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Abstract: Protein phosphorylation can induce signal transduction to change sperm motility patterns
during sperm capacitation. However, changes in the phosphorylation of sperm proteins in mice are still
incompletely understood. Here, capacitation-related phosphorylation in mouse sperms were firstly
investigated by label-free quantitative (LFQ) phosphoproteomics coupled with bioinformatics analysis
using ingenuity pathway analysis (IPA) methods such as canonical pathway, upstream regulator,
and network analysis. Among 1632 phosphopeptides identified at serine, threonine, and tyrosine
residues, 1050 novel phosphosites, corresponding to 402 proteins, were reported. Gene heatmaps for
IPA canonical pathways showed a novel role for GSK-3 in GP6 signaling pathways associated with
capacitation for 60 min. At the same time, the reduction of the abundant isoform-specific GSK-3α
expression was shown by western blot (WB) while the LFQ pY of this isoform slightly decreased
and then increased. The combined results from WB and LFQ methods explain the less inhibitory
phosphorylation of GSK-3α during capacitation and also support the predicted increases in its activity.
In addition, pAKAP4 increased at the Y156 site but decreased at the Y811 site in a capacitated state,
even though IPA network analysis and WB analysis for overall pAKAP revealed upregulated trends.
The potential roles of GSK-3 and AKAP4 in fertility are discussed.

Keywords: sperm; capacitation; bioinformatics; mouse; GSK-3; AKAP4; IPA

Int. J. Mol. Sci. 2020, 21, 7283; doi:10.3390/ijms21197283 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-7731-1139
https://orcid.org/0000-0001-7714-203X
https://orcid.org/0000-0002-3631-6248
http://dx.doi.org/10.3390/ijms21197283
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/19/7283?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 7283 2 of 17

1. Introduction

Capacitation is an important physiological prerequisite for the sperm cell acrosome reaction
and oocyte fertilization [1]. This principle of capacitation was first introduced by Austin [2] and
Chang [3]. During capacitation, various proteins in sperm must undergo posttranslational protein
phosphorylation mediated by protein kinases, which is important for many cellular processes [4].
Phosphoproteomics workflows have been applied to identify phosphoproteins, localize specific sites
of phosphorylation and quantify the extent of modification at particular sites during processes,
including sperm capacitation [5]. The first phosphoproteomics study on sperm capacitation, which was
performed by Mandal et al. [6], identified 18 peptides from a 95 kDa human sperm protein (FSP95)
that is tyrosine phosphorylated during sperm capacitation. A newly published study involving
proteomics followed by bioinformatics reveals the involvement of proteins in specific biological,
molecular, and cellular pathways in male infertility [7].

Studies on human sperm incorporating phosphoproteomics followed by bioinformatics have
identified many novel phosphosites on different proteins, such as CABYR, AKAP3, and AKAP4 [8,9].
One study on boar based on proteomics coupled with ingenuity pathway analysis (IPA) has provided
a model of molecular mechanisms, showing that ODF, SPAG6, and AKAP4 affect sperm motility
and fertility [10]. AKAP4 is an ERK1/2 substrate, and induction of capacitation leads to activation
of the common ERK and PKA/cAMP signaling pathways [11]. Furthermore, cAMP/PKA in turn
plays a role in regulating GSK-3 activity by modifying sperm PP1γ2 activity [12], and Wnt signaling
can be partially responsible for GSK-3 activity regulation in epididymal sperm [13]. Although some
studies coupling phosphoproteomics with bioinformatics have revealed the networks of interacting
proteins with upregulated phosphosites, the molecular function during sperm capacitation needs to be
investigated in depth.

From a molecular point of view, sperm capacitation has been well studied in vitro and in
several species, such as bovines, humans, rats, and hamsters; however, the best-characterized
model is the mouse [14], which serves as a de facto surrogate model for the characterization of
human sperm capacitation [15]. Limited studies have used phosphoproteomics tools to explore
signaling pathways involved in mouse sperm capacitation [16,17]. Previously, 55 unique sites of
phosphorylation and 42 different phosphopeptides [17] were identified in mouse capacitated sperm.
In 2014, Chung et al. [16] identified 62 distinct phosphotyrosine sites corresponding to 45 proteins with
55 novel phosphotyrosine sites associated with mouse sperm capacitation using a phosphoproteomics
approach. Since then, no additional studies have employed phosphoproteomics for the assessment of
mouse sperm capacitation, and integrated, advanced bioinformatics tools need to be used to elucidate
the signaling pathways that regulate the capacitation process.

