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Abstract

Extra-cranial malignant rhabdoid tumors (MRTs) and cranial atypical teratoid RTs (ATRTs) are 

heterogeneous pediatric cancers driven primarily by SMARCB1 loss. To understand the genome-

wide molecular relationships between MRTs and ATRTs, we analyze multi-omics data from 140 

MRTs and 161 ATRTs. We detect similarities between the MYC subgroup of ATRTs (ATRT-

MYC) and extra-cranial MRTs, including global DNA hypomethylation and overexpression of 

HOX genes and genes involved in mesenchymal development, distinguishing them from other 

ATRT subgroups that express neural-like features. We identify five DNA methylation subgroups 

associated with anatomical sites and SMARCB1 mutation patterns. Groups 1, 3, and 4 exhibit 

cytotoxic T cell infiltration and expression of immune checkpoint regulators, consistent with a 

potential role for immunotherapy in rhabdoid tumor patients.

In Brief

Chun et al. report similarities between the MYC subgroup of cranial and extracranial rhabdoid 

tumors (RTs) at genetic, gene-expression, and epigenetic levels. They identify five DNA 
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methylation subgroups of RTs across multiple organ sites, and some subgroups exhibit increased 

levels of immune cell infiltration and immune checkpoint expression.

Graphical Abstract

INTRODUCTION

Rhabdoid tumors (RTs) are aggressive pediatric cancers that primarily affect infants, 

accounting for approximately 15% of all infant cancer incidence in the United States and 

United Kingdom (Packer et al., 2002; Brennan et al., 2013). RTs can arise throughout the 

body and are broadly classified based on the anatomical site of occurrence, i.e., atypical 

teratoid RTs (ATRTs) from the central nervous system (CNS) and malignant RTs (MRTs), 

such as RTs of the kidney (RTKs), from non-CNS tissues. Regardless of anatomical sites, 

RTs share pathognomonic loss of SMARCB1 (or SMARCA4 in rare cases; Versteege et al., 

1998; Hasselblatt et al., 2014), which encodes a core subunit of the SWI/SNF chromatin-

remodeling complex that plays critical roles in epigenetic and transcriptional regulation. 

Apart from SMARCB1 mutations, RTs otherwise exhibit few mutations, and in general have 

diploid genomes (Lee et al., 2012; Chun et al., 2016; Johann et al., 2016).

Despite being driven by SMARCB1 loss, RTs exhibit heterogeneity, with molecular 

subgroups identified in each of MRTs and ATRTs (Chun et al., 2016; Johann et al., 2016; 

Torchia et al., 2016; Nemes and Frühwald, 2018). In ATRTs, the SHH, TYR, and MYC 
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DNA methylation subgroups have been described (Johann et al., 2016; corresponding to 

Groups 1, 2A, and 2B, respectively, in Torchia et al., 2016). In MRTs, two gene expression 

subgroups were described (Group 1 and Group 2), which exhibited ATRT-like and RTK-like 

gene expression profiles, respectively (Chun et al., 2016). From these studies, some genes 

and pathways have emerged as commonly dysregulated across subgroups, such as the 

expression of HOX genes and other homeobox-containing genes in the ATRT-MYC 

subgroup and some MRTs and genes involved in neural or neural crest development in other 

MRTs. The existence of these shared features stimulated our hypothesis that MRT and ATRT 

subgroups might share additional similarities stemming from SMARCB1/SMARCA4 loss, 

the identification of which might improve our understanding of RT biology and ultimately 

reveal much needed insights into RT therapeutic vulnerabilities.

To explore this hypothesis, we performed integrative analyses of genome, transcriptome, and 

epigenome profiles of 301 RTs from multiple anatomic sites to reveal consensus molecular 

subgroups of RTs and identify shared molecular features.

RESULTS

To facilitate comparisons across RTs, we combined our previously published ATRT and 

MRT datasets from 40 MRTs and 150 ATRTs (Chun et al., 2016; Johann et al., 2016) and 

generated additional data from 11 ATRTs and 100 MRTs. The expanded datasets consist of 

whole-genome sequencing (WGS), transcriptome sequencing (RNA-seq), whole-genome 

bisulfite sequencing (WGBS), and DNA methylation array data as well as H3K27me3 and 

H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) data (Table S1). In total, 

we analyzed data from 301 RT cases, including 161 ATRTs and 140 MRTs, of which 92 

cases were from kidneys (RTKs) and 44 were from non-kidney tissues (4 cases were from 

unknown tissue types; Table S1).

ATRT-MYC and MRT Share Similar DNA Methylation Profiles Distinct from ATRT-SHH and -
TYR

DNA methylation profiling has been used to identify molecular subgroups in many cancer 

types (Sturm et al., 2012; Cancer Genome Atlas Research Network, 2014b; Capper et al., 

2018; Paulus, 2018). To identify and confirm molecular subgroups in RTs, we analyzed 

DNA methylation array data from 301 RT cases by using unsupervised clustering and 

dimension reduction algorithms (STAR Methods). Results from multiple algorithms 

substantiated the previous observation that ATRTs formed three distinct clusters (Johann et 

al., 2016) and revealed a distinct cluster of ATRT-MYC and MRT cases separate from 

ATRT-SHH and -TYR subgroups (Figures 1A and 1B). To evaluate the robustness of this 

clustering solution in the context of diverse cancer types, we compared DNA methylation 

profiles of RTs to 33 adult and 4 pediatric cancer types and 23 normal tissue types from 

TCGA and TARGET (n = 10,232 cases) by using an unsupervised clustering approach. 

MRT and ATRT-MYC again clustered together (Figure S1). Notably, RTs clustered with 

cancers of neural crest origin (neuroblastomas, uveal melanomas, pheochromocytomas, and 

paragangliomas), brain cancers (glioblastomas and low-grade gliomas) and normal brain 
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tissues, consistent with our previous observation based on microRNA (miRNA) profiles 

(Chun et al., 2016).

