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Abstract: Multi-manifold clustering is among the most fundamental tasks in signal processing and
machine learning. Although the existing multi-manifold clustering methods are quite powerful,
learning the cluster number automatically from data is still a challenge. In this paper, a novel
unsupervised generative clustering approach within the Bayesian nonparametric framework has been
proposed. Specifically, our manifold method automatically selects the cluster number with a Dirichlet
Process (DP) prior. Then, a DP-based mixture model with constrained Mixture of Gaussians (MoG) is
constructed to handle the manifold data. Finally, we integrate our model with the k-nearest neighbor
graph to capture the manifold geometric information. An efficient optimization algorithm has also
been derived to do the model inference and optimization. Experimental results on synthetic datasets
and real-world benchmark datasets exhibit the effectiveness of this new DP-based manifold method.

Keywords: multi-manifold clustering; Dirichlet process mixture model; mixture of Gaussians;
graph theory

1. Introduction

Over the past decades, clustering has been the most fundamental task in many computer vision
and data mining applications [1,2], e.g., image/motion segmentation [3,4], community detection [5],
feature selection [6] and biological/network information analysis [7,8]. However, most of the
conventional clustering methods assume that data samples are scattered in the feature space,
which ignores the intrinsic underlying data structure that many real datasets have [3,9]. To overcome
this problem, various manifold-based clustering (multi-manifold clustering) methods have been
proposed and developed. Compared to the conventional clustering method, which regards the cluster
as the data points with small distances between cluster members or dense areas of the feature space,
the multi-manifold approach aims to gather the given data points into disparate groups, which come
from different underlying submanifolds [10].

Unlike the conventional clustering methods [11,12], multi-manifold clustering can be classified
into two different categories, the linear method and the nonlinear method [13]. In the first category,
linear methods (also known as subspace clustering) construct the multi-manifold clustering by
assuming that the underlying cluster can be well approximated by a union of low dimensional linear
manifolds [14]. For example, Gholami [14] and Vidal [15] used a linear function to fit the underlying
submanifold and cluster the clusters with the mixture model. Sparse Subspace Clustering (SSC)- [16],
Low-Rank Representation (LRR)- [17] and Least Squares Regression (LSR)-based [18] methods
approach the linear manifold clustering problem by finding a sparse representation of each point in
terms of other data points. After forming a similarity graph with the learned sparse representation,
spectral clustering methods are used to cluster data into distinctive clusters. As an expanding
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framework of the linear multi-manifold clustering methods, non-linear algorithms can be naturally
applied to linear and/or nonlinear manifolds. For example, the K-manifold clusters the nonlinear
subspace dataset by expanding the conventional K-means with geodesic distance [19]. Spectral
Multi-Manifold Clustering (SMMC) integrates the local geometric information within the subspace
clustering framework to handle the manifold structure [13], Multi-Manifold Matrix Decomposition
for Co-clustering (M3DC) handles the manifold dataset by considering the geometric structures of
both the sample manifold and the feature manifold simultaneously [20]. Recently, the state-of-the-art
method may be deep subspace clustering, which assembles the deep framework and the conventional
subspace clustering method [21,22].

However, a drawback of most conventional manifold clustering methods is that the clustering
accuracy depends on the cluster number, which is always unavailable in advance [23]. To overcome
this model selection problem, one category of the most widely-studied methods is that equipping
the conventional methods with a Dirichlet process prior, e.g., Dirichlet Process Mixture (DPM)
models [24,25], Multilevel Clustering with Context (MC2) [26] and Dirichlet Process Variable Clustering
(DPVC) [27]. Since the distributions adopted in these nonparametric models are defined in the
Euclidean space, those conventional Dirichlet process clustering methods suffer difficulty when
dealing with the manifold data. To overcome this problem, many manifold DP clustering models
have been proposed. Wang [28] and Gholami [14] assumed that the submanifold is lying on the linear
manifold and can be fitted with the hyperplane. Straub et al. [29,30] defined the Gaussian distribution
on the sphere surface and introduced an auxiliary indicator vector zwith a DP prior. More than the
sphere manifold, Simo et al. [31] expanded the distribution to the manifold space with the logarithmic
and exponential mapping. Although these models are quite powerful and have been widely studied
in many applications, they have their drawbacks when the manifold structure is not prespecified [31].
For example, the DP-space and temporal subspace clustering model is an expanding method of the
linear manifold clustering method. It lacks the capability to handle a non-linear manifold dataset.
In the geodesic mixture model, the logarithmic and exponential mapping algorithms [32,33] used
in this model depend mainly on the pre-defined geometric structure, which is always unavailable.
For the sphere mixture model, the sphere manifold has not been extended to arbitrary manifolds [31].

