in FunRich (34) and MetaboAnalyst 4.0 (37)
tools, respectively. The subcellular location for proteomics dataset
was assigned from information available in the Human Protein Atlas
(38). A p-value ≤ 0.05 was used to determine significance in functional
characterization analysis, when feasible.

Integrative Analysis of Multi-Omics Data

To indicate OSCC-derived EVs molecules that are highly connected
with other molecules identified across the omics datasets, we devel-
oped an integrative approach based on physical or functional asso-
ciations using Python programing language. First, proteins, miRNA,
and metabolites differentially abundant between LN1 EVs and SCC-9
EVs (LN1 EVs versus SCC-9 EVs, Student's t test, p-value ≤ 0.05)
were selected for data integration considering physical associations.
miRNA-target experimentally validated interactions were assigned
from miRNet tool (35) and merged with miRNA and proteins differ-
entially abundant between LN1- and SCC-9-derived EVs from our
dataset. Differential metabolites were included in the workflow
considering gene and metabolic compounds interaction retrieved from
KEGG reactions (36). Finally, to identify molecules functionally asso-
ciated with lipids, differential proteins (LN1 EVs versus SCC-9 EVs,
Student's t test, p-value ≤ 0.05) were searched against the LIPID
MAPS Proteome Database (LMPD), which retrieves proteins involved
in lipid processes and pathways (39). The final network was visualized
on Cytoscape 3.4.0 (40). Node sizes were used to represent fold
change values for each dataset, and geometric shapes showed
different omics data types. Central proteins interacting with the other
omics molecules were named ‘hub proteins.’ The correlation of mean
intensities between LN1 and SCC-9 cells and EVs for ‘hub proteins’
was evaluated using Pearson correlation coefficient (r). The proteins
were submitted to GO annotation of significantly overrepresented
biological processes using Molecular Signatures Database from Gene
Set Enrichment Analysis software (p-value ≤ 0.05) (41, 42).

Search for Prognostic Markers Using Public Databases

Single ‘hub proteins’ assigned in the multi-omics integrative anal-
ysis were associated with clinical and pathological features from pa-
tients with cancer using the public databases The Cancer Genome
Atlas (TCGA), GSE41613, E-MTAB-1328, and GSE65858. First, tran-
script levels were retrieved from the public repository TCGA available
4 Mol Cell Proteomics (2021) 20 100118
in the Genomic Data Commons Data Portal (https://portal.gdc.cancer.
gov) for oral and other cancer types (43, 44). The association with
clinical and pathological features was performed using gene expres-
sion information from primary tumors and clinical data retrieved from
patients with OSCC in TCGA repository, totalizing 331 patients
included from the following oral areas: the (i) alveolar ridge, (ii) base of
the tongue, (iii) buccal mucosa, (iv) floor of the mouth, (v) hard palate,
(vi) oral cavity, and (v) oral tongue. The selected targets were evalu-
ated according to different clinical categories, as follows: (i) recur-
rence, (ii) death status, (iii) lymph and vascular invasion, (iv) margin
status, (v) tumor histological grade, (vi) lymph node status, (vii) stage,
(viii) tumor size, (ix) perineural invasion, and (x) extracapsular nodal
spread. For unbiased group assignment, we usedmclust package (45)
under R environment. Data were tested for normality and homogeneity
of variance using the Shapiro–Wilk test (p-value ≤ 0.05) to drive de-
cisions of parametric or nonparametric tests for group comparison
with the clinical categories (46). The power of proteins to discriminate
patients according to clinical features was evaluated by the con-
struction of receiver operating characteristic (ROC) curves using
Random Forest. The area under the curve (AUC) was measured, and
the decision threshold was assigned to the value 70%. We also
evaluated if the selected proteins were associated with metastasis
(primary site tissue versus metastasis tissue), considering gene
expression profiles for multiple cancer types with information available
in TCGA for both primary tumor and metastasis with more than three
samples per site, as follows: skin cutaneous melanoma (primary site:
103 samples; metastasis: 367 samples), THCA (thyroid cancer, 502;
8), and breast invasive carcinoma (1.102; 7).

Next, the Head and Neck Cancer Database (HNCDB) (47) and
PROGgeneV2 (48) were used to create survival plots based on gene
expression of input genes in the GSE41613 (49), E-MTAB-1328 (50),
and GSE65858 (51) datasets, which contains clinical and molecular
information from 167 patients with OSCC, 89 patients with HNSCC,
and 269 patients with HNSCC, respectively. Median gene expression
was used as a cut-off to determine low and high expressions of
selected markers, and p-values were obtained by log-rank tests for
Kaplan–Meier curves. We also associated TCGA transcript information
for selected proteins with survival data in multiple tumor types using
the Human Protein Atlas platform (52). A p-value ≤ 0.05 was used to
determine significance.

Search for Circulating Molecules in Blood Using a Public
Repository

The presence of proteins from our multi-omics approach in blood
samples was determined using The Human Protein Atlas (http://www.
proteinatlas.org) repository. A list of proteins and the estimated con-
centrations in human plasma from healthy donors based on MS-based
proteomics was downloaded from The Human Plasma Proteome
available in the Human Protein Atlas platform (downloaded on
February 20, 2020; https://www.proteinatlas.org/humanproteome/
blood) and used to estimate the presence and abundance of our
proteins of interest on this biological fluid.