ATRT-MYC and MRT Cases Can Be Further Separated into Three DNA Methylation 
Subgroups That Correlate with Anatomical Sites and SMARCB1 Mutation Patterns

A non-negative matrix factorization (NMF) analysis (Gaujoux and Seoighe, 2010) of DNA 

methylation array data revealed further separation of the ATRT-MYC and MRT group into 

three subgroups (Groups 1, 3, and 4), which were consistently identified using hierarchical 

clustering and t-Distributed Stochastic Neighbor Embedding (t-SNE) methods (Figures 2A, 

S2A, and S2D). Although NMF results indicated that Group 1 cases could be further 

separated into two subgroups (Figures 2B, S2B, and S2C), we did not find molecular or 

clinical correlates that would support the existence of biologically relevant subgroups within 

Group 1. We, thus, fixed our analyses on five DNA methylation subgroups, which consisted 

of the previously defined ATRT-SHH and -TYR (Johann et al., 2016) and three previously 

undefined subgroups containing MRT and ATRT-MYC cases (Figure 2A).

The “ATRT-MYC-like” Group 1 (n = 67) consisted of 32 ATRT and 35 MRT cases (19 

RTKs, 12 extra-renal MRTs, and 4 cases from unknown tissue types). Nearly all (31/32) 

ATRTs in this group were classified as ATRT-MYC. The “RTK-like” Group 3 (n = 59) 

consisted of 2 ATRT and 57 MRT cases, of which 53 MRT cases were RTKs. The “extra-

renal MRT-like” Group 4 (n = 59) was dominated by extra-renal MRTs, containing 11 ATRT 

cases (6 ATRT-MYC, 4 ATRT-SHH, and 1 ATRT-TYR) and 48 MRT cases, of which 28 

cases were from extra-renal tissues. The “ATRT-TYR-like” Group 2 (n = 58) mostly 

consisted of ATRT-TYR cases (n = 51, the remaining cases were ATRT-MYC [n = 5] and -

SHH [n = 2]). The “ATRT-SHH-like” Group 5 (n = 58) consisted of ATRT-SHH cases (n = 

57; one remaining case was ATRT-TYR).

We next explored the relationship between these DNA methylation subgroups and the 

previously described MRT gene expression subgroups (Chun et al., 2016) and observed a 

significant association between “RTK-like” DNA methylation Group 3 and the RTK-like 

gene-expression subgroup 2 (16 out of 18 cases [89%]; Fisher’s exact p value = 0.0070; 

Figure S2A). In our NMF analysis that used an expanded RNA-seq dataset, including an 

additional 25 MRT cases (Figures S2E and S2F), we again observed a significant association 

between DNA methylation Group 3 and a gene expression subgroup that exclusively 

consisted of RTKs (24 out of 25 cases [96%]; Fisher’s exact p value = 1.07e-05; Figure 

S2E).

To investigate genetic alterations that might correlate with the DNA methylation subgroups, 

we analyzed somatic alterations using WGS data from tumor and matched normal pairs (56 

MRT and 18 ATRT cases; Figure S3A). Of 26 cases with SMARCB1 deletions larger than 

10 kilobases, a significant overrepresentation (14 out of 26 cases; Fisher’s exact p value = 

2.12e-08; Figure S3C) was in Group 1. Group 3 and ATRT-SHH almost exclusively 

contained cases with somatic nonsense mutations or focal deletions of SMARCB1 (10 out of 

12 cases and 11 out of 13 cases, respectively; Figures S3B and S3C). To extend our 

SMARCB1 copy number analyses to cases lacking WGS data, we analyzed DNA 

methylation data from 301 RT cases to infer copy number alterations by using the sum of 
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methylated and unmethylated signals (Sturm et al., 2012). This analysis consistently 

revealed the association between larger deletions at the SMARCB1 locus and Group 1 cases 

(Figure 2C). As expected, genes co-deleted with SMARCB1 (74 genes) were significantly 

under-expressed in Group 1 compared to other subgroups that did not harbor deletions 

(Wilcoxon p value = 2.59e-07; Figure 2D; Table S2). Such genes included CABIN1 (a 

regulator of p53 and T cell receptor (TCR) signaling), SUSD2 (a tumor suppressor gene 

involved in G1 cell cycle arrest), SPECC1L (a regulator of craniofacial morphogenesis and 

cranial neural crest cell delamination; Wilson et al., 2016), and MIF (encodes a macrophage 

migration inhibitory factor, involved in cell-mediated immunity and inflammation; Lue et 

al., 2002). The association between broad SMARCB1 deletions and DNA methylation 

Group 1 is compatible with the notion that dysregulation of multiple genes in addition to 

SMARCB1 may contribute to molecular subgroups.

ATRT-MYC and MRT Exhibit Global Hypomethylation and Distinct DNA Methylation Valleys 
Compared to ATRT-SHH and -TYR

To compare global DNA methylation levels in MRTs and ATRTs, we analyzed WGBS data 

from 69 MRT and 17 ATRT cases and DNA methylation array data from 140 MRT and 161 

ATRT cases. MRT and ATRT-MYC cases exhibited global DNA methylation levels that 

were significantly lower than ATRT-SHH and -TYR (Wilcoxon p value = 2.2e-07; Figure 

3A) but comparable to normal brain tissues (from 8 adult and 2 fetal brain samples; 

Wilcoxon p value = 0.145; Figure S4A). However, MRTs exhibited significantly lower 

methylation levels in introns and non-genic regions compared to normal brain samples, 

indicating that these regions are abnormally hypomethylated in MRTs (Wilcoxon p values = 

0.011 and 8.26e-05, respectively; Figures S4B and S4C).