In this paper, we investigate the manifold clustering method with no prespecified manifold
structure and cluster number in the DPM framework. In order to model the complicated manifold
cluster distributions, we integrate the original DPM with the conventional Mixture of Gaussians
(MoG) [34,35] to handle the manifold distribution (Figure 1a). Furthermore, we also notice that an
unconstrained MoG distribution fails to capture the manifold geometrical information (Figure 1b).
Inspired by the previous study [23,36], we regularize our model with a k-nearest neighbor graph.
To form a meaningful cluster, in which samples from the same cluster are closed and related,
we constrain the MoG mean with a Mahalanobis distance.

MoG1

MoG2

Submanifold A Submanifold B

MoG1

MoG2

Submanifold A Submanifold B

MoG1

MoG2

(a) (b)

Figure 1. Illustration of manifold modeling. Mixture of Gaussians (MoG) distributions are
demonstrated to model the submanifolds. (a) demonstrates two ideal results using two MoG
distributions to model the submanifold; (b) demonstrates a result where there is no geometric
information and mean constraint, in which Gaussian distributions in the two MoGs may be scattered
into two submanifolds.
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The main contributions are as follows:

• A constrained MoG distribution has been applied to model the non-Gaussian manifold
distribution.

• We integrate the graph theory with DPM to capture the manifold geometrical information.
• The variational inference-based optimization framework is proposed to carry out the model

inference and learning.

The organization of our paper proceeds as follows. In Section 2, we review the background
knowledge of the Dirichlet process mixture model. Simultaneously, we present the generation
procedure of the proposed manifold Dirichlet process mixture model and give the variational
expectation maximization inference algorithm. Experimental comparisons will be presented in
Section 3. In Section 4, we give the detailed discussions and present the limitations and advantages.
Section 5 concludes the paper.

2. Materials and Methods

In this section, we firstly review the basic concept of the Dirichlet Process Mixture (DPM) model.
Then, we propose the multi-manifold clustering method by equipping DPM with MoG and the
k-nearest neighbor graph. In our method, the Dirichlet process is used to generate the suitable cluster
number. MoG and the k-nearest neighbor graph are applied to model the non-Gaussian manifold
distribution and capture the manifold geometric information. Finally, variational inference is derived
to do the model inference and learning.

2.1. Dirichlet Process Mixture Model

The Dirichlet Process Mixture (DPM) model is an approach that extends the mixture model by
introducing a Dirichlet process prior within the Bayesian framework. In DPM, we firstly sample a prior
distribution G from the Dirichlet process and then sample the likelihood parameters {θn}N

n=1 from G.
With the sampled likelihood parameters, observation data xn can be generated from the likelihood
distribution F(x|θn). This procedure can be concluded as follows:

G|G0(λ) ∼ DP(G0(λ), α)

θn|G ∼ G n = 1, 2, 3, ..., N

xn ∼ F(x|θn) n = 1, 2, 3, ..., N,

(1)

where F(x|θn) is a likelihood distribution and G0 is a base distribution. xn is the observation sample.
By integrating out G, the joint distribution of the likelihood parameters {θn}N

n=1 exhibits
a clustering effect. Suppose that we have N − 1 parameters {θn}N−1

n=1 sampled from our Dirichlet
process. We then have the following probability for the N-th value of θ.

p(θN |{θn}N−1
n=1 ) =

αG0

α + N − 1
+ ∑I

i=1
niδ(i)

α + N − 1
, (2)

where ni denotes the θ frequency of occurrence in {θn}N−1
n=1 and δ(j) represents the delta function. I

denotes the number of unique values in {θn}N
n=1. (2) reveals the fact that a new sample θn is either

generated from a new cluster with probability G0 or extracted from the existing clusters {θn}N−1
n=1 with

probability ni/(α + N − 1).

2.2. Our Proposed Method

In this section, we expand the original DPM model to a multi-manifold clustering framework
named the Similarity Dirichlet Process Mixture (SimDPM) model. The main notations and descriptions
used in our method are summarized in Table 1.
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Table 1. The main notations and descriptions.

Notations Descriptions

λ Hyper parameter u0, c0, W0, ν0 of normal-Wishart

M The mixture number

N Number of the observation samples

θ∗k Gaussian parameter u, δ

θ̃k MoG parameter ũk, δ̃k, π̃k

s Tradeoff parameter

K The maximum cluster number

α Parameter of the Beta distribution

z(1)n Class indicator of a Gaussian distribution

z(2)n Class indicator of the MoG distribution

X Unlabeled dataset

γk Variational parameter γk,1, γk,2

τk Variational parameter of normal-Wishart

Φn Variational parameter of categorical distribution

A An auxiliary parameter that equals Φ

λA Penalty parameter used in the graph Laplacian

L Graph Laplacian

Lk k-nearest neighbor graph

Dk Diagonal matrix whose entries are column sums of Lk

R Posterior penalty term with graph Laplacian

r Neighbor number used in the graph Laplacian

As we have debated, DPM is unable to model the manifold dataset since the conventional
likelihood distribution F(x|θn) is defined in the Euclidean space or prespecified manifold. To overcome
this problem, we approximate the manifold distribution with MoG (Figure 1a). Then, we construct the
sample generation process with two phases, a single Gaussian distribution and a mixture of Gaussians
distribution. The reason we generate the data with both the single Gaussian distribution and the MoG
distribution is that some simple submanifolds and non-manifold clusters can be modeled by the single
Gaussian distribution.