Experimental Design and Statistical Rationale

Herein, we determined the role of multiple molecules carried by
primary tumor (SCC-9)- and lymph node metastasis (LN1)-derived EVs
in OSCC dissemination and metastasis. MS-based proteomics, lip-
idomics, and miRNA sequencing were run in processing triplicates for
EVs from SCC-9 and LN1 cell lines to capture random biological
variation. Proteomics analysis performed previously in our group
showed that cell experiments in processing triplicate offer a good
reliability of measurements and statistical power (53). To avoid random
noise associated with protocols or equipment, proteomics data were
also acquired in technical triplicates for each processing replicate and
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averaged. Considering that metabolite distributions are subjected to
an enormous temporal and spatial variability (54), metabolomics ex-
periments were carried out in processing quintuplicate, as described
before in the literature (55). The log2 intensities from the multi-omics
analysis are normally distributed and a two-sided Student's t test
was used in Perseus v. 1.3.0.4 software (34) to determine proteins,
miRNAs, lipids, and metabolites differentially abundant between LN1
and SCC-9 EVs (p-value ≤ 0.05). To avoid reducing the number of
differentially abundant molecules and failing to perform process
enrichment and the multi-omics analysis, we considered a non-
adjusted p-value obtained from Student's t test and filtered out the
proteins, miRNA, lipids, or metabolites using other strategies, like (i)
filtering the datasets by a minimum of two processing replicates in at
least one condition; (ii) performing the integrative analysis of the multi-
omics, and (iii) for the proteomes, carrying out a comprehensive
search of prognostic markers using public databases. PCA, hierar-
chical cluster heat map, subcellular location analysis, and biological
processes/pathways enrichment were used to characterize the group
of molecules associated with the metastatic behavior (33, 34, 36–38).
An integrative multi-omics approach revealed central ‘hub proteins’,
whose transcript levels were retrieved from public databases and
associated with clinical information from patients with cancer. The
public gene expression data were tested for normality and homoge-
neity of variance using the Shapiro–Wilk test to drive decisions of
parametric (Student's t test and ANOVA) or nonparametric (non-
adjusted Wilcoxon and Kruskal–Wallis) tests for group comparison
with clinical categories (46). An AUC higher than 70% was set as the
decision threshold to discriminate patients in the ROC curve. For
survival analysis, p-values were obtained by log-rank tests for Kaplan–
Meier curves in the HNCDB (47), PROGgeneV2 (48), and the Human
Protein Atlas (52) databases using gene expression information from
patients with cancer. A p-value ≤ 0.05 was used to determine sig-
nificance in all statistical analyses.

RESULTS

SCC-9 and LN1 EVs Show a Similar Size, Morphology, and
Expression of Markers

In the present work, we investigated the differences be-
tween the molecular repertoire of EVs released by primary
tumor (SCC-9) and metastatic cells (LN1), both derived from
OSCC of the tongue, using a multi-omics approach followed
by integrative analysis (Fig. 1A). SCC-9 EVs and LN1 EVs were
isolated by ultracentrifugation, and the molecular and
morphological characterization were performed by NTA and
high-resolution microscopy, respectively. SCC-9 EVs showed
a mean size of 172.6 ± 83.9 nm, whereas LN1 EVs had a mean
size of 148.1 ± 59.4 nm. The protein markers Annexin-2 and
Flotillin-1, usually identified in exosomes and microvesicles,
were detected in the isolated EVs (Fig. 1B). We observed that
Annexin-2 was detected in approximately 50% of the EVs
isolated from SCC-9 and LN1 cells, whereas Flotillin-1 was
detected in around 56% of the EVs isolated from SCC-9 cells
and 68% of the EVs isolated from LN1 cells. It is important to
note that this method only detects the proteins that have an
antigen sequence accessible/exposed in the external surface
of the EVs, and it is likely that a higher percentage of EVs may
carry these molecules. Besides, the EVs showed a specific
shape and size under transmission electron microscopy and
cryo-EM (Fig. 1, C and D, respectively). The qualitative
cryo-EM analysis revealed EVs with smooth surfaces and no
internal density, as well as vesicles with electron-dense in-
ternal granules. Moreover, we observed EVs with a multilay-
ered pattern and some vesicles with spikes extending from the
membrane, most likely proteins.

The Isolated EVs Are Active and Can Be Internalized by
Recipient Cells

Considering that EVs must be taken up by recipient cells to
have a role in intercellular communication, we incubated EVs
isolated from SCC-9 and LN1 cells with endothelial (HUVEC)
and fibroblast (BJ-5ta and primary culture) recipient cells for
48 h. Microscopy analysis revealed that EVs from both cell
lines could be internalized by recipient cells and are mostly
located in the perinuclear region (Fig. 1E). Between 11.0% and
15.0% of HUVEC and BJ-5ta cells showed internalized EVs
derived from SCC-9 and LN1 cells, respectively (supplemental
Fig. S1). However, the number of primary fibroblasts con-
taining internalized EVs was highly discrepant for SCC-9 EVs
and LN1 EVs: while 17.0% of primary fibroblasts could uptake
SCC-9-derived EVs (supplemental Fig. S1A), only 2.3% of the
cells had LN1 EV internalized (supplemental Fig. S1B). By this
analysis, we confirmed that the isolated EVs released by pri-
mary tumor and metastatic oral cancer cells can be selective
regarding internalization, showing more or less uptake by
recipient cell lines.