In this study, we first performed phosphoproteomics followed by bioinformatics analyses of mouse
sperm capacitation. We enriched phosphopeptides with TiO2 and subjected them to LC-MS/MS analysis
with a label-free quantification (LFQ) approach to compare the phosphoproteomes of noncapacitated
and capacitated sperms. We further performed bioinformatics analyses of sperm capacitation using
IPA methods for the assessment of information including canonical pathways, diseases and functions,
upstream regulators, and networks, and we clarified the kinase related to sperm capacitation by
western blot analysis. We aimed to identify phosphorylation profiles and perform bioinformatics
analysis to understand signaling pathways and proteins related to sperm capacitation.

2. Results

2.1. Functional Classification

Sperm proteins were extracted using HAMMOC (Hydroxy Acid-modified Metal Oxide
Chromatography) phosphopeptide enrichment procedures and analyzed using LC-MS/MS, and the
obtained raw data files were then searched with MaxQuant algorithms. The identified phosphorylated
proteins were then analyzed by submitting the data to the Protein Information Resource (PIR) website
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(http://pir.georgetown.edu/) to obtain information on gene ontology (GO) slims relating to sperm
capacitation within the cellular component, molecular function, and biological process gene ontologies.
In the cellular component category, 15% of the identified proteins were located in the cytoplasm,
while 11% and 10% were located in the membrane and nucleus, respectively (Figure 1a). The details of
GO analysis of the sperm capacitation phosphoproteome within the cellular component categories
are shown in Supplementary Data 1. In the category of molecular function, ion binding (GO:0043167)
and nucleotide binding (GO:0000166) were significantly represented (Figure 1b). In the category of
biological function, regulation of biological process (GO:0050789), response to stimulus (GO:0050896),
multicellular organismal process (GO:0032501) and developmental process (GO:0032502) were the
most represented terms (Figure 1c).
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Figure 1. Gene ontology (GO) analysis of the sperm capacitation phosphoproteome. The top 15 selected
significant GO slim categories (p-value < 0.05) and the ranked frequencies of GO slim categories within
the (a) cellular component, (b) molecular function, and (c) biological process gene ontologies are shown.
The analyzed phosphoprotein datasets came from all datasets for the three capacitation times (0, 60,
and 90 min).

2.2. Determining Phosphoproteomic Profiling among Datasets

LFQ phosphoproteomic analysis of noncapacitated and capacitated sperm showed that 3177
phosphopeptides corresponding to 943 proteins were detectable with MaxQuant. Among those,
a total of 1632 phosphopeptides including serine (S), threonine (T), and Y residues had phosphosite
probabilities > 0.75, and the distribution is shown in Figure 2a. The PhosphoSitePlus® website was
searched to identify total known and novel phosphosites that were differentially phosphorylated
between noncapacitated and capacitated sperm. These results revealed 1050 novel phosphoserine,
phosphotyrosine, and phosphothreonine phosphosites mapped to 402 proteins (Supplementary Data 2).

http://pir.georgetown.edu/
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quantitation (LFQ) of mouse sperm AKAP4 before or after BSA-induced capacitation. (d) LFQ of 
phosphopeptide level changes from those at capacitation time zero after BSA-induced capacitation. 
The normalized ion intensities of Y-phosphorylated phosphopeptides corresponding to identified 
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between the changes at time 60 vs. time 90 (p < 0.05). 

2.4. Canonical Pathways and Disease and Function Analysis 

To understand the functional relevance of sperm phosphorylation-mediated global 
phosphoproteomic changes, IPA was used to analyze independent datasets of non-capacitation (Cap 
0) in comparison to Cap 60 and Cap 90. This step was followed by comparison analyses of all datasets 
(Cap 60/0, Cap 90/0, Cap 90/60). The comparison analyses of multiple experimental groups allowed 
us to identify similarities, differences, and trends. 

Independent IPA canonical pathway analysis of Cap 60 phosphorylation compared to control 
(Cap 0) phosphorylation showed altered differential phosphorylation of proteins involved in 
signaling pathways such as the glycolysis I pathway, the RhoA signaling pathway, the aldosterone 
signaling pathway in epithelial cells, the GP6 signaling pathway, and the androgen signaling 

Figure 2. Profiling of protein phosphorylation during mouse sperm capacitation. (a) Numbers of
phosphopeptides with probabilities > 0.75 for S, T, and Y phosphorylation identified during different
capacitation times (0, 60, and 90 min). (b) Western blot analysis of Y-phosphorylated mouse sperm
proteins after different capacitation times (0, 60, and 90 min) with a pY1000 antibody. (c) Label-free
quantitation (LFQ) of mouse sperm AKAP4 before or after BSA-induced capacitation. (d) LFQ of
phosphopeptide level changes from those at capacitation time zero after BSA-induced capacitation.
The normalized ion intensities of Y-phosphorylated phosphopeptides corresponding to identified
phosphoproteins are plotted versus capacitation time (X-axis). * indicates significant differences
between the changes at time 60 vs. time 90 (p < 0.05).