Suppose that we are given N observation samples X = {xn}N
n=1 where xn ∈ RD. Given the

additional parameters of the MoG distribution, we assume the following generative process for each
observation data xi:

1. For i = 1, 2, 3, ...; draw vi|α ∼ Beta(1, α)

2. For i = 1, 2, 3, ...; draw θ∗i |G0 ∼ G0

3. For every data point i:

(a) Choose z(1)i |v ∼ mult(sπ(v))

(b) Choose z(2)i |v ∼ mult((1− s)π(v))

(c) Draw xi|z
(1)
i ∼ N(x|θ∗

z(1)i

)

(d) Draw xi|z
(2)
i ∼ MoG(x|θ̃

z(2)i
)

where Beta(1, α) is a beta distribution with parameter one and α, mult(π(v)) is a categorical
distribution parameterized by π(v), v and π(v) are vectors with v = {vk}∞

k=1 and π(vi) =

vi ∏i−1
j=1(1− vj) and G0 is a normal-Wishart distribution with parameter λ = (u0, c0, W0, v0) where
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u0 ∈ RD W0 ∈ RD×D, θ∗
z(1)i

is a Gaussian distribution parameterized by u
z(1)i
∈ RD, δ

z(1)i
∈ RD×D.

θ̃
z(2)i

is the MoG distribution with parameter ũ
z(2)i
∈ RD, δ̃

z(2)i
∈ RD×D, π̃

z(2)i
∈ RM where M denotes

the mixture number in every θ̃
z(2)i

. Tradeoff parameter s denotes how likely the observation sample

xn is sampled from a single Gaussian distribution. The corresponding probability graph model
representation of manifold DPM can be described as Figure 2.

(1)
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Figure 2. Probability Graph Model (PGM) representation of the Similarity Dirichlet Process Mixture
(SimDPM) model. Nodes denote the random variables. In our framework, observations are generated
from two phases, a fully-Bayesian procedure and a constrained MoG model.

To form a meaningful cluster (samples from the same cluster are closely related) and respect the
manifold geometrical information, we constrain the MoG mean with:

1
2
(ũk,m − ũk,m−1)

T δ̃
−1
k,m(ũk,m − ũk,m−1) < ε, m > 1,

and use a k-nearest neighbor graph to regularize the posterior probability inspired by [23], in which
the graph Laplacian is used to capture the geometric information that has been missed by the
MoG distribution.

R =
∞

∑
k=1

p(k|X)T Lp(k|X), (3)

where p(k|X) = {p(k|xn)}N
n=1 is the posterior probability. L is the graph Laplacian constructed by the

k-nearest neighbor graph [13]. Note that the constraint of ũk,m depends only on the previous ũk,m−1,
but not on ũk,m+1. Below, we characterize the k-nearest neighbor graph Lk. Given the unlabeled data
X, for any point xi, we sort the rest of the data samples and select the top-k nearest neighbors. If node
xj is in the top-k nearest points of node xi, we set:

Lk
i,j = e

−||xi−xj ||
2

Te .

Here, we define the L as the equation L = Dk − Lk. Dk is a diagonal matrix whose entries are column
(or row, since Sis symmetric) sums of Lk. For convenience, the neighbor number used in our graph is
denoted as r.

2.3. Variational Expectation Maximization Inference

Our scheme for estimating the data cluster depends mainly on our capability to infer the posterior
distribution. We solve this using variational expectation maximization inference.

Unlike the conventional expectation maximization algorithm, the posterior probability in our
model will be estimated via the variational inference, and then, we optimize the MoG parameter by
maximizing the lower bound with the fixed variational parameter. Following the general variational
inference framework, we firstly give the Evidence Lower BOund (ELBO) for the SimDPM with the
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truncated stick-breaking process (when applying this process, the maximum cluster number ∞ is
truncated to K) [37].

log(p(X|α, λ, Θ̃)− λRR ≥Eq[log p(Θ∗|λ)] +
N

∑
n=1

Eq[log p(z(1)n , z(2)n |V)] +
N

∑
n=1

Eq[log p(xn|Θ∗, z(1)n )]

− Eq[log q(v, Θ∗, z(1), z(2))] +
N

∑
n=1

Eq[log p(xn|Θ̃, z(2)n )]

+ Eq[log p(v|α)]− λRR,

(4)

where X = {xn}N
n=1 is the observation sample, p(Θ∗|λ) is a normal-Wishart distribution with hyper

parameters λ = (u0, c0, W0, v0) and p(xn|Θ̃) is the constrained MoG distribution parameterized by
Θ̃ = {θ̃k}K

k=1 where θ̃k = {ũk, δ̃k, π̃k}, p(xn|Θ∗) is a single Gaussian distribution. z(1) = {z(1)n }N
n=1 and

z(2) = {z(2)n }N
n=1 are the indicator variables sampled from the categorical distribution p(z(1)n , z(2)n |v).