EVs From OSCC Cells Carry Proteins Associated with the
Metastatic Behavior

Aiming to identify the protein composition of OSCC-derived
EVs associated with lymph node metastasis, we determined
the proteomic profile of EVs isolated from SCC-9 and LN1 cell
lines using an LTQ Orbitrap Velos mass spectrometer (Thermo
Fisher Scientific). Detailed information for all peptides and
proteins identified is presented in supplemental Tables S1 and
S2. The exclusion of entries assigned as ‘Reverse’ and ‘Only
identified by site’ and filtering for two valid values in at least
one group resulted in 1696 proteins identified for SCC-9 EVs
and 1419 proteins for LN1 EVs (Fig. 2A), which could classify
EVs into two distinct groups, as shown in the heat map and
PCA plot (Fig. 2, B and C; supplemental Table S3).
Six hundred 70 proteins were differentially abundant be-

tween LN1 EVs and SCC-9 EVs, with 140 upregulated (21%)
and 530 downregulated (79%) in LN1 EVs compared with
SCC-9 EVs (Student's t test; p-value ≤ 0.05) (supplemental
Table S4). By using FunRich tool and GO annotation, in gen-
eral, we observed that proteins downregulated in EVs from
LN1 were involved in translation and transcription processes,
including translational initiation (p-value = 7.960E-13), rRNA
processing (p-value = 0.0001), and nuclear RNA splicing (p-
value = 0.0002), whereas upregulated proteins in LN1 EVs may
play a role in exosome assembly and secretion through pos-
itive regulation of exosomal secretion (p-value = 8.234E-06),
multivesicular body assembly (p-value = 0.0009), and
Mol Cell Proteomics (2021) 20 100118 5



FIG. 1. Experimental design and characterization of EVs isolated from primary tumor (SCC-9 EVs) and metastatic (LN1 EVs) OSCC cell
lines. EVs were isolated from SCC-9 and LN1 cell lines, characterized, and submitted to a multi-omics approach, as shown in panel A. Annexin-
2 and Flotillin-1 were identified in EVs by NTA-based antibody for both cell lines (B). Morphological characterization was performed by trans-
mission electron microscopy and cryo-EM (C and D, respectively). HUVEC (human endothelial), BJ-5ta (human fibroblast), and primary fibroblast
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regulation of extracellular exosome assembly (p-value =
0.018), as well as in cell adhesion mediated by integrin (p-
value = 0.0045) (Fig. 2D). Interestingly, both downregulated
and upregulated datasets have a significant number of in-
flammatory proteins, which is represented by the enrichment
of neutrophil degranulation process (8.3% of proteins upre-
gulated in LN1 EVs, p-value = 1.286E-06 and 16% of down-
regulated proteins, p-value = 6.381E-07).
We also evaluated the subcellular location of differentially

abundant proteins using the Human Protein Atlas database
and found that downregulated proteins are mainly related to
proteins located in the cytosol (n = 131 proteins), nucleoplasm
(n = 61), and plasma membrane (n = 57), whereas upregulated
proteins were identified more frequently in the cytosol (n = 31),
followed by vesicles (n = 25), nucleoplasm (n = 23), and
plasma membrane (n = 23) (Fig. 2E).
LN1 and SCC-9 EVs Mostly Reflect the Content of Their
Precursor Secreting Cells

To correlate the composition of EVs with their progenitor
cells, we performed proteomics analysis of SCC-9 and LN1
whole cells. After excluding ‘Reverse’ sequences and ‘Only
identified by site’ entries and filtering for two valid values in at
least one group, 2705 proteins were identified for SCC-9 and
LN1 parental cells, 818 of them differentially abundant between
the two groups (Student's t test; p-value ≤ 0.05) (supplemental
Tables S5–S8). About 83.7% and 83.6% of all proteins carried
by LN1 andSCC-9 EVswere sharedwith LN1 andSCC-9whole
cells, respectively, indicating that LN1 and SCC-9 EVs mostly
reflect the composition of the origin cells (supplemental
Fig. S2A; supplemental Tables S9–S12). The enrichment anal-
ysis using FunRich software against the GO database showed
that both LN1 and SCC-9 whole cells and EV proteomes are
involved in the same biological processes, indeed confirming
the similarity between progenitor cells and EVs (supplemental
Fig. S2B). LN1 and SCC-9 cells and EVs significantly (p-value
≤ 0.05) carry proteins associated with inflammation (neutrophil
degranulation; 7.8% and 11.8% of proteins identified in LN1
cells and EVs, 7.8% and 10.7% of proteins identified in SCC-9
cells and EVs, respectively), viral reproduction (7.4% and 8.0%
of proteins identified in LN1 cells and EVs, 7.4% and 7.6% of
proteins identified in SCC-9 cells and EVs, respectively), signal
transduction (4.4% and 5.7% of proteins identified in LN1 cells
and EVs, 4.4% and 5.4% of proteins identified in SCC-9 cells
and EVs, respectively), and translational initiation (4.8% and
6.9%of proteins identified in LN1cells andEVs, 4.8%and6.1%
of proteins identified in SCC-9 cells and EVs, respectively). Only
proteomes from LN1 cells and EVs are enriched for nuclear-
cells lines were used as recipient cells in internalization assays for SC
different cell lines (E). The EVs are shown in red (DiD, Em. 660 nm), nucl
(CMFDA, Em. 517 nm). cryo-EM, cryo-electron microscopy; DAPI, 4′, 6
lindodicarbocyanine, 4-chlorobenzenesulfonate salt; EVs, extracellular ve
carcinoma.
transcribed mRNA catabolic process (3.9% and 5.0% of pro-
teins identified in LN1 cells and EVs, respectively), while SCC-9
cells and EV content is uniquely involved in post-translational
protein modification (4.3% and 5.5% of proteins identified in
LN1 cells and EVs, respectively) (p-value ≤ 0.05).