Our previous study (Johann et al., 2016) showed that global hypomethylation in ATRT-MYC 

compared to other ATRT subgroups was linked to the prevalence of partially methylated 

domains (PMDs). We found that PMDs were also more abundant in MRTs compared to 

ATRT-SHH and -TYR, covering substantial portions of the genome (Wilcoxon p value = 

0.00014; Figures 3B and S4F). In particular, MRTs in Groups 1 and 3 exhibited global 

hypomethylation associated with higher PMD fractions compared to ATRT-SHH and -TYR 

(Wilcoxon p value = 1.65-e07), whereas MRTs in Group 4 exhibited PMD fractions that 

were comparable to ATRT-SHH and -TYR (Figures S4D and S4E). This result indicated that 

although global hypomethylation is an epigenetic feature that is characteristic of most 

MRTs, Group 4 appears to have a distinct DNA methylation landscape.

To characterize candidate biological processes dysregulated by differential methylation 

across the subgroups, we identified differentially methylated regions (DMRs; average length 

= 1kb) and performed gene set enrichment analyses by using overexpressed genes in DMRs. 

Group 1 DMRs exhibited an unexpected enrichment for genes in immune-related pathways 

specifically related to interleukin 1-associated pro-inflammatory activities (e.g., IRAK, Toll-

like receptors [TLRs], TRAF6, and JNK) that are critical for initiating innate immune 

responses against foreign pathogens and IRF7-associated pathways known to be activated 

upon viral infection (Figure 3C). We also observed a significant enrichment of upregulated 

genes (e.g., NCOR2, a transcriptional repressor implicated in hematological malignancies 
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[Lin et al., 1998]) in Group-1-specific DMRs involved in retinoic acid signaling, a pathway 

that has not been previously associated with MRTs or ATRTs (Figure 3F; Table S3). Genes 

associated with Group-3-specific DMRs were enriched for DNA excision repair, BMP 

signaling, and pathways implicated in renal cell carcinoma development, consistent with 

RTK-like characteristics observed in Group 3 (Figure 3D). For Group-4-specific DMRs, the 

most significantly enriched pathways included focal adhesion, FGFR signaling, and nuclear 

factor κB (NF-κB) signaling, a key regulatory pathway for immune and inflammatory 

processes (Figure 3E; DiDonato et al., 2012).

ATRT-MYC and MRT Share Distinct Enhancer Landscapes Compared to Other ATRT 
Subgroups

We next investigated the extent of similarities between enhancer states in ATRTs and MRTs 

and analyzed H3K27ac ChIP-seq data from 34 MRT and 14 ATRT cases, of which 24 MRT 

cases were specifically profiled for this study. To robustly identify cases with similar 

H3K27ac profiles, we performed multiple iterations of unsupervised hierarchical clustering 

of enhancer elements defined by H3K27ac signal densities (STAR Methods). Across 

iterations, we consistently observed clustering of ATRT-MYC with MRT cases (Figure 4A), 

supporting the notion that ATRT-MYC and MRT share similar enhancer profiles. We also 

observed increased H3K27ac levels in subgroup-specific DMRs (Figure 4B), further 

supporting upregulation of genes in these regions (e.g., NCOR2).

We identified 26 dense clusters of high H3K27ac signals indicative of super-enhancers that 

were common between ATRT-MYC and MRT. The most prominent super-enhancer was 

found at the HOXC locus (Figure 4C; Table S4), with genes at this locus exhibiting 

significant overexpression compared to ATRT-SHH and -TYR (Wilcoxon p values < 2.4e-15 

for HOXC genes and DESeq adjusted p value = 3.43e-05 for HOTAIR; Figure 4D). There 

were 61 regular enhancer elements that were common between ATRT-MYC and MRT 

(Table S4) in the proximity of genes involved in epigenome modification and development, 

including CREBBP (encodes a histone acetyltransferase involved in embryonic development 

and growth control), PRDM6 (histone methyltransferase and transcriptional repressor 

involved in smooth muscle differentiation), and TINAGL1 (encodes an antigen associated 

with tubulointerstitial nephritis; also involved in proliferation and migration of cranial neural 

crest cells [Neiswender et al., 2017]).

We next studied enhancer-mediated transcriptional dysregulation by identifying transcription 

factors (TFs) that would likely bind to enhancer regions. We analyzed enrichment of TF 

binding sites (TFBSs) within enhancer regions that were unique to MRT, ATRT-MYC, -

SHH, or -TYR, by calculating enrichment scores based on observed and expected numbers 

of TF motifs found in enhancer regions (STAR Methods). Unsupervised hierarchical 

clustering of TF motif enrichment scores showed clustering of ATRT-MYC and MRT, 

implying that common factors could act on such enhancers (Figure 4E). TFs known to bind 

to such sites included those regulating mesoderm and neural crest development, (e.g., HES7 

and REST, TFs that suppress neuronal transcription programs [Bessho et al., 2001; Bruce et 

al., 2004]). Also enriched within ATRT-MYC and MRT was a TFBS for XBP-1, a TLR-

activated TF required for production of proinflammatory cytokines (Martinon et al., 2010), 
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corroborating our DMR analysis result (above) that indicated epigenetic dysregulation of 

genes involved in interleukin 1-mediated signaling. In ATRT-MYC, we observed TFBS for 

TFs involved in apoptosis and immune regulation, such as GMEMB1/2, RAD21, IRF5/8/9, 

and STAT1. IRF5/8/9 are involved in the induction of type I interferons (IFNs), 

inflammatory cytokines and MHC class I genes and, hence, promote immune responses 

involving, e.g., CD8+ cytotoxic T cells and natural killer (NK) cells. Likewise, STAT1 

regulates the expression of multiple IFN target genes (Ivashkiv and Donlin, 2014). Our 

analyses thus indicated the unexpected possibility of immune modulation through epigenetic 

dysregulation in RTs.