2.3. Detection of Sperm Phosphotyrosine Proteins and LFQ Changes in Y Phosphorylation
Following Capacitation

To identify the protein Y phosphorylation changes during mouse sperm capacitation,
we performed western blotting using an anti-phosphotyrosine antibody (pY-100) (Figure 2b).
The results showed an increase in Y phosphorylation levels after capacitation for 60 and 90 min
(Cap 60 and Cap 90, respectively). Moreover, the antibody recognized the presence of proteins with
molecular weights of 82 and 50 kDa in capacitated sperm, which were considered phosphorylated
AKAP4 and GSK-3 proteins. LFQ was then performed to determine the expression patterns of
individual Y-phosphorylated sites during capacitation. Phosphopeptide level changes after bovine
serum albumin (BSA)-induced capacitation revealed by LFQ were plotted as the normalized ion
intensity of each Y-phosphorylated phosphopeptide versus capacitation time, particularly for the
protein identified at three of the capacitation times. The intensities of pAKAP4 at the Y156 site
increased and pAKAP4 at the Y811 site decreased during capacitation (Figure 2c), while there were
statistically significant differences between the 60 min and 90 min time points for three protein Y
phosphorylation intensities, including diazepam-binding inhibitor-like 5, glycogen synthase kinase-3,
and pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 (p < 0.05), as shown in Figure 2d.
Three other Y phosphorylation changes were observed but were not statistically significant and
are summarized in Supplementary Data 3; these changes involved outer dense fiber protein 1,
fibrous sheath-interacting protein-2 (FSIP2), and hexokinase-1.

2.4. Canonical Pathways and Disease and Function Analysis

To understand the functional relevance of sperm phosphorylation-mediated global
phosphoproteomic changes, IPA was used to analyze independent datasets of non-capacitation
(Cap 0) in comparison to Cap 60 and Cap 90. This step was followed by comparison analyses of all
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datasets (Cap 60/0, Cap 90/0, Cap 90/60). The comparison analyses of multiple experimental groups
allowed us to identify similarities, differences, and trends.

Independent IPA canonical pathway analysis of Cap 60 phosphorylation compared to control
(Cap 0) phosphorylation showed altered differential phosphorylation of proteins involved in signaling
pathways such as the glycolysis I pathway, the RhoA signaling pathway, the aldosterone signaling
pathway in epithelial cells, the GP6 signaling pathway, and the androgen signaling pathway. Similarly,
in the Cap 90 dataset, the differential regulation of phosphoproteins was related to canonical pathways
including the Rho A signaling pathway, dopamine-DARPP32 feedback in the cAMP signaling pathway,
the protein kinase A (PKA) signaling pathway, and the aldosterone signaling pathway in epithelial
cells (Figure 3a). The independent disease and biological function analysis revealed the overlapping
top pathways in the Cap 60 and Cap 90 datasets, including the cellular movement, reproductive system
development and function, reproductive system disease, and organismal injury and abnormality
pathways (Figure 3b). Furthermore, gene heatmaps for some major sperm capacitation-associated
pathways, including the RhoA, GP6, IGF-1, and PKA signaling pathways and the salvage pathways of
pyrimidine, were generated for all phosphorylation datasets (Figure 3c). Of interest, IPA canonical
pathway analysis revealed the different expressions of GSK-3 phosphorylation involved in the GP6
signaling pathway (Supplementary Data 4) which has never been reported in a sperm capacitation
study. The proteins GSK-3 and PTK2 involved in these pathways were significantly altered between
the groups.
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Figure 3. Differential phosphoproteomic analysis using ingenuity pathway analysis (IPA) for the Cap
60/0 and Cap 90/0 datasets. (a) Representative bar chart of the IPA-revealed canonical pathways for the
Cap 60/0 and Cap 90/0 datasets. The orange lines represent the ratios of changed genes to the total
number of genes in specific pathways. The threshold (set to 1.3) is scored as the −log p-value from
Fisher’s exact test and indicates the minimum significance level. The ratio indicates the number of
molecules in the dataset that mapped to the pathway listed divided by the total number of molecules that
mapped to the canonical pathway within the IPA database. (b) Representative bar charts determined
by IPA showing the biological functions associated with the phosphoproteins for the Cap 60/0 and
Cap 90/0 datasets. (c) Heatmaps generated through IPA canonical pathway analysis for comparison
among all datasets (Cap 60/0, Cap 90/0, and Cap 90/60). Upregulated pathways are shaded orange,
and downregulated pathways are shaded blue. The intensity indicates the degree to which each gene
was upregulated or downregulated as determined by the IPA-determined z-score.
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2.5. Upstream Regulators and Network Analysis