Following the factorized family variational inference [37], which can make the posterior distribution
computable, q can be expressed as:

q(v, Θ∗, z(1),z(2)) =
K−1

∏
k=1

qγk (vk)
K

∏
k=1

qτk (θ
∗
k )

N

∏
n=1

qsφn
(z(1)n )

N

∏
n=1

q(1−s)φn
(z(2)n ), (5)

where qγk (vk) is the Beta distribution with γk = {γk,1, γk,2} and qτt(θ
∗
t ) is a normal-Wishart

distribution with the parameter τk = {uk, ck, W k, vk}. For qsφn
(z(1)n ) and q(1−s)φn

(z(2)n ), we denote it as
two categorical distributions with parameter φn = {φn,k}K

k=1 (Φ = {φn}N
n=1 ∈ RN×K). s is the tradeoff

parameter.
For derivation convenience, we denote ELBO as L(γ, τ, Φ, Θ̃). By using this inequality relaxation,

we note that learning the model and estimating the model parameters are altered to maximize the
following equation.

arg max
{γk ,uk ,ck ,W k ,vk ,ũk ,δ̃k ,π̃k}

L(γ, τ, Φ, Θ̃)− λRR

s.t.
1
2
(ũk,m − ũk,m−1)

T δ̃
−1
k,m(ũk,m − ũk,m−1) < ε, m > 1,

R =
∞

∑
k=1

p(k|X)T Lp(k|X).

We also notice that, since we have truncated the maximum cluster number to K, the penalty term R is
altered to be R = ∑K

k=1 p(k|X)T Lp(k|X).
Variational E-step: In the variational inference framework, the variational parameter can be

estimated by maximizing the lower bound of likelihood function log p(X|α, λ) with the coordinate
ascent algorithm.

For φn,k in {φn,k}K
k=1, note that this is a constrained maximization since ∑K

k=1 φn,k = 1, and the
probability p(k|X) can be approximated by the variational parameter Φ.,k. To solve this problem, we
use an auxiliary variable Ak = Φ.,k where Ak ∈ RN and form the Lagrangian by isolating the terms in
ELBO, which contain φn,k as:

arg max
φn

L(γ, τ, Φ, Θ̃) + λL(
K

∑
k=1

φn,k − 1)− λR

K

∑
k=1

AT
k LAk,

s.t. Ak = Φ.,k,

(6)

where λL is a Lagrangian multiplier and λR is a penalty parameter.
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Fix Ak to update Φ.,k. The updating rule for φn,k can be achieved by taking the derivation.

log φn,k ∝sEq[log p(xn|θ∗k )] + (1− s)log p(xn|θ̃k)

+ ∑
j<k,n

(Ψ(γj,2)−Ψ(γj,1 + γj,2))

+ Ψ(γk,1)−Ψ(γk,1 + γk,2).

(7)

We now fix Φ to update Hk.

arg min
Ak

AT
k LAk + λA||Ak −Φold

.,k ||
2
2

=⇒ Ak = Φ.,k = λH(λA I + L)−1Φold
.,k ,

(8)

where λA is the penalty parameter. For the other variational parameter, we can attain the following
closed-form solutions when taking the derivation of the previous proposed ELBO function and setting
it to zero:

γk,1 = 1 +
N

∑
i=1

φi,k,

γk,2 = α +
N

∑
i=1

∑j>k φi,j,

(9)

ck = c0 + Nk,

vk = v0 + Nk,
(10)

uk =
1
ck
(c0u0 + Nk xk),

W−1
k = W−1

0 + NkSk +
c0Nk

c0 + Nk
(xk−u0)(xk−u0)

T
(11)

where Nk, Sk and
−
xk can be estimated as follows:

Nk =
N

∑
n=1

sφn,k,

xk =
s

Nk

N

∑
n=1

φn,kxn,

Sk =
s

Nk

N

∑
n=1

φn,k(xn − xk)(xn − xk)
T .

(12)

For the prior parameters u0, c0, W0, v0, we use them in a non-informative manner to make them
influence as little as possible the inference of the variational posterior distributions. For the other
variational parameters, we initialize them in a random way.

Variational M-step: To optimize the lower bound parameter θ̃, we apply the EM framework again,
in which we introduce an auxiliary posterior variable q(k, m|xn) and Jensen’s inequality [37].