Immune-Related Genes, HOX Genes, and Mesoderm Developmental Regulators Are 
Overexpressed in ATRT-MYC and MRT Compared to ATRT-SHH and -TYR

Our DNA methylation and enhancer data indicated shared epigenetic dysregulation of TFs in 

ATRT-MYC and MRT, potentially acting on similar gene expression programs. To identify 

such similarities, we performed differential gene expression analyses and identified 584 

overexpressed genes and 2,500 under-expressed genes in ATRT-MYC and MRT relative to 

ATRT-SHH and -TYR (DESeq adjusted p values < 0.05; STAR Methods; Figure 5A). The 

most significantly overexpressed genes in ATRT-MYC and MRT included tissue-type-

specific genes (e.g., GCG and KERA) and developmental regulators of mesoderm and 

mesoderm-derived tissue types (e.g., TCF21, encoding a mesoderm-specific TF, and DMP1 
and MEOX2, involved in bone and vascular smooth muscle development, respectively). 

Notably, 26 members of all HOX gene families were likewise significantly overexpressed in 

ATRT-MYC and MRT. These results support the notion of dysregulated developmental 

programs, particularly those involved in mesodermal development, in ATRT-MYC and MRT. 

In contrast, ATRT-SHH and -TYR exhibited relative overexpression of genes involved in 

neural development (e.g., SOX1, GPR98/ADGRV1, and OTX2), suggesting more neural 

characteristics in these subgroups.

Next, we used multiple pathway databases to identify functional categories enriched for 

differentially expressed genes (STAR Methods; Table S5). The most significantly enriched 

pathways, including overexpressed genes in ATRT-MYC and MRT, were developmental 

pathways for mesenchymal cell types and mesoderm-derived organs (Figure 5B), as well as 

immune-related pathways, including regulation of immune system processes and innate 

immune responses (adjusted p values = 1.40e-04 and 0.050, respectively; Table S5). In 

contrast, ATRT-SHH and -TYR exhibited significantly enriched pathways that 

predominantly involved neural development (Figure 5B), with ATRT-SHH further exhibiting 

a more neural-like gene expression program compared to ATRT-TYR (Figure S5A). 

Notably, we did not observe enrichment of immune-related functions in ATRT-SHH and -

TYR. Increased expression of immune-related genes in ATRT-MYC and MRT was 

consistent with the enrichment of immune-related TFBSs (above), suggesting that ATRT-

MYC and MRT might share an immune-related phenotype.

To further corroborate pathway enrichment results, we identified TF-regulatory networks 

consisting of TFs, putative direct target genes with corresponding TF motifs, and shared 

patterns of gene expression with TFs (STAR Methods; Aibar et al., 2017), integrating these 
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by using unsupervised clustering. ATRT-MYC and MRT cases clustered together, sharing 13 

common transcriptional networks distinct from ATRT-SHH and -TYR (Figure S5C). Of 

these, 11 involved HOX genes, of which five identified MYC as one of the putative direct 

HOX target genes, supporting the notion that the prominent molecular characteristics of 

HOX gene overexpression and dysregulation of MYC, another key characteristic of ATRT-

MYC and MRT, might be linked (Figure S5C; Table S5). Another notable TF gene was 

HES7, a transcriptional repressor significantly overexpressed in ATRT-MYC and MRT 

(adjusted p value = 0.0036; Figure S5B), with binding sites that were enriched in ATRT-

MYC and MRT enhancer regions (Figure 4E). Downstream target genes of HES7, such as 

LEF1 (implicated in co-activation of MITF and development of neural-crest-derived 

melanocytes; Levy et al., 2006), DUSP4 (regulator of MAPK signaling), and CTNNB1 (key 

component in the canonical WNT signaling pathway), exhibited significantly reduced 

expression in ATRT-MYC and MRT. Decreased levels of gene expression were correlated 

with lower H3K27ac and higher H3K27me3 levels in ATRT-MYC and MRT compared to 

ATRT-SHH and TYR (Figure 5C), indicating overall epigenetic dysregulation of the HES7 

transcriptional network. AES, which encodes a transcriptional co-repressor of HES7 
involved in neural, head mesenchyme, and ectoderm development, was, like HES7, 
upregulated in ATRT-MYC and MRT, further indicating distinct dysregulation of the HES7-

driven transcriptional program in ATRT-MYC and MRT. TFs enriched for ATRT-SHH (e.g., 

NEUROD1, NHLH1, and EN2) and ATRT-TYR (OTX2 and ZIC4) included neural 

developmental regulators, consistent with the notion that ATRT-SHH and -TYR are more 

neural-like.

To determine distinct gene-expression characteristics for Groups 1, 3, and 4, we identified 

functional categories enriched for subgroup-specific differentially expressed genes and 

constructed Gene Ontology enrichment map networks. Networks of the most significantly 

enriched pathways for Group 1 involved early developmental processes as well as ERK/

MAPK signaling (Figure 5D; Table S5). Group 3 networks also involved early 

developmental processes in addition to cell migration, adhesion, and extra-cellular matrix 

organization (Figure 5E). Group 4 networks exclusively consisted of immune-related 

categories (Figure 5F). To explore the association between RT subgroups and early 

developmental processes, we correlated transcriptome profiles of the subgroups to various 

progenitor cell types (Kundaje et al., 2015; Chun et al., 2016; Prescott et al., 2015). Among 

the subgroups, Group 1 showed the highest correlation to CD56+ mesodermal progenitor 

cells and Group 3 to embryonic stem cell lines (Figure S5D). ATRT-SHH showed the 

highest correlation to cranial neural crest cells, neuronal progenitors, and brain tissues, 

consistent with our observations of ATRT-SHH exhibiting the most neuronal-like 

characteristics among the subgroups.