Upstream analysis was performed via IPA to predict the activated or inhibited upstream regulators.
The top upstream regulators identified for Cap 60 and Cap 90 were involved in different functions and
included the two proteins, integrin alpha-V/beta-3 (ITGB3) and F2. F2 of capacitation 60 was predicted
to be significantly inhibited in the Cap 60 group (z-score −2.147 and p-value 0.011) (Figure 4a).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 17 
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Using the network analysis tool within IPA, we predicted interacting molecular networks to
further evaluate the related regulatory and/or effector pathways associated with sperm capacitation.
Through IPA analysis of the Cap 60/0 and Cap 90/0 comparison datasets, 25 protein networks were
predicted. The most significant network functions related to sperm capacitation in the disease and
function category were cell signaling, cellular movement, and reproductive system development and
function for the Cap 60/0 datasets (Figure 4b). Accordingly, AKAP4, PP1R2, PRKAR2A, and FRY
were upregulated, while CABYR, ROPN, GSK-3A, PDE8A, Fscb, KIF9, PRKAR1A, AKAP3, AKAP1,
and SPA17 were downregulated.

2.6. Validation of Identified Proteins by Western Blotting

We then performed western blot analysis to validate the expression of two proteins in
noncapacitated and capacitated sperm, GSK-3 and AKAP4, in order to understand their roles
(Figure 5a,b). The results showed that GSK-3α levels in sperm in the Cap 60 group were 38%
lower than those in noncapacitated sperm, while those in sperm in the Cap 90 group were 57%
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lower than those in noncapacitated sperm. In addition, the GSK-3β values in Cap 60 and Cap 90
sperm were 38% and 42% lower than those in noncapacitated sperm, respectively. On the other hand,
the expression of AKAP4 in capacitated sperm was higher than that in noncapacitated sperm.

Figure 5. Validation of MS results by western blot analysis for selected proteins. (a) Western blot
analysis of GSK-3α, GSK-3β, alpha tubulin, AKAP4, and beta actin in noncapacitated (Con) and
capacitated (Cap 60 and Cap 90) mouse sperm. (b) Relative expression of GSK-3α, GSK-3β, and AKAP4,
(fold changes). * indicates significant differences compared to control (Con) group of each selected
protein (p < 0.05).

3. Discussion

In this study, we reported 1050 novel phosphopeptides corresponding to 402 proteins that have
not been identified before. During mouse sperm capacitation, pAKAP4 increased at the Y156 site
and decreased at the Y811 site, while pGSK-3 at the Y279 site significantly decreased in Cap 60 and
significantly increased in Cap 90, determined by LFQ. In addition, upregulated AKAP4 protein,
which directly interacts with downregulated PRKAR1A kinase, and downregulated GSK-3 kinase,
which directly interacts with upregulated PPP1R2 kinase and indirectly interacts with reduced PI3K
(complex) in Cap 60/0 datasets, were identified by network analysis and it was therefore newly found
that the GSK-3 pathway interacts with the GP6 signaling canonical pathway during capacitation.
The protein expression of GSK-3 was decreased in both isoform α and β, but not in AKAP4. How to
explain the predicted increased activity observed by IPA with reduced GSK-3α andβ protein expression
remains unclear.

According to the GO slim statistics in the sperm phosphoproteome, 15% of the identified
proteins are located in the cytoplasm, 11% are located in the membrane, and 10% are located in
the nucleus (Figure 1a). Due to the unique morphology of sperm, 3% of the identified proteins,
including fibrous sheath CABYR-binding protein, outer dense fiber protein 2, and AKAP4, are located
in the cilium. The identified phosphorylated proteins are involved in various cellular processes,
such as metabolic processes including nucleotide, carbohydrate, phosphorus, and organic acid
metabolism, which may imply that metabolic processes are not as active in sperm as in normal cells.
Upon analyzing related cellular processes, we found that proteins associated with the movement of
cells or subcellular components and locomotion are related to sperm motility, such as phosphoglycerate
kinase 2 [18], sperm mitochondrial-associated cysteine-rich protein [19], sperm-associated antigen
17 [20], AKAP4 [21], and dynein [22]; these proteins are all related to sperm motility.

Quantitative analysis of the proteomics data with MaxQuant revealed 3177 phosphopeptides.
Of those, 1632 phosphopeptides had probabilities above 0.75; they were phosphorylated at S, T, and Y
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residues and mapped to 565 proteins. The 1632 phosphopeptides consisted of mainly phosphorylated S
residues (80%), followed by phosphorylated T (11%) and Y (9%) residues (Figure 2a). A previous study
identified a total of 3303 phosphorylated sites [8] and 3527 phosphorylated sites [9] in sperm in humans
but not in mice. The phosphopeptides identified in this study were then compared with data on
PhosphoSitePlus, which provided evidence of 1050 novel phosphosites that have not been previously
characterized in mouse sperm (Supplementary Data 2). Among these novel phosphopeptides, some of
the proteins were found to be related to the movement of cells, such as AKAP4, outer dense fiber protein
2, fibrous sheath CABYR-binding protein, ropporin-1, and septin-4. Even though the abovementioned
proteins have been previously reported to be related to sperm motility [21,23–25], we here provide newly
identified phosphosites of sperm proteins to further support the roles of these proteins in capacitation.