L(γ, τ, Φ, Θ̃) + H
M

∑
m=2

{
(ũk,m − ũk,m−1)

T δ̃
−1
k,m(ũk,m − ũk,m−1)

}
≥ C +

N

∑
n=1

K,M

∑
k,m=1

{
(1− s)φn,kq(k, m|xn) log

π̃k,mN(xn|ũk,m, δ̃k,m)

q(k, m|xn)

}
+ H

M

∑
m=2

{
(ũk,m − ũk,m−1)

T δ̃
−1
k,m(ũk,m − ũk,m−1)

}
,

(13)
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where C is a constant value with no respect to Θ̃ in L(γ, τ, Φ, Θ̃). By using the inequality relaxation,
the variational M-step can be reformulated as the optimization problem:

max
{ N

∑
n=1

φn,kq(k, m|xn) log
π̃k,mN(xn|ũk,m, δ̃k,m)

q(k, m|xn)

+ H(ũk,m − ũk,m−1)
T δ̃
−1
k,m(ũk,m − ũk,m−1)

+ λL(∑M
m=1 q(k, m|xn)− 1)

}
,

(14)

where λL and H are the Lagrangian multipliers. We therefore achieve the following closed-form
solution by taking the derivative and setting the lower bound of (14) to zero:

ũk,1 =
∑N

n=1 φn,kq(k, 1|xn)xn

∑N
n=1 φn,kq(k, 1|xn)

; (15)

when m is greater than one, we have:

ũk,m =
∑N

n=1 φn,kq(k, m|xn)δ̃k,m−1xn − Hũk,m−1

∑N
n=1 φn,kq(k, m|xn)− H

. (16)

Similar to the mean parameter ũk,m, for δ̃k,m, we have:

δ̃k,m =
Tk,m

∑N
n−1 φn,kq(k, m|xn)

, m > 1, (17)

where:

Tk,m = −H(ũk,m − ũk,m−1)(ũk,m − ũk,m−1)
T

+
N

∑
n=1

φn,kq(k, m|xn)(xn − ũk,m)(xn − ũk,m)
T ,

since the constraint does not exist in the components where m < 2, the updating rule for m = 1 is
a little different.

δ̃k,m =
∑N

n=1 φn,kq(k, m|xn)(xn − ũk,m)(xn − ũk,m)
T

∑N
n=1 φn,kq(k, m|xn)

. (18)

For the computation of πk,m, we have:

π̃k,m =
∑N

n=1 φn,kq(k, m|xn)

∑M
m ∑N

n=1 φn,kq(k, m|xn)
. (19)

The computation of q(k, m|xn) will be identical to the standard mixture of Gaussians model
learning algorithm [37].

2.4. Agorithm

The full learning and inference algorithm is summarized in Algorithm 1. The flowchart of our
proposed framework is demonstrated in Figure 3. Below, we analyze the computational complexity.
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Algorithm 1 Semi-supervised DPM clustering algorithm.

Require: unlabeled dataset Xu.
Ensure: variational parameters, {γk, τk, φk}K

k=1, and model parameter, {θ̃k}K
k=1.

1: Construct the k-nearest neighbor graph Lk and L. Initialize the variational parameter randomly.
2: while not convergent do

3: Expectation step:
4: while not convergent do

5: for all n, k do

6: Update the variational parameters { φold
n,k} using (7).

7: Update the variational parameters {νk, φk, ck, uk, W−1
k , vk} using (9), (10) and (11).

8: end for
9: Update the variational parameters { φn,k} using (8).

10: end while
11: Maximization step:
12: for k = 1; k ≤ K; k = k + 1 do

13: Update ũk,1 and δ̃k,1 with (15) and (18).
14: for m = 2; m ≤ M; m = m + 1 do

15: Update ũk,m, δ̃k,m and π̃k,m using (16), (17) and (19).
16: end for
17: end for
18: q(k, m|xn)←

π̃k,m N(xn |ũk,m ,δ̃k,m)

∑M
m=1 π̃k,m N(xn |ũk,m ,δ̃k,m)

19: end while

Algorithm complexity: Suppose that we have N samples, each sample has D dimensions.
The maximum cluster number in our experiment is K. Expectation step converges after running
Te times. The whole algorithm converges after T times. From the derivation, we know that the main
computation lies on the Equations (7), (8) and (11), in which we need to calculate the inverse and
determinant of the matrix. For Equations (7) and (11), we need O(K · D3). For Equation (8), we need
O(N3). Another major computation is the Equations (16) and (17), which takes the computational
complexity of O((M − 1) · K · N · D2). According to the debates, we know that the whole algorithm
computational complexity is O(T · (Te · (N3 + K · D3) + (M − 1) · K · N · D2)).

For the space complexity, the main cost is the variational parameters which takes O(K · D2 + N ·
K). Another cost is the MoG parameters which needs O(M · K · D2). Then, the total space complexity is
O(K · D2 + N · K + M · K · D2).