Gene Expression Data Indicate Increased T Cell Presence in ATRT-MYC and Extra-Cranial 
MRT Subgroups

Following our analyses that indicated epigenetic modulation of genes involved in immune-

related functions, we used CIBERSORT (Newman et al., 2015) to deconvolute immune cell 

gene expression signatures and, thus, estimate the extent of immune cell presence. To 

quantify overall T cell presence in each sample, we calculated a T cell score (a sum of 
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effector T cell proportions; Figure 6A) and observed that inferred proportions of CD8+ 

cytotoxic T cells were among the highest in the 22 immune cell types profiled, along with 

tumor-associated M2 macrophages (Figures 6C and S6A; Sica et al., 2006), suggesting the 

involvement of both pro- and anti-tumoral immune functions in the tumor 

microenvironment. We observed a significant over representation of Groups 1 and 4 

(Fisher’s exact p values = 0.018 and 5.13e-03, respectively), and a significant under-

representation of Group 3 and ATRT-SHH (Fisher’s exact p values = 2.13e-04 and 0.031, 

respectively) in cases with CD8+ T cell proportions within the top 25th percentile (Figure 

6B). We also noted that among such cases were two ATRT-TYR cases with abundant TBXT 
expression (196.4 and 35.3 Reads Per Kilobase per Million mapped reads (RPKM), median 

of the cohort = 0.0021 RPKM; Figure 6D), which encodes an embryonic TF (T-brachyury) 

that has been linked to immune responses in chordoma patients (Palena et al., 2007).

To gain insight on biological processes that might contribute to increased immune activities 

predicted in RT subgroups, we analyzed genes involved in T cell-mediated immune 

responses. We found that nearly all HLA genes encoding MHC class I and II (18 out of 19 

genes) were significantly overexpressed in cases with CD8+ T cell proportions greater than 

the median (adjusted p values < 0.05; Figure 6E). Consistent with this observation, NLRC5 
and CIITA, which encode the master TFs that regulate MHC class I and II genes, were also 

significantly overexpressed in these cases (adjusted p values = 0.0001 and 0.0018, 

respectively). The increased expression of HLA genes also correlated with increased TCR 

diversity in these cases, represented by Shannon Wiener index scores (Welch’s t test p value 

= 0.012; Figure S6B; Bolotin et al., 2015; Shugay et al., 2015). The cases with increased 

CD8+ T cell proportions further exhibited significantly higher expression levels of key genes 

involved in antigen degradation, processing, and transportation (Figure 6E). Such genes 

included PSMB8/9/10 (which encode components of the immunoproteasome), TAP1 
(encodes a component of the transporter-associated with antigen processing complex), and 

B2M (encodes MHC class I heavy chain). Genes involved in T cell activation, homing, and 

infiltration were significantly overexpressed in these cases (Figure 6F), such as TNF and 

IFNG (involved in T cell activation); CXCL9 and CXCL10 (encode chemokines that attract 

and support the influx of CD8+ T cells); and PRF1, GZMA, and GZMB (encode perforins 

and granzymes that are secreted by activated cytotoxic T cells). We also observed significant 

overexpression of CLEC9A/DNGR-1 (adjusted p value = 0.0062), which is expressed in the 

CD8α+ antigen-presenting dendritic cells that are associated with T cell-infiltrated tumor 

microenvironments (Gajewski et al., 2013). Overall, these results suggested that RTs 

exhibiting high CD8+ T cell proportions might have inflamed tumor microenvironments 

with functionally active CD8+ cytotoxic T cells. Seeking to understand how RTs might 

survive in such inflamed microenvironments, we analyzed genes involved in T cell 

inhibitory functions and observed overexpression of an important T cell inhibitory cytokine 

gene, IL10, and several key immune checkpoint genes (e.g., PDCD1/PD1, CD274/PD-L1, 

and HAVCR2/TIM3) in the cases with CD8+ T cell proportions greater than the median 

(adjusted p values < 0.05; Figure 6G). We also observed a significant enrichment for 

overexpressed genes in these cases in the Ras/ERK/MAP kinase pathway (BH adjusted p 

value = 1.6e-04), known to maintain clonal anergy, an immune tolerance mechanism by 

which lymphocytes become functionally inactivated following an antigen encounter 
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(Schwartz, 2003). Taken together, these observations are compatible with the notion that RTs 

may evade the immune system by either increasing the expression of immunosuppressive 

programs or reducing the expression of MHC complex components.

To understand whether the level of immune cell presence is unique to RTs compared to other 

pediatric cancers that occur in similar anatomical sites, we compared T cell scores in RTs to 

those in medulloblastomas (105 cases) and Wilms tumors (130 cases; Gadd et al., 2017). We 

observed significantly higher proportions of T cell scores in Groups 1 and 4 and ATRT-TYR 

compared to medulloblastomas and Wilms tumors (Wilcoxon p values < 0.05; Figure 7A), 

suggesting that a subset of RTs might be more immuno-stimulated compared to other 

pediatric cancers of the brain and the kidney.