It is well documented that protein phosphorylation, especially at Y residues, is one of the most
important events that occurs during capacitation [1]. In the present work, we analyzed phosphotyrosine
changes during sperm capacitation using western blotting. As expected, capacitated sperm showed
significantly greater Y phosphorylation than noncapacitated sperm (Figure 2b), as supported by a
previous study [9,26–28]. Moreover, changes in phosphorylation levels during sperm capacitation
have been identified in several proteins. The identified phosphopeptides corresponding to the AKAP4
protein are shown in Figure 2c. Among these phosphopeptides, analysis of changes in phosphorylation
levels at individual phosphosites revealed a tendency toward upregulation of phosphorylation at Y156
(1.04 in Cap 60; 1.44 in Cap 90) after capacitation, while phosphorylation at Y811 (−1.18 in Cap 60;
−1.71 in Cap 90) was downregulated during capacitation. A previous phosphoproteomics study in
mice conducted by Platt et al. [17] revealed AKAP4 phosphorylation at three different sites (S226,
S65, and S812) with odds ratios (ORs) of 4.61, 3.27, and 2.29, respectively, while Chung et al. [16]
reported phosphorylation at three different sites of AKAP4 (Y292, Y138, and Y438) with normalized
ratios of 4.1, 2.3, and 1.4, respectively. All these observations further support our hypothesis that
Y156 or Y811 phosphorylation events are novel and may play different roles during mouse sperm
capacitation. In addition to the phosphotyrosine sites of AKAP4, glycogen synthase kinase-3 (Y279) and
diazepam-binding inhibitor-like 5 (Y56) (Figure 2d), which are involved in sperm energy metabolism,
have been reported to show significantly different phosphorylation levels at similar phosphosites
in a previous study [16]. Although there were no significant differences in the phosphorylation
levels at the phosphotyrosine site (Y623) of FSIP2, this site was identified as a new phosphosite
(Supplementary Data 3); a previous study reported different sites (Y630, Y1635, Y6101, and Y6351) [16].
In the sperm principal piece, the fibrous sheath supports signaling proteins that regulate motility,
capacitation, and hyperactivation [29]. The major components of the sheath are AKAP3 and AKAP4,
which probably form the integral cytoskeleton structure [30]. Hexokinase-1, which is also involved
in energy metabolism, showed changes in Y phosphorylation at the Y83 site in the current study
(Supplementary Data 3), consistent with a previous study [16,17]. Taken together, these findings suggest
that immunoaffinity precipitation with a specific phosphorylation motif antibody can complement the
current methodology to obtain a comprehensive view of the phosphoproteome.

Next, to achieve a comprehensive understanding of the system-wide phosphoproteome data,
IPA was used to analyze all datasets, which elucidated many differentially phosphorylated proteins
associated with sperm capacitation. As stated in the results, the significant biological functions altered
in the Cap 60 and Cap 90 datasets were regulation of cellular movement and reproductive system
development and function (Figure 3b). Canonical pathway analysis showed regulation of the glycolysis
I signaling pathway (−log p-value 8.95) in the Cap 60 datasets and RhoA signaling (−log p-value 3.66)
in the Cap 90 datasets. Comparison analysis of all datasets showed alterations in many signaling
pathways, most importantly the RhoA signaling pathway, the GP6 signaling pathway, the IGF-1
signaling pathway, and the PKA signaling pathway (Figure 3c). The involvement of RhoA signaling in
bovines [31] and guinea pigs [32]; IGF-1 signaling in humans [8,33] and bovines [34]; and PKA signaling
in mice [35] and bovines [36] during sperm capacitation has been previously reported, while that of
the GP6 signaling pathway has never before been reported.
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GSK-3 in the GP6 signaling pathway showed alterations during sperm capacitation in the present
study (Supplementary Data 4). According to our IPA results regarding the GP6 signaling pathway,
GSK-3 was activated in the Cap 90/0 and Cap 90/60 comparison, while in the Cap 60/0 comparison,
GSK-3 was inhibited; thus, GSK-3 was inhibited or phosphorylated in the Cap 60 dataset. A previous
phosphoproteome study showed abundant GSK-3αphosphorylation in high-motility human sperm [37].
Li’s study demonstrated that H2AX phosphorylation can be abolished by PI3K inhibition and therefore
rescue DNA in spermatozoa from oxidative damage [38]. GSK-3 may also contribute to identifying
markers for DNA damage since its substrates are regulated via the PI3K-AKT-GSK-3 (Figure 4b)
signaling network [39]. In fact, DNA integrity analysis is a better diagnostic and prognostic marker of
sperm reproductive potential, for example, changes in nuclear basic proteins in human sperm exposure
to heavy metals were recently explored [40] to link to DNA damage. The current study aimed to explore
translational protein markers specific to the process of capacitation to mimic sperm cells passing to the
uterus. In the future, the association of the targeted protein phosphorylations with the modulated
DNA damage via H1 histones will be determined. Furthermore, Vadnais proposed a sperm motility
cascade through the PDPK1-AKT1-GSK-3 pathway [41]. To our knowledge, the current study is the
first study to show the involvement of the GP6 signaling pathway in sperm capacitation mediated by
PDPK-AKT-GSK-3 (Supplementary Data 4). Notably, GP6 is required for collagen-induced platelet
activation [42], while platelet-activating factor (PAF) can affect the capacitation, acrosome reaction,
and fertilization potential of sperm [43–46]. The current IPA results provide a framework for future
experiments regarding the involvement of the GP6 signaling pathway in sperm capacitation.