Input the observation 
data samples

Construct the k-nearest 
neighbor graph

Use SimDPM to estimate 
the cluster indicator

Assign the observation 
with the indictor

Begin

Observation data

While not 
convergence

Variational E-
step

Variational M-
step

While not 
convergence

(a) Flowchart of the full framework (b) Flowchart of the SimDPM

End

Figure 3. Illustration of the framework flowchart. (a) shows the flowchart of the framework;
(b) demonstrates the flowchart of SimDPM.
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3. Results

To demonstrate the usefulness of the proposed manifold model, we tested our method on both
synthetic and real-world datasets and compared it with the following methods:

1. Original Dirichlet Process Mixture (DPM) model [38].
2. Affinity Propagation (AP) clustering [39].
3. A Dirichlet process-based linear manifold clustering method, DP-space [28].
4. Density-based Clustering algorithm by Fast Search and Find of Density Peaks (CFSFDP) [40].
5. Another category is the clustering method, which needs to specify the class number, K-means,

LRR [17] and LatLRR [41].

Clustering accuracy in our experiment was measured through Normalized Mutual Information
(NMI) [32]. Suppose U = {U1, U2, U3, ..., U|U|} denotes the real cluster labels obtained from the ground
truth and V = {V1, V2, V3, ..., V|V|} obtained from a clustering algorithm. |U| and |V| denote the cluster
number. Then, a mutual information metric between U and V can be defined as:

MI(U, V) =
|U|

∑
i=1

|V|

∑
j=1

P(i, j)log(
P(i, j)

P(i)P(j)
) (20)

where P(i) and P(j) are the probability that a sample picked at random falls into class Ui or Vj and
P(i, j) denotes the probability that a sample falls into both classes Ui and Vj. The Normalized Mutual
Information (NMI) then can be defined as:

NMI(U, V) =
MI(U, V)√
(H(U)H(V))

(21)

where H(U) and H(V) denote the entropy.
Experimental setup: In our experiment, we ran every algorithm 10 times and report the average

accuracy. The parameters of the SimDPM algorithm were selected using the ground-truth labels of
less than 40% according to the clustering accuracy. The default value for α and the maximum cluster
number K were set at 20 and 30. The other variational parameters were initialized randomly except
uk and Wk, for which we used the mean and covariance of the observation data to initialize. All our
algorithms were implemented in MATLAB R2016a on a DELL Precision Workstation with 8.00 G RAM
and a Xeon(R) E3 CPU.

For the original DPM, we used the α = 20 and set the other variational parameters randomly.
When operating the DP-space, we used λ and s from the values, as this was suggested in the original
codes, and we selected this by using 30% ground-truth labels. The parameters used in LatLRR and
LRR were that α = 1, β = 1.4 and λ = 4. For CFSFDP, we chose the determination points that were
significantly different from the other points in the decision graph. In the setting of AP, we used the
preference value as a scalar one. Both CFSFDP and AP used the K-nearest neighbor graph as the
similarity matrix.

3.1. Synthetic Dataset

In this section, we evaluate our SimDPM model on a synthetic dataset. We show the results in
Figure 4. Clearly, there are two patterns.

Visual comparison on synthetic hybrid data shows that SimDPM performed better than the
traditional DPM model. In our result, Figure 4b shows the result using the original variational
DPM. As can be seen, the original DPM tended to partition the synthetic dataset in a hard manner.
Our manifold method yielded an ideal clustering result. The reason is that our model handled the
dataset with a Gaussian expanding distribution and reserved the local geometrical structure of the
data space by applying a k-nearest neighbor graph.
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Figure 4. Illustration of SimDPM and the original DPM clustering result on a synthetic dataset.
(a) demonstrates the original dataset with no label; (b,c) are the original DPM clustering result and
SimDPM clustering result. Different color means different cluster.

3.2. Real Dataset

(a) Motion segmentation: Motion segmentation usually refers to the task of separating the
movements of multiple rigid-body objects from video sequences. Linear manifold clustering methods
are popular in this task [42]. In our experiment, we used the Hopkin155 dataset [43] and cast it into
a general multi-manifold clustering task. We show some samples in Figure 5. According to the dataset
itself, we divided the universal set into checkerboard and others [43], in which each contained 26 and
nine subsets. For the checkerboard dataset, we separated it into the Linear manifold dataset (L) and
Non-Linear manifold dataset (Non-L) according to the 3D projection of PCA. When applying our
algorithm, we projected point trajectories into 10D features. The clustering result and the estimated
cluster number are presented in Tables 2 and 3. As can be seen, our proposed method performed the
best on the Non-L dataset. On the others and L dataset, DP-space was the first best, and our method
was the second best. For the estimated cluster number, we can observe that our model could produce
the suitable cluster size compared with the ground truth.

 
Figure 5. Illustration of the Hopkin155 dataset.