Immunohistochemistry Confirms Increased Cytotoxic T Cell Infiltration and Immune 
Checkpoint Expression in MRT and ATRT-MYC

To validate our analyses and orthogonally assess the extent of immune cell infiltration in 

tumor tissues, we performed multiplex immunohistochemistry (IHC) profiling of 185 tumor 

samples from 62 patients (35 MRT cases and 27 ATRT cases) by using antibodies to identify 

CD8+ cytotoxic T cells (CD3+CD8+), CD4+ helper T cells (CD3+CD8−), and 

macrophages/microglia (CD68+). Expression of the immune checkpoint proteins, PD1 and 

PD-L1, was also assessed. We were able to evaluate MRT samples selected from among 

cases we profiled using RNA-seq or DNA methylation array data, but the ATRT samples 

were from a separate cohort due to a lack of availability of profiled cases. To properly assess 

the extent of immune cell infiltration in tumor tissues, we examined three types of regions in 

tumor microenvironments (total number of regions profiled = 2,979; Table S6), i.e., tumor-

rich regions away from necrosis (TT; n = 1,803), peri-vascular regions surrounding vascular 

structures (PV; n = 591), and peri-stromal regions at the interface with benign and/or normal 

tissues (PS; n = 585).

Our IHC data showed higher levels of tumor-infiltrating CD3+ lymphocytes in MRT and 

ATRT-MYC compared to ATRT-SHH and -TYR in all regions of the tumor 

microenvironment (Wilcoxon p value < 2.2e-16; Figure S7A). CD3+ lymphocyte infiltration 

levels were consistent with our predicted effector T cell scores (Pearson rho = 0.540, linear 

regression p value = 0.0025; Figure 7B). CD8+ cytotoxic infiltration levels were also 

consistent with our predicted CD8+ proportions (Pearson rho = 0.569, linear regression p 

value = 0.0019; Figure 7C). Also consistent with our prediction, the majority (88.6%) of 

tumor-infiltrating CD3+ lymphocytes in MRT and ATRT-MYC were CD8+ cytotoxic T cells 

(Figures 7D and 7E; [dummy_Data S1]). In contrast, ATRT-SHH exhibited the lowest CD3+ 

lymphocyte and CD8+ cytotoxic T cell infiltration, whereas ATRT-TYR showed only a trend 

toward increased levels of CD4+ helper T cells (Figure S7C). IHC also revealed overall 

increased expression of PD-L1 in MRTs compared to ATRTs (Wilcoxon p value < 2.2e-16; 

Figure 7F). A significant increase in PD-L1-expressing CD68+ myeloid cells was also 

observed in MRTs compared to ATRTs (Wilcoxon p value < 2.2e-16; Figures 7G and S7B; 

[dummy_Data S1]). MRTs in Group 4 exhibited the highest mean density of PD1-expressing 

lymphocytes among RT subgroups (Wilcoxon p value = 0.0002; Figure S7D). Notably, 

ATRT-SHH exhibited the highest median density of PD-L1-negative CD68+ myeloid cells 
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among the five subgroups (Kruskal-Wallis p value = 9.60e-12, Dunn’s adjusted p values 

against ATRT-SHH < 9.46e-03; Figure 7H).

Given the very low mutation load (and thus paucity of related neoantigens) in RTs, we 

sought to identify genes that may play a role in increased immunogenicity in RT subgroups. 

Considering other studies that linked epigenetic de-repression of endogenous retroviral 

elements (EREs) to anti-tumor immune responses (Chiappinelli et al., 2015; Roulois et al., 

2015), we analyzed H3K27ac and DNA methylation levels of CpGs within ERE regions 

(LINE, SINE, LTR, and ERV from RepeatMasker; n = 3,877,818). Although we noted a 

significant increase in H3K27ac signals in Groups 1, 3, and 4 compared to ATRT-SHH and -

TYR (Welch’s t test p value = 3.17e-05; Figure S6G), we did not observe evidence for ERE 

de-repression in RTs based on ERE methylation or expression levels (Welch’s t test p values 

> 0.05; Figures S6C–S6H). On the other hand, we identified nine known tumor antigen 

genes (ABCC3, CDR2, CEACAM21, CEA-CAM4, DSE, EPS8, ISG15, MUC1, and TBXT) 

whose expression levels correlated with T cell scores (linear regression p values < 0.05). Of 

these, IGS15 and TBXT were overexpressed in RTs compared to normal cell types (Figure 

S7E), suggesting that aberrantly expressed developmental genes such as these may be 

antigens in RTs.

DISCUSSION

Our integrative meta-analyses of multi-omic datasets revealed shared molecular 

characteristics between cranial ATRT-MYC and extra-cranial MRT at both global and local 

levels and enabled identification of five DNA methylation subgroups of RTs across multiple 

anatomical sites. Our epigenome and gene-expression analyses indicated the role of multiple 

early developmental states contributing to disease heterogeneity, based on mesoderm-like 

characteristics in subgroups consisting of MRT and ATRT-MYC, and neural-like 

characteristics in ATRT-SHH and -TYR. Although such characteristics may point to 

potential cells of origin, the observation of broad deletions of the SMARCB1 locus in Group 

1 cases also presents a possibility of specific genetic alterations contributing to disease 

heterogeneity, although detailed functional characterizations would be required to confirm 

this hypothesis.

Unexpectedly, several lines of evidence described in our study supported immune 

modulation in RTs. ATRT-MYC and MRT showed an enrichment of TFBS in the enhancers 

of genes involved in type I IFN-induced responses (IRF5/8/9 and STAT1) and antigen 

presentation (RFX1/5 and XBP-1). Pathway enrichment analyses using subgroup-specific 

differentially methylated or expressed genes (e.g., UBD and AIM2) also suggested the 

involvement of type I IFN-mediated signaling (Thibodeau et al., 2012), NF-κB activation 

(Gong et al., 2010; Hornung et al., 2009), and cytosolic DNA sensing processes that mediate 

viral defense as well as the maturation of dendritic cells and their ability to mediate antigen 

presentation (Vanpouille-Box et al., 2018). Our gene expression analyses further supported 

the notion that a subset of RTs could exhibit increased antigen presentation contributing to 

creating inflammatory tumor microenvironments infiltrated with functionally active 

cytotoxic T cells. Although our analysis did not support the notion of epigenetically de-

repressed EREs as a potential source of antigens, we did observe increased tumor antigen 
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expression from developmentally silenced genes whose expressions are normally restricted 

to early embryonic stages or to specific tissue types. In addition, our data were compatible 

with the notion that somatic deletions affecting immune modulating genes may contribute to 

increased cytotoxic T cell infiltration. For example, significant under-expression of MIF due 

to homozygous co-deletion with SMARCB1 in Group1 cases may contribute to increased 

immunogenicity observed in this subgroup, as suggested by a previous study that 

demonstrated increased levels of CD8-induced tumor cytotoxicity in MIF double knockout 

mice compared to wild-type mice (Choi et al., 2012).