IPA revealed no evidence that F2, officially named coagulation factor II (prothrombin), is related to
sperm capacitation. The downregulated genes GSK-3A, NAGK, PTK2, PTK2B, RIPK1, SNAP23, DMTN,
and VASP led to the inhibition of F2 protein (Figure 4a). Among these proteins, GSK-3A, protein kinase
C epsilon (PRKCE), PTK2, and PTK2B were previously reported to be involved in sperm regulation.
PRKCE is involved in the regulation of flagellar motility in human sperm [47]. Inhibition of protein
tyrosine kinase 2 (PTK2 or FAK) during capacitation affects the protein Y phosphorylation associated
with capacitation, which causes the acrosome reaction to become increasingly Ca2+ dependent and
inhibits the polymerization of actin [48]. Protein tyrosine kinase 2B (PTK2B or PyK2) is an intermediary
component of Ca2+ signaling between PKA-mediated and Y phosphorylation that is required for
achieving functional human sperm capacitation [49]. Various upstream regulators that are chemical
components, such as bisindolylmaleimide I upstream regulators, were predicted to be significantly
activated (z-score 2.401). Bisindolylmaleimide I is a protein kinase C inhibitor involved in sperm
function that decreases calcium influx and the acrosome reaction in noncapacitated and capacitated
sperm is induced by progesterone [50]. Catsper is a sperm-specific low voltage-dependent calcium
channel that was identified in mouse sperm in 2001 and only two types, Catsper1 and Catsper2,
are highly specialized in mammalian sperm, and are associated with progesterone-induced progressive
motility due to Ca2+ entry into sperm through the Catsper channel. The crucial function of the SLO3
channel is to balance the membrane hyperpolarization correlates with capacitation through potassium
spermospores [51]. A previous study investigated male contraception by targeting the function
of calcium channel Catsper1 in sperm [52]. Since bisindolylmaleimide I decreases calcium influx
in capacitated spermatozoa through Catsper channel inhibition that can reduce sperm progressive
motility, the chemical and its downregulated protein, such as GSK-3 observed in the IPA results, can be
proposed as a male contraceptive target in the future.

Further analysis using IPA demonstrated a cell signaling, cellular movement, and reproductive
system development and function network consisting of 24 focus molecules in the proteomic
datasets (Figure 4b). This network centers on cytochrome bc1 [53], cytochrome-c oxidase [54],
PI3K (complex) [55], ENaC (complex) [56], PKA [55], AKAP [35], PKA-I [57], Pkar2 [58], the PKa
catalytic subunit [59], PDE (complex) [60], Pmca [61], and Ryr [62], which together mediate signals
relevant to cell signaling, cellular movement, and reproductive system development and function.
The levels of many proteins were found to be decreased in association with capacitation, such as AKAP3,
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GSK3A, AKT, ROPN1, CABYR, KIF9, Fscb, FSIP2, DHODH, AKAP1, SPA17, TFAM, MAATS1, PDE6A,
ATP2B4, and RXYLT1. Of interest, analysis of the cell signaling, cellular movement, and reproductive
system development and function network showed that the abundance of AKAP4 was significantly
increased in the Cap 60 dataset.