LN1-Derived EVs Display an miRNA, Metabolic, and Lipid
Profile Associated with Tumor Dissemination

To better explore the composition of OSCC-derived EVs
that is associated with lymph node metastasis, we evaluated
the miRNA, metabolomic, and lipidomic profiles of SCC-9-
and LN1-derived EVs.
The miRNA analysis resulted in a list of 457 miRNAs iden-

tified for EVs isolated from SCC-9 and LN1 (supplemental
Table S13). In agreement with proteomics datasets, the
miRNA profile could also classify primary tumor and metas-
tasis EVs in two groups using PCA and hierarchical clustering
analysis (Fig. 3A). Two hundred 17 miRNAs were differentially
expressed between LN1 EVs and SCC-9 EVs (187 upregu-
lated and 30 downregulated) (Fig. 3B; supplemental
Table S14). The upregulated miRNAs can modulate 9565
targeted genes, whereas downregulated miRNAs may target
3124 genes (supplemental Table S15). By using KEGG data-
base, we showed that the targeted genes are mapped mainly
to metabolic pathways (n = 780 pathways), followed by
pathways in cancer (n = 375 pathways) (Fig. 3B). It is important
to highlight that miRNA may modify genes involved in two
important cancer-related signaling pathways: PI3K-Akt (n =
223 pathways) and MAPK (n = 208 pathways).
Thirty-one metabolites were identified for SCC9-EVs and 33

metabolites for EVs isolated from LN1 cell line (supplemental
Table S16). The metabolic profile could also separate pri-
mary tumor and metastatic EVs in two distinct groups
(Fig. 3C). Twenty-six metabolites were differentially abundant
between LN1- and SCC-9-derived EVs (17 upregulated and
nine downregulated) (Fig. 3D; supplemental Table S17). The
enrichment analysis showed that the differentially abundant
compounds may be involved in eight biological processes (p-
value ≤ 0.05), mainly glycine/serine metabolism and urea cy-
cle (p-value = 0.0271) (Fig. 3D). It is interesting to note an
overrepresentation of metabolites involved in the Warburg
effect, a phenomenon that occurs in most cancer cells (p-
value = 0.0338).
Lipid repertoire of SCC-9 EVs (n = 151) and LN1 EVs (n =

123) could also separate EVs into distinct groups (Fig. 3E;
supplemental Table S18). Sixty-three lipids were differentially
abundant between LN1- and SCC-9-derived EVs (61 down-
regulated and two upregulated), most of them belonging to
phosphatidylethanolamine (PE, n = 19 compounds) and
C-9 and LN1 EVs to demonstrate the ability of EV internalization by
ei are in blue (DAPI, Em. 488 nm), and cytoplasm are labeled in green
-diamidino-2-phenylindole; DiD, 1,1′-dioctadecyl-3,3,3′,3′-tetramethy-
sicles; NTA, nanoparticle tracking analysis; OSCC, oral squamous cell
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FIG. 2. Proteome characterization of SCC-9- and LN1-derived EVs. The overlap between proteins identified for EVs isolated from primary
tumor and lymph node metastatic cells is shown in the Venn diagram (A). Unsupervised hierarchical cluster heat map (B) and PCA plot (C) show
grouping of replicates according to the proteomic profile. The cluster was generated using the Euclidean distance and complete linkage method
(n = 1722 proteins). The top ten GO biological processes and subcellular location enriched for the differentially abundant proteins between the
two groups are shown in panels D and E, respectively. *p-value ≤ 0.05; **p-value ≤ 0.01; ***p-value ≤ 0.001 (p-values were determined using the
Bonferroni method). EVs, extracellular vesicles; GO, Gene Ontology; PCA, principal component analysis.