Table 2. Clustering accuracy on the Hopkin155 dataset with 3 motions. AP, Affinity Propagation;
CFSFDP, Density-based Clustering algorithm by Fast Search and Find of Density Peaks; LRR, Low-Rank
Representation. Bolded numbers denote the highest clustering accuracy.

Method Checkerboard Others
L Non-L Average

SimDPM 0.80 0.73 0.79 0.83
DPM [38] 0.42 0.37 0.41 0.45
DP-space [28] 0.84 0.48 0.78 0.94
AP [39] 0.29 0.32 0.29 0.31
CFSFDP [40] 0.40 0.19 0.36 0.47
K-means 0.48 0.48 0.49 0.47
LRR [17] 0.51 0.33 0.48 0.33
LatLRR [41] 0.52 0.31 0.47 0.34
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Table 3. The estimated cluster number on the Hopkin155 dataset with 3 motions. L, Linear.

Method Checkerboard Others
L Non-L Average

Ground truth 3.00 3.00 3.00 3.00
The estimated cluster number 3.33 3.60 3.10 3.09

(b) Coil20 image dataset: The coil20 [44] image database is a popular manifold database containing
20 objects from the Columbia university image library. Some image samples are demonstrated in Figure
6. Each image is taken from five degrees apart as the object is rotated on a turntable. Thus, each
object in coil20 has 72 images. The size of the object is 128 × 128, with 256 grey levels per pixel.
In our experiment, each image was firstly represented by a 128 × 128 dimensional vector, and then,
we projected it into a 10D feature using the PCA method. To test the general clustering performance,
we used five coil20 subsets. For the overall testing, we also gave the universal dataset (Dataset 20).
The clustering result and the estimated cluster number are demonstrated in Tables 4 and 5. From the
result, we know that our method consistently outperformed the DP-based algorithms such as DP-space
and DPM. When comparing with the other methods, our method was the first or the second best,
especially compared with the approaches that do not need to specify the cluster number.

       

Figure 6. Illustration of the coil20 dataset.

Table 4. Clustering accuracy on the coil20 dataset. Bolded numbers denote the highest clustering accuracy.

Method Subdataset 20
2 4 6 8 10

SimDPM 0.30 0.55 0.56 0.60 0.69 0.72
DPM [38] 0.29 0.42 0.50 0.53 0.57 0.69
DP-space citewang2015dp 0.01 0.34 0.10 0.19 0.10 0.26
AP [39] 0.12 0.22 0.18 0.11 0.25 0.36
CFSFDP [40] 0 0.57 0.57 0.53 0.46 0.42
K-means 0 0.52 0.46 0.57 0.59 0.73
LRR [17] 0.11 0.62 0.56 0.47 0.52 0.70
LatLRR [41] 0 0.57 0.57 0.48 0.50 0.58

Table 5. The estimated cluster number on the coil20 dataset.

Method Subdataset 20
2 4 6 8 10

Ground truth 2.0 4.0 6.0 8.0 10.0 20.0
The estimated cluster number 3.1 5.0 6.3 6.7 11.3 21.7

(c) Swedish leaf image dataset: The Swedish dataset introduced in [45] consists of 1125 leaves of
15 species with 75 images per species. In this dataset, we firstly extracted the outer contour and then
achieved the contour features by applying the Fourier transform [46]. Every leaf in our experiments
was represented as a 10-dimensional feature. Some samples are shown in Figure 7.
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Similar to the coil20 dataset, we demonstrated the efficiency on five subsets and the universal
dataset. We ran every algorithm in our experiment 10 times, and took the accuracy by averaging
the 10 results. The experimental results are demonstrated in Tables 6 and 7, which present some
observations: (1) compared with the original DPM, the improvement of the clustering accuracy
(average 0.07) was lower than the improvement in the coil20 dataset (average 0.05); (2) the cluster
number was consistently increasing as the ground truth cluster number was increasing.

Figure 7. Leaf samples from the leaf dataset.

Table 6. Clustering accuracy on the leaf dataset. Bolded numbers denote the highest clustering accuracy.

Method Subdataset 15
2 4 6 8 10

SimDPM 0.29 0.62 0.46 0.50 0.54 0.38
DPM [38] 0.26 0.43 0.45 0.49 0.51 0.34
DP-space [28] 0.49 0.33 0 0 0 0.03
AP [39] 0 0.03 0.11 0 0.02 0
CFSFDP [40] 0.17 0.56 0.24 0.28 0.42 0
K-means 0.45 0.39 0.61 0.50 0.44 0.22
LRR [17] 0.76 0.45 0.48 0.33 0.40 0.22
LatLRR [41] 0.65 0.44 0.32 0.20 0.41 0.23

Table 7. The estimated cluster number on the leaf dataset.

Method Subdataset 15
2 4 6 8 10

Ground truth 2.0 4.0 6.0 8.0 10.0 15.0
The estimated class number 4.7 6.3 10.2 14.5 16.2 20.2

From the experimental results in Tables 2–7, we can draw some points as follows.