Validation of the global proteomic findings further strengthened the bioinformatics results.
Based on the canonical pathway, upstream regulators, and network revealed by IPA, two proteins
(GSK-3 and AKAP4) were selected for validation by western blotting in capacitated and noncapacitated
mouse sperm. Western blot analysis (Figure 5) revealed significant reductions in the protein expression
of GSK-3α and GSK-3β in capacitated sperm, and IPA upstream regulator analysis (Figure 4a) predicted
increased GSK-3α protein activity but decreased phosphorylation in the overall dataset. However,
increased Y phosphorylation of GSK-3 is known to increase activity, while S phosphorylation of GSK-3
is known to decrease activity. Hence, in the future, the specific sites of Y and S phosphorylation of GSK-3
during sperm capacitation need to be determined. Hopefully, the greater increase in Y but fewer changes
in S phosphorylation of GSK-3α and less inhibitory phosphorylation can be observed and explain
the increased GSK-3α protein activity predicted by IPA in the Cap 60 dataset. A previous study in
bovines showed increased phosphorylation during capacitation but without details of the two isoforms,
or identifying isoform α and β, as well as in the capacitation state [63–65] and in human sperm [8,63,66].
Moreover, a porcine study used the similar capacitation medium condition to the current study or GSK-3
inhibitor to induce GSK-3α inactivation by S phosphorylation increase in the isoform GSK-3α, and also
observed increases of the motile sperm parameters but did not identify the Y phosphorylation [67],
as well as in goat sperm [68]. In humans, isoform-specific GSK-3α serine phosphorylation without
assaying activity was increased [66]. Our study is the first to show pGSK-3 at the Y279 site significantly
decreased in Cap 60 and significantly increased in Cap 90 and the activity of GSK-3α was predicted to
be decreased during mouse sperm capacitation. On the other hand, in Figures 2b and 5, western blot
analyses revealed that the protein expression intensity of AKAP4 was significantly increased, which may
have resulted from the observed increase in Y phosphorylation during capacitation, which is supported
by Figure 4b. AKAP4 is required for glyceraldehyde 3-phosphate dehydrogenase-S to bind to the
fibrous sheath and glycolysis, a major source of energy for sperm functions essential for fertility,
is disrupted in sperm lacking AKAP4. AKAP4 interacts with fibrous sheath proteins such as CABYR
and ropporin, regulating calcium signaling, which is important for sperm capacitation induction [69].
Moreover, the subcellular distributions of PKA catalytic subunits and regulatory subunits, such as PI3K,
were disrupted and there were significant changes in PP1gamma2 activity and phosphorylation [70] in
immotile sperm from infertile mice lacking AKAP4 [71]. In addition to the 43 novel phosphosites of
AKAP4 that have been identified, there were 29 AKAP3 novel phosphosites reported here, and the
interactions between those phosphorylation signals will be our future interest.

To our knowledge, this is the first study coupling proteomics with bioinformatics analysis using
IPA to investigate the phosphorylation molecular pathways associated with various mouse sperm
capacitation times. The current study reveals the changes in GSK-3α/β isoforms and AKAP4 expression
that occur during mouse sperm capacitation, contributing to identifying markers related to sperm
motility and fertility.

4. Materials and Methods

4.1. Mouse Sperm Isolation

As previously described in a protocol from our lab [72], ICR mice purchased from Biolasco
(I Lan, Taiwan) were bred in the Animal Center at Taipei Medical University according to the protocol
(approval numbers LAC-2015-0265, LAC-2018-0345) and animal handling was according to the
guidelines. Sperm were taken from the cauda epididymides of 12- to 16-week-old male mice and
placed in buffer solution containing 120 mM NaCl, 1.99 mM KCl, 1.06 mM MgSO4·7H2O, 0.3 mM
NaH2PO4, 5.6 mM d-glucose, 18.4 mM sucrose, 10.9 mM HEPES, 1 M sodium pyruvate, and 1 M
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NaHCO3. This medium was prepared in the absence of BSA and does not support capacitation.
Sperm were incubated at 37 ◦C under 5% CO2 and filtered. After incubation, the sperm were centrifuged
at 1750 rpm at room temperature. To induce capacitation, sperm were treated with calcium and BSA
and were incubated at 37 ◦C under 5% CO2 for 60 or 90 min.

4.2. Protein Digestion

Cell lysates or 0.25 µg/µL β-casein were reacted with 4.5 mM 1,4-dithiothreitol (DTT) at 37 ◦C for
2 h and then reacted with 11.25 mM iodoacetamide (IAA) at room temperature with protection from
light. Next, 25 mM ammonium bicarbonate and trypsin (1:20) were added for trypsin digestion and
allowed to react at 37 ◦C for more than 16 h.