Extracellular Vesicles Proteins and Oral Cancer Prognosis

8 Mol Cell Proteomics (2021) 20 100118



FIG. 3. miRNA, metabolomics, and lipidomics analysis of EVs isolated from SCC-9 and LN1 cell lines. Sample grouping according to
miRNA, metabolite, and lipid profiles are shown in the dendrograms (upper panel) and PCA plots (lower panel) for SCC-9 EV and LN1 EV
replicates (A, C, and E, respectively). The dendrograms were generated using Euclidean distance and complete linkage method (n = 457
miRNAs, 33 metabolites, and 153 lipids). Differentially expressed miRNAs can target specific genes that are significantly mapped to KEGG
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phosphatidylcholine (PC, n = 18 compounds) classes (Fig. 3F;
supplemental Table S19). Thus, we found a set of PE and PC
compounds downregulated in OSCC-EVs isolated from met-
astatic cells when compared with primary tumor-derived EVs.

An Integrative Analysis Reveals Associated Molecules
Across Multiple Omics Datasets in OSCC-Derived EVs

Wenext used amulti-omics integrative approach to determine
EV molecules involved in lymph node metastasis that are highly
connected with other molecules among our omics datasets. For
that, we used as input the significant proteins, miRNA, and me-
tabolites from OSCC-EVs associated with lymph node metas-
tasis (LN1 EVs compared with SCC-9 EVs; Student's t test, p-
value≤ 0.05; n = 670 proteins, 217miRNAs, 26metabolites) and
considered physical associations between the datasets. In
addition, differential proteins functionally related to lipid pro-
cesses and pathways were included in the workflow (Fig. 4A).
Using the association-based integrative approach, we

revealed 11 differentially abundant proteins between LN1 EVs
and SCC-9 EVs (ADSS, ALDH7A1, CAD, CANT1, GAPDH,
GOT1, MARS, MTHFD1, PYGB, SARS, and TARS2) that
interact with 16 miRNA (hsa-let-7a-5p, hsa-miR-10a-5p, hsa-
miR-18a-5p, hsa-miR-197-3p, hsa-miR-22-5p, hsa-miR-222-
3p, hsa-miR-320a, hsa-miR-378a-5p, hsa-miR-4488, hsa-
miR-484, hsa-miR20a-5p, hsa-miR-29a-3p, hsa-miR-26a-5p,
hsa-miR-200b-3p, hsa-miR-769-5p, and hsa-miR-7641) and
six metabolites (4-aminobutyric acid, L-methionine, L-serine,
L-threonine, phosphate, and tyrosine) also dysregulated in our
datasets (Fig. 4B, supplemental Table S20). In addition,
ALDH7A1 is listed as a lipid-associated protein according to
LMPD and may have a relationship with the lipidomics content
of EVs. The 11 proteins were considered highly connected in
our study and named ‘hub proteins’ in subsequent analysis.
The ‘hub proteins’ were significantly downregulated in the
metastatic site (LN1-derived EVs) when compared with the
primary site (SCC-9-derived EVs) and are enriched for meta-
bolic processes (p-value ≤ 0.05) (Fig. 4, C and D, respectively).
In summary, our multi-omics integrative strategy revealed a

signature of 11 central ‘hub proteins’, which are modulated in
the metastatic site EVs (LN1 EVs) when compared with pri-
mary site EVs (SCC-9 EVs) derived from OSCC. These pro-
teins were used as the input to further prospect molecules
from our dataset that may be used as prognostic markers.

Targeted Proteins Derived From Multi-Omics Analysis Have
a Role in Prognosis

We observed that the 11 central molecules show high
Pearson correlation coefficient when comparing the mean
intensities of each protein between EVs and progenitor cells
SCC-9 and LN1 (r = 0.895 for LN1 cells and EVs; r = 0.881 for
pathways (B; p-value ≤ 0.05). Differentially expressed metabolites are a
class composition of differentially abundant lipids between SCC-9 and L
Kyoto Encyclopedia of Genes and Genomes.
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SCC-9 cells and EVs) (Fig. 4E). Considering that these results
indicate that EVs may reflect the content of the origin cell, we
next translated the EV findings to predict patient outcome
using tumoral tissue information from public repositories. For
that, the gene expression profile of input transcripts from the
11 ‘hub proteins’ was compared with clinical and pathological
information of patients with OSCC, HNSCC, and other can-
cers using information retrieved from the public databases
TCGA, GSE41613, E-MTAB-1328, and GSE65858.
Considering data from TCGA repository for OSCC primary

tumors, lower gene expression of ALDH7A1 (p-value = 0.027)
and SARS (p-value = 0.037) were associated with advanced T
status, while the downregulation of transcripts ALDH7A1 (p-
value = 0.003), CAD (p-value = 0.021), CANT1 (p-value =
0.044), and SARS (p-value = 0.004 and 0.043) correlated with
the presence of lymph node metastasis, advanced histologic
grade, presence of lymphovascular invasion, advanced stage
and positivity for perineural invasion, respectively (Fig. 5A;
supplemental Table S20). The distribution of transcript levels
for each clinical group was used to evaluate normality (Sha-
piro–Wilk test) and guided the statistical decisions to investi-
gate the association between gene expression of ‘hub
proteins’ and prognostic features (supplemental Fig. S3;
supplemental Table S20).
The downexpression of ‘hub proteins’ in primary tumor tissue