Increased infiltration of CD8+ cytotoxic T cells in MRT and ATRT-MYC tumors was 

directly validated using IHC. Such infiltration has been positively associated with survival 

and responses to immune checkpoint inhibition (ICI) in other cancer types (Tumeh et al., 

2014; Barnes and Amir, 2017). MRTs further exhibited increased infiltration of PD-

L1+CD68+ myeloid cells, which also have been associated with favorable responses to ICI 

(Herbst et al., 2014; Mariathasan et al., 2018). In contrast, ATRT-SHH exhibited the highest 

level of PD-L1-negative CD68+ myeloid cells, the presence of which has been associated 

with poor prognosis of ICI (Herbst et al., 2014), consistent with the observation of the 

lowest CD8+ T cell infiltration level observed in the ATRT-SHH subgroup.

Although ICI has emerged as a promising cancer therapy, it frequently has been described to 

be most effective against cancers with high mutational burdens that are thought to result in 

neoantigens that provide a substrate for T cell recognition (Schumacher and Schreiber, 2015; 

Hellmann et al., 2018). However, several recent studies indicated that mutations in the 

SWI/SNF complex can also increase the immunogenicity of tumors (Pan et al., 2018; Miao 

et al., 2018). Our observations of increased cytotoxic T cell infiltration, T cell anergy, and 

immunosuppressive signaling in immune-responsive MRTs and ATRT-MYC support the 

notion that T cells may be functionally inhibited by the effects of immune checkpoint 

signaling and are consistent with accumulating evidence that SWI/SNF mutations can 

contribute to tumor immunogenicity in ways that may enhance their vulnerability to ICI. Our 

analyses provoke hypotheses related to the extent of immune cell infiltration, apparent pro- 

and anti-tumoral immune responses in the tumor microenvironment, and the potential of 

immune checkpoint inhibitors applied in RT patients. Additional studies will be necessary to 

deduce mechanisms, but our results so far have shown epigenetic dysregulation in 

embryonic-development- and immune-related gene expression programs in RT subgroups, 

perhaps suggesting that tumors with extensive developmental gene dysregulation, which 

otherwise lack mutations such as RTs, may be poised for immune stimulation. These 

findings may thus lay the groundwork for further work to delineate whether the immune 

cell-inflamed phenotypes and molecular similarities between MRT and ATRT-MYC can be 

usefully deployed in the clinic.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for 

resources and reagents should be directed to and will be fulfilled by the Lead Contact, 

Marcel Kool (m.kool@kitz-heidelberg.de).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Data from 141 primary extra-cranial MRT and 161 primary cranial ATRT samples were 

analyzed for this paper. Data for 40 out of 141 MRT samples were generated as part of a 

previous report (Chun et al., 2016). In addition to these data, 29 MRT samples (26 from 

kidneys, 3 from soft tissues) were provided by Dr. Elizabeth Perlman (Ann and Robert H. 

Lurie Children’s Hospital in Chicago, USA) through the Children’s Oncology Group 

(COG). From COG, we received pre-therapy tumor and normal DNA from peripheral blood 

or kidney from rhabdoid tumors (RTs), registered on the National Wilms Tumor Study 

Group 5 or on COG AREN03B2 banked by the COG Biopathology Center with parental 

informed consent. Studies were performed with the approval of the University of British 

Columbia - British Columbia Cancer Agency Research Ethics Board (REB number H09–

02558). 9 MRT samples (3 from the spine, 2 from kidneys, remainder from various non-

renal tissues e.g., pelvis, face) were provided by Dr. Annie Huang (Hospital for Sick 

Children in Toronto, Canada) through the Rare Brain Tumor Consortium (RBTC). An 

additional 63 MRT samples (31 from kidneys, 8 from the liver, remainder from various non-

renal tissues e.g., retroperitoneum, Intra-abdomen, face) were provided via the EURHAB 

study group, with informed consent obtained from all patients included in the study. Data for 

150 out of 161 ATRT samples were generated as part of a previous report (Johann et al., 

2016). 11 additional ATRT-MYC samples were provided by Dr. Martin Hasselblatt. To 

enable as comprehensive a study as possible for this rare tumor type, we aggregated all 

obtainable RT samples that passed quality criteria from COG and EURHAB studies.

For samples provided through COG, Nationwide Children’s Hospital prepared cells and 

nucleic acids, and shipped these materials to DKFZ for DNA methylation profiling and to 

Canada’s Michael Smith Genome Sciences Centre at BC Cancer (BCGSC) for whole-

genome-, whole-genome bisulfite-, RNA-, and ChIP-seq. For samples provided through 

DKFZ, cells and nucleic acids were prepared at various sample providers’ institutions, and 

underwent DNA methylation profiling at DKFZ. Complete sample information, including 

age and sex of patient subjects, is provided in Table S1.

Tumor content was estimated for 74 cases (56 MRT and 18 ATRT cases) using whole-

genome-sequencing data generated from tumor and matched normal pairs and APOLLOH 

software (Ha et al., 2012), as described previously (Chun et al., 2016). The median tumor 

purity estimated by APOLLOH was 88.31% (min = 42.78%; max = 95.04%).