4.3. Spiking of the Internal Standard and Phosphopeptide Enrichment

For LFQ, 0.5 µg of digested β-casein peptides were spiked into each sample before desalting
with a C18 membrane followed by HAMMOC enrichment [26]. As described in the literature [73,74],
phosphopeptides were enriched using HAMMOC with 0.5 mg of TiO2 beads (GL Sciences, Tokyo,
Japan) packed into 10 µL C8-StageTips. These home-made HAMMOC tips were washed with solution
A (0.1% trifluoroacetic acid (TFA) and 80% acetonitrile (ACN)), after which solution B (solution A
containing lactic acid (300 mg/mL)) was added as a selectivity enhancer to equilibrate the tips. Each tip
contained 100 µg of dry digested sample peptides that had been redissolved in solution A and diluted
with an equal volume of solution B before loading. Solutions A and B were used to wash the tips
and to remove nonspecifically bound peptides. Sequential elution was performed with 0.5% and
5% piperidine to obtain pure phosphopeptides. The eluted phosphopeptides were acidified in 20%
phosphoric acid to pH 2.5, desalted with a 3M Emphore SDB-XC stagetip, concentrated as described
above, and subjected to LC-MS analysis [75].

4.4. LC-MS/MS Analysis

LC-MS/MS analysis was performed on an LC-ESI-Mass system (Orbitrap Fusion mass spectrometer
(Thermo Fisher Scientific, San Jose, CA, USA)). Peptide samples in 0.1% formic acid (FA) were injected
onto a self-packed precolumn (150 µm inner diameter (ID) × 30 mm, 5 µm, 200 Å) and a 75-µm × 20 cm
fused silica capillary column packed with 2.5-µm C18 beads ReproSil-Pur Basic® (Maisch), in a
250 µL/min gradient of 5% ACN/0.1% FA to 40% ACN/0.1% FA over the course of 40 min, with a total
run time of 60 min and a flow rate of 300 nL/min. The Orbitrap Fusion instrument was operated in
data-dependent mode to automatically switch between full-scan MS and MS/MS acquisition. Full
MS survey scans from m/z 200 to 1400 were carried out at a resolution of 120,000 using EASY-IC
as the lock mass for internal calibration. The MS/MS analysis was run in top-speed mode with 3 s
cycles, while the dynamic exclusion duration was set to 60 s with a 25 ppm tolerance around the
selected precursor and its isotopes. Monoisotopic precursor ion selection was enabled, and 1+ charge
states were rejected from MS/MS. Automatic gain control was employed and set to 2 × 105 for MS.
The maximum allowed ionization time was 200 ms. These experiments were carried out with higher
collision energy dissociation fragmentation modes for S, T, and Y.

4.5. MS Data and Bioinformatics Analysis

The MS-derived data were analyzed using MaxQuant 1.6.1.0 to identify the sites of protein
phosphorylation [76]. According to the default parameters of this version of the software,
phosphosites with >75% localization probability were considered [77,78]. The amino acid
phosphorylation sites from PhosphoSitePlus® (www.phosphosite.org) were used to identify novel
phosphosites. The PhosphoSitePlus® database collects comprehensive posttranslational modification
information extracted from published data [79]. Quantitative changes in the levels of phosphorylation
during sperm capacitation were calculated for several proteins by normalization to the intensity of
the internal control β-casein. The identified phosphorylated proteins were then submitted to the
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PIR website (https://proteininformationresource.org/) [80] for GO slim classification with respect to
biological processes, molecular functions, and cellular components. The quantified phosphosites
were analyzed using IPA (Qiagen). The IPA program facilitates the evaluation of canonical pathways,
diseases and functions, upstream regulators, and signaling networks related to sperm capacitation.
The significance of the association between a dataset and a canonical pathway was measured in two
ways according to the description in a previous study [78]. Comparison analysis was carried out
between the two analyzed datasets (Cap 60/0 and Cap 90/0) and among all datasets (Cap 60/0, Cap 90/0,
and Cap 90/60) to identify the differences in the canonical pathways in capacitated sperm.

4.6. Verification of the AKAP4 and GSK-3 Proteins by Western Blotting

Briefly, cells were lysed in phosphate-buffered saline containing protease inhibitors and
phosphatase inhibitors. The protein concentration was determined using BCA methods. Equal amounts
of protein from capacitated and noncapacitated sperm were separated by SDS-PAGE and transferred
to PVDF membranes. The membranes were then blocked by incubation with 5% nonfat dry milk
diluted in TBST. After blocking, the PVDF membranes were washed with TBST and stained with a
primary antibody diluted in 2.5% nonfat dry milk in TBST. The following primary antibodies were
used: anti-PY-1000 (Cell Signaling Technology, Danvers, MA, USA), anti-AKAP4 (Catalog No.: 611564;
purified mouse anti-AKAP82 antibody; BD Biosciences, San Jose, CA, USA); anti-GSK-3α (1:1000
dilution; Ab21; Sigma-Aldrich, St. Louis, MO, USA); anti GSK-3β (1:2000 dilution; Novusbio, Littleton,
CO, USA); anti-beta actin, and anti-alpha tubulin (1:10,000 dilution). Following brief incubation with
TBST, the blots were incubated with the appropriate secondary antibody. The targeted proteins were
then detected by enhanced chemiluminescence (ECL).

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/19/7283/s1.
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