was also associated with survival in patients with HNSCC using
GSE41613, E-MTAB-1328, and GSE65858 databases. Lower
transcript levels of MTHFD1 and PYGB genes determined poor
overall survival in patients with HNSCC (p-value = 0.006 and p-
value = 0.0312, respectively) using the HNCDB (Fig. 5B;
supplemental Table S20), while lower gene expression of
CANT1 and GOT1 was associated with reduced metastasis-
free survival and overall survival, respectively, according to
PROGgeneV2 tool (p-value = 0.0109 and p-value = 0.0410)
(Fig. 5C; supplemental Table S20).
To evaluate whether the 11 ‘hub proteins’ could define

prognosis in other tumor types, we compared transcript levels
between primary tumor and metastasis for multiple cancer
types using TCGA datasets. Downregulation of GOT1 (p-
value = 0.019) was found in the metastasis site in THCA
(supplemental Fig. S4, A and B; supplemental Table S20).
GOT1 could also accurately classify samples according to the
tumor site in THCA (ROC curve; AUC = 73.6%). Besides that,
low transcript levels retrieved from TCGA primary tumors for
three of the 11 ‘hub proteins’ (ALDH7A1, GOT1, MTHFD1)
were associated with poor overall survival in renal and cervical
cancer (p-value ≤ 0.05; Human Protein Atlas platform)
(supplemental Fig. S4C; supplemental Table S20).
These data show that transcripts from seven proteins

prioritized in our multi-omics approach, ALDH7A1, CAD,
ssociated with specific biological processes (D; p-value ≤ 0.05). The
N1-derived EVs is shown in panel F. EVs, extracellular vesicles; KEGG,



FIG. 4. Multi-omics integrative analysis of proteomics, miRNA, metabolomics, and lipidomics content from SCC-9 and LN1-derived
EVs. The integration of differentially abundant molecules from EVs (Student's t test; p-value ≤ 0.05; LN1 EVs versus SCC-9 EVs) based on
associations (A) showed as a set of 11 ‘hub proteins’ that interact with specific miRNAs or metabolites, as well as the presence of the lipid-
associated protein ALDH7A1 (B). All ‘hub proteins’ are downregulated in LN1 EVs when compared with SCC-9 EVs (C) and may modulate
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CANT1, GOT1, MTHFD1, PYGB and SARS, are associated
with prognosis in HNSCC or other tumor types and may be
further evaluated as clinical markers in the disease.

Proteins Prioritized in Integrative Analysis May Circulate
Throughout the Body

Considering the 11 ‘hub proteins’ that were identified in EVs
and correlated with patient outcome, we next analyzed if this
set of proteins could circulate throughout the body and be
used as markers in liquid biopsies. For that, we evaluated the
presence and concentration of our selected proteins in human
normal plasma using MS information available in the Human
Plasma Proteome database. Ten from the 11 ‘hub proteins’
were identified and quantified in human plasma with con-
centrations ranging from 21 ng/L (MARS) to 2.2 mg/L
(GAPDH). Besides GAPDH, the most abundant proteins from
our dataset were GOT1 (130 μg/L), PYGB (16 μg/L), and
CANT1 (2.3 μg/L) (Fig. 5D; supplemental Table S20).
Altogether, besides elucidating tumor EV physiology and

behavior, our multi-omics approach indicated ‘hub proteins’ in
EVs that are associated with prognosis and detected in whole
blood.

DISCUSSION

Shed EVs are key elements in intercellular communication
and can cause a significant impact on cancer development
and progression through the transfer of molecules to recipient
cells (56). Emerging evidences indicate that tumor-derived
EVs can play a role in the metastatic process (9, 10, 13),
and detection of changes within vesicle cargoes is of special
interest for cancer diagnosis, prognosis, and monitoring (57).
Herein, we elucidated for the first time the molecular aspects
associated with the metastatic phenotype in OSCC through
assessing the proteomic, miRNA, metabolomic, and lipidomic
profiles of EVs isolated from human primary tumor (SCC-
9 cells) and matched lymph node metastasis (LN1 cells) that
was established using an orthotopic mouse model (20). As far
as we know, there are not any additional paired human pri-
mary tumor and lymph node metastasis cell lines established
for oral cancer or other tumors. We developed a multi-omics
integrative analysis and determined a set of ‘hub proteins’
from EVs that interact with dysregulated miRNAs and me-
tabolites from our datasets and correlated with aggressive-
ness and prognosis in HNSCC.
By using a reductionist approach and comparing the protein