• The proposed method obtained the highest clustering accuracy especially on the Non-L and
coil20 dataset compared with the non-prespecified cluster number methods, which validates the
effectiveness of our non-linear assumption.

• DP-space performed better than our method on the L and others dataset, the reason being
that DP-space has a prior structure assumption, which introduces additional manifold
geometric information.

• LRR, LatLRR and K-means outperformed our algorithm on some coil20 and leaf subdatasets,
the reason being that our method needed to estimate the cluster number along with clustering.
This made our algorithm hard to optimize.

• Compared to the coil20 and leaf dataset, our method achieved an all-around performance boosting
on the motion segmentation dataset; this is because the simple clustering task (the linear manifold
has only three classes) was easy for our algorithm to optimize and model.
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• Compared to the leaf dataset, our method achieved a better clustering performance boosting
on the coil20 dataset. The reason is that coil20 is a well-defined manifold dataset, in which the
structure among samples is easy to capture by the graph Laplacian.

• Our manifold model consistently produced the suitable cluster number with the increasing of the
data cluster size, which indicates that our model could provide a flexible model size when fitting
different datasets.

3.3. The Effect of the Algorithm Parameters

In this section, we firstly investigate the effects of the parameters λA and s on the Non-L dataset.
More specifically, in the experiment, when one parameter is being tuned, the value of the other
parameter is fixed. The parameters λA and s were sampled from {1000, 100, 80, 60, 40, 20} and
{1, 0.9, 0.8, 0.7, 0.6, 0.5}. We show the clustering accuracy in Figure 8.

As we can see in Figure 8, experimental results indicate that the proposed model was sensitive
to λA. Empirically, the best clustering accuracy was achieved when λA = 100. We also observed
that our method achieved the best clustering accuracy when s = 0.7, 0.8. This reveals that the
MoG had improved the clustering accuracy. Besides, we measured the clustering accuracy with
the different M and the neighbor number r using the k-nearest neighbor graph. The clustering
accuracy is demonstrated in Figures 10 and 9. As can be seen, the clustering accuracy achieved
the best performance on the leaf subdataset and the coil20 dataset when the neighbor number
r = {5, 6, 7, 8, 9, 10}. Clustering accuracy increased along with the increasing of the M in the subdataset
of the coil20 dataset and leaf dataset. Unlike the subdataset, parameter M and the neighbor number
r had little effect on the full dataset of coil20 and leaf. The reason is that our model is a non-convex
model, and the complicated dataset led to a much more complicated optimization.
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Figure 8. Illustration of the clustering accuracy with different s and λA on five hopkin155 datasets.
(a) is the clustering accuracy with different s. (b) is the clustering accuracy with different λA.
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the k-nearest neighbor graph on the leaf dataset. (a) Subdataset of leaf with 6 classes; (b) The leaf
full dataset.
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Figure 10. Illustration of the clustering accuracy with different M and the neighbor number r using the
k-nearest neighbor graph on the coil20 dataset. (a) Subdataset of coil20 with 6 classes; (b) The coil20
full dataset.

4. Discussion

Compared to the previous linear manifold and geodesic mixture models, our theoretical analysis
has shown that our method is a prespecified manifold and cluster number-free model. This is because
we use a DP prior to generate the cluster indicator with the suitable cluster number and use the MoG
and K-nearest neighbor graph to capture the submanifold rather than using a predefined manifold.
Additionally, compared with different multi-manifold clustering methods with prespecified manifolds
and cluster numbers like DP-space, LRR and LatLRR, our method has shown superior performance on
the general manifold clustering task (coil20 and leaf dataset). This indicates our method can fill the
research gap we have mentioned in the Introduction.

Although our method can handle the problems we have mentioned (estimating the cluster number
and handling the general manifold clustering task), limitations still exist. That is, our method is not
a full Bayesian framework. Thereby, some parameters should be tuned manually. This may be
unacceptable in some real applications. Moreover, we note that MoG and the Gaussian distribution are
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sensitive to the dimension of the data. In future work, we will explore a full generative model, in which
the parameters can be generated by using some Bayesian priors. Since our approach is sensitive to the
dimension, we will also explore certain methods to integrate the dimension reduction method and the
manifold clustering.

5. Conclusions

In this paper, we have proposed a nonparametric generative model to handle the manifold
dataset with no prespecified cluster number and manifold distribution. In the course of the theoretical
and experimental analysis, we have demonstrated that MoG can extend the application scope of
the original DPM and can significantly improve the clustering accuracy compared to the previous
proposed method. However, to be frank, the proposed method can only partially handle the problem
we state in the Introduction due to the facts that: (1) MoG, the mean constraint and K-nearest neighbor
graph are hard to optimize when we incorporate them into the DP framework; this can be observed
when we use it in the coil20 and full leaf dataset; (2) the DP prior has a limitation when generating the
suitable cluster number.
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