profile from the two cell lines, we found that metastatic
site–derived EVs (LN1 EVs) have an overrepresentation of
molecules involved in cell adhesion mediated by integrin.
Interestingly, a previous study using lung, liver, and brain-
specific biological processes associated with metabolism (D). The heat m
method (n = 11 proteins). The correlation between protein abundance in
SCC-9 and LN1 protein intensities (E). The Pearson coefficient is shown
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tropic tumor cells showed that integrins inserted in the
membrane of exosomes directed the colonization of specific
organs by fusing with target cells in a tissue-specific manner
(13). The authors revealed that integrin expression profiles
correlated with tissue organotropism, specifically ITGA6,
ITGB4, ITGB1, ITGB5, and ITGαv, and targeting specific
integrins decreased exosome uptake and distant metastasis.
In the case of our study, we identified the upregulation of a
different set of integrins in LN1 EVs originated from the site of
metastasis (ITGB1, ICAM1, ITGB6, ITGAV, and ITGA5), adding
the knowledge that besides the role on organotropism to a
specific tissue, the established tissue also releases EVs with
this signature, increasing the possibility of targeting these
molecules as a therapy for both regional and distant
metastasis.
On the other hand, it is interesting that 79% of the proteins

are in lower abundance in LN1 EVs when compared with SCC-
9 EVs, that is, upregulated in primary tumor OSCC EVs. These
molecules are essentially associated with transcription and
translation, which are key cellular processes. It is true that
primary tumor cells need to modify recipient cells in an
extensive way, for example, to prepare future sites for lymph
node metastasis. In fact, the literature shows that EVs shed by
tumor cells can precondition the microenvironment of organs
where metastases will develop to make them receptive for
disseminating tumor cells, the premetastatic niche concept
(58). For instance, EVs from melanoma and pancreatic cancer
cells have been shown to orchestrate a variety of lymph node
premetastatic changes in vivo, including extracellular matrix
deposition and vascular proliferation (59, 60). In our dataset,
SCC-9 EVs are overrepresented in RNA-splicing proteins (p-
value = 0.0002) and may highly modulate recipient cells
through this process. Several studies show that the splicing
machinery and transcripts produced are significantly changed
in cancer (61), but the contribution of EVs in such alterations is
poorly described. Also, it was proposed that the study of tu-
mor EV surface landscape is essential for the detection of
cancer-specific exons derived from alternative splicing events
that may be used in EV-targeted therapies (62).
Remarkably, we found for the first time a miRNA signature

correlated with OSCC dissemination in EVs that could target
genes involved in PI3K-Akt and MAPK signaling pathways in
recipient cells. Both pathways regulate key cellular processes,
including cell proliferation, survival, and growth, and their
aberrant activation is frequently detected in many types of
cancer (63, 64). Actually, multiple drugs targeting PI3K-Akt
and MAPK signaling pathway have been developed (64, 65).
Most of the studies indicate the regulation of these pathways
through the secretion of EVs from primary cells. In
ap was generated using the Euclidean distance and complete linkage
cells and EVs was calculated for the 11 selected proteins considering
in the upper left corner of the graphs. EVs, extracellular vesicles.



FIG. 5. Characterization of prognostic markers in HNSCC using public databases. TCGA, GSE41613, GSE65858, and MTAB-1328 re-
positories were used to determine proteins from the multi-omics integrative analysis associated with clinical and pathological features in patients
with HNSCC. Using TCGA database, the gene expression pattern of a group of hub proteins was significantly associated with clinical features
(A; ALDH7A1, CAD, CANT1, SARS, p-value ≤ 0.05). MTHFD1 and PYGB downregulation was linked to poor overall survival in GSE41613
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nasopharyngeal carcinoma cell-derived EVs, the secretion of
PIK3CA was evidenced and phosphorylates PIP2 as the first
step of PI3K-Akt signaling pathway (66). Besides, the trans-
port of the epidermal growth factor receptor via EVs from
bladder, colorectal, and brain tumor cells (67–69) can also
activate the PI3K-Akt pathway. It was shown that gastric
cancer–derived EVs can increase pAkt and proliferation of
recipient cells (70), and transferrin receptor 2 is released by
hepatoblastoma and erythroleukemia-derived exosomes and
activates signal transduction through the MAPK pathway (71).
Our data indicate that miRNAs carried by OSCC EVs, in which
levels correlate with metastasis potential, may also target
these relevant signaling pathways.
Alteration of metabolism is one of the hallmarks for cancer

progression (72), and metabolites are a surrogate of the phys-
iological/phenotypic state of the cell, making them an ideal way
to track changes and mine for potential biomarkers. In this
work, metabolomics analysis revealed that metabolites asso-
ciated with nodal metastasis in OSCC EVs are overrepresented
in aminoacyl-tRNA biosynthesis pathway and the Warburg ef-
fect biological process. Aminoacyl-tRNAs are substrates for
translation and are pivotal in determining how the genetic code
is interpreted as amino acids (73), so that OSCC EVs from
primary and metastatic sites may play a differential role in
transcription through the delivery of metabolite cargo to
recipient cells. Although the Warburg effect has been well
documented for cancer cells, the role of EVs in this process is
poorly known. However, it was shown that exosomes derived
from stroma tissue, the cancer-associated fibroblasts, could
promote glycolysis and block oxidative metabolism in prostate
cancer cells, interfering in the Warburg effect (74). Therefore,
interestingly, our data showed that a distinct dysregulation in
metabolites resulted from the Warburg effect in EVs isolated
from metastatic cells when compared with primary OSCC cells,
which may result in a distinct role of both cell lines in affecting
glycolysis in recipient cells and reflect the cell type phenotype.
To complete the omics analysis, considering the role of

lipids in energy storage, signaling and as structural com-
ponents, we performed lipidomic analysis. This is a relatively
recent research field that has been driven by rapid ad-
vances in several analytical technologies, in particular MS,
computational methods, and it is recognized with a role in
many diseases (75). In this study, most of the lipids differ-
entially abundant between lymph node metastasis and pri-
mary tumor OSCC EVs belonged to PE and PC classes. PC
and PE are phospholipids, which serve as building blocks
database using HNCDB tool (B), whereas CANT1 and GOT1 low transcrip
survival in GSE-65858 and E-MTAB-1328 databases, respectively (C)
humans was retrieved for the 11 ‘hub proteins’ from MS experiments av
range plot (D). The proteins of interest are highlighted in the graph. H
squamous cell carcinoma; N0, patient negative for lymph node metastasi
metastasis considering pathological staging; TCGA, The Cancer Genom
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for cellular membranes (lipid bilayer) and are involved in a
diverse array of functions such as cell signaling and
execution of both cellular proliferation and death programs
(76–78). Notably, in this work, we found a relation between
lower abundance of PE and PC and lymph node
metastasis–derived EVs.
Collectively, through a multi-omics integrative approach for

proteomic, miRNA, metabolomic, and lipidomic data based on
functional or physical associations described in miRNet (35),
KEGG (36), and LMPD (39) databases, we identified 11 ‘hub
proteins’ (ADSS, ALDH7A1, CAD, CANT1, GAPDH, GOT1,
MARS, MTHFD1, PYGB, SARS, and TARS2) associated with
metabolism and nodal metastasis in our proteomics dataset
(LN1 EVs versus SCC-9 EVs). These proteins were down-
regulated in metastatic EVs (LN1 EVs) when compared with
primary site EVs (SCC-9 EVs), showing that low protein
abundances were associated with the most aggressive
phenotype, as reported previously (20). The authors showed
that the metastatic cell line LN1 seems to be more invasive
in vitro than the primary tumor parental cell line SCC-9 when
using a myoma organotypic invasion assay (20). Remarkably,
low transcript levels of seven from 11 ‘hub proteins’
(ALDH7A1, CAD, CANT1, GOT1, MTHFD1, PYGB, and SARS)
were associated with a more aggressive clinical outcome, that
is, poor patient prognosis, using data from patients with
HNSCC from the public databases TCGA, GSE41613, E-
MTAB-1328, and GSE65858. The downregulation of the
transcripts ALDH7A1, GOT, and MTHFD1 also correlated with
poor prognosis in patients with other tumors.
The association of ‘hub proteins’ from the multi-omics

integrative analysis with prognosis features was based on
gene expression information from cancer tissues available in
public databases, once protein abundance information and
clinical features for patients with cancer are not publicity
available in the literature. A Pearson correlation analysis
showed high correlation coefficient (r > 0.8) for the 11 ‘hub
protein’ intensities between EVs and cells from SCC-9 and
LN1, indicating that information obtained from cells or tissues
in the public databases can be extrapolated for the 11 EV
proteins. Besides that, protein levels may be largely deter-
mined by transcript concentrations under specific conditions
and taking into account the recent improvement of techniques
for RNA and protein identification (79). Thus, we decided to
use gene expression public data to transcend the clinical
significance of selected proteins and successfully prospect
candidates as prognostic markers in cancer.
t levels were associated with poor overall survival and metastasis-free
(p-value ≤ 0.05). The concentration of plasma proteins from healthy
ailable in The Human Plasma Proteome and represented in a dynamic
NCDB, Head and Neck Cancer Database; HNSCC, head and neck
s considering pathological staging; N+, patient positive for lymph node
e Atlas.
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There are several advantages in using targets in EVs as
prognosis markers instead of cells or free-molecule evaluation.
These structures can preserve the constitution of the origin
cells, as shown in this work, when comparing the proteome
composition of SCC-9 and LN1 cells and EVs, with the
advantage that the encapsulation of labile molecules such as
RNA and proteins within lipid bilayers offers protection or de-
creases the rate of degradation. It is also interesting to note that
tenmolecules from our group of 11 ‘hub proteins’, including the
seven proteins associated with prognosis, are candidates to
circulate throughout the body according toMSdata available in
the Human Protein Atlas platform, which makes them strong
candidates to be used as prognostic markers in a liquid biopsy
context. Liquid biopsies hold a great promise for personalized
medicine because of their ability to provide multiple noninva-
sive global snapshots of the primary and metastatic tumors.
In summary, by a reductionist approach, we characterized

for the first time the molecular profile of EVs isolated from
primary tumor and the paired metastatic site of oral cancer
cell lines using proteomics, miRNA, metabolomics, and lip-
idomics, followed by an integrative strategy. By this anal-
ysis, we determined a set of molecules carried by EVs that
are associated with metastasis and may modulate signaling
pathways in recipient cells. The integrative multi-omics
analysis leveraged the search for potential markers of
lymph node metastasis and prospected a set of EV ‘hub
proteins’ associated with aggressiveness in patients with
cancer that potentially serve as prognostic markers in
OSCC.
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