METHOD DETAILS

Procedures pertaining to previously published data have been described in Chun et al. (2016) 

and Johann et al. (2016).

DNA Methylation Array Data Generation and Processing—DNA methylation array 

data from 150 primary ATRT samples were previously published (Johann et al., 2016). DNA 

methylation array data from 9 MRT samples from RBTC were generated using Illumina’s 

Infinium HumanMethylation450 BeadChip (450K) platform. Using Illumina’s Infinium 

MethylationEPIC (850K) platform, we generated DNA methylation data for 40 primary 

MRT samples that previously had been analyzed using whole-genome bisulfite sequencing 
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(Chun et al., 2016), and also for an additional 11 ATRT and 91 MRT cases. All samples 

were checked for expected and unexpected genotype matches by pairwise correlation of the 

65 genotyping probes on the Illumina Methylation 450K array. Raw 450K/850K data files 

were generated and processed as previously described (Capper et al., 2018).

Whole-Genome Library Construction and Sequencing—Whole-genome 

sequencing (WGS) data from pairs of 40 primary MRT and 18 primary ATRT cases, and 

their corresponding matched normal samples, were previously published (Chun et al., 2016; 

Johann et al., 2016). We generated WGS data for an additional 16 pairs of MRT and 

matched normal samples. WGS library construction, sequencing, and read alignment were 

performed as previously described in Chun et al. (2016). In brief, all primary tumor and 

matched normal samples underwent plate-based PCR-free WGS on the Illumina HiSeq 2500 

platform to achieve the desired sequence coverage (> 30X). Sequences were aligned to the 

human reference genome GRCh37-lite/hg19a using the Burrows-Wheeler Aligner (BWA; 

version 0.5.7; Li and Durbin, 2010). Merged BAM files were marked for duplicates using 

Picard MarkDuplicates.jar (version 1.71).

Whole-Transcriptome Library Construction and Sequencing—Whole-

transcriptome sequencing (RNA-seq) data from 40 primary MRT and 25 primary ATRT 

cases were previously published (Chun et al., 2016; Johann et al., 2016). We generated 

RNA-seq data for an additional 25 primary MRT cases. RNA-seq library construction and 

sequencing were performed as previously described in Chun et al. (2016). In brief, paired-

end polyA+ RNA sequencing was performed preserving strand specificity on the Illumina 

HiSeq 2500 platform.

Whole-Genome Bisulfite-seq Library Construction and Sequencing—Whole-

genome bisulfite sequencing (WGBS) data from 40 primary MRT and 17 primary ATRT 

cases were previously described (Chun et al., 2016; Johann et al., 2016). We generated 

WGBS data for an additional 29 primary MRT cases. WGBS library construction and 

sequencing were performed as previously described in Chun et al. (2016). In brief, 

fragmented bisulfite converted DNA was sequenced using paired-end 100/125 nt V3/4 

sequencing chemistry on the Illumina HiSeq 2500 platform.

Chromatin Immunoprecipitation (ChIP) Library Construction and Sequencing
—H3K27ac and H3K27me3 ChIP-seq data from 10 primary MRT and 14 primary ATRT 

cases were previously published (Chun et al., 2016; Johann et al., 2016). We generated 

H3K27ac and H3K27me3 ChIP-seq data for an additional 24 and 25 primary MRT cases, 

respectively. ChIP-seq library construction and sequencing were performed as previously 

described in Chun et al. (2016). In brief, samples were prepared from cross-linked tissues, 

from which ChIP was performed using the extracted chromatin. Fragmented chromatin 

DNA was sequenced using paired-end sequencing chemistry on the HiSeq 2000/2500 

platforms.

Chun et al. Page 15

Cell Rep. Author manuscript; available in PMC 2019 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



QUANTIFICATION AND STATISTICAL ANALYSIS

Mutation Analyses using Whole-Genome Sequencing Data—In addition to the 

previously described data, we analyzed whole-genome sequencing data from 18 pairs of 

ATRT and their matched normal samples, and 16 pairs of MRT and their matched normal 

samples to identify somatic mutations i.e., copy number alterations (CNA), single nucleotide 

variants (SNVs), short insertions and deletions (InDels), and structural variants such as 

inversions, duplications, and translocations that may lead to gene fusions. To allow data 

comparability, we used the same suite of software tools described in Chun et al. (2016), 

including Strelka (version 2.0.7; Saunders et al., 2012), SAMtools mpileup (version 0.1.17; 

Li et al., 2009), and MutationSeq (Ding et al., 2012) to detect somatic SNVs and InDels, 

APOLLOH (version 012.2014a; Ha et al., 2012) to detect regions with loss of 

heterozygosity (LOH), CNASeq (version 1.0.10; Jones et al., 2010) to detect CNA, and 

Trans-ABySS (version 1.4.10; Robertson et al., 2010) to detect structural variants such as 

chromosomal translocations and inversions.

Copy Number Analysis using DNA Methylation Data—We used the conumee R 

package (http://bioconductor.org/packages/release/bioc/html/conumee.html) to estimate the 

chromosomal copy number state from 450K and EPIC/850K DNA methylation array data as 

previously described in Johann et al. (2016). Regions with values > 0.3 were considered to 

have chromosome amplifications, while regions with values < −0.3 were considered to have 

chromosome deletions.

Analysis of RNA-Seq Data—RNA-seq read alignment and gene expression 

quantification for 65 MRT and 25 ATRT samples were performed using methods previously 

described in Chun et al. (2016). Briefly, reads were aligned to the human reference genome 

(version hg19/GRCh37-lite) and to exon junction sequences using BWA. JAGuaR (version 

2.2.2; Butterfield et al., 2014) was used to reposition sequences mapped to exon junctions 

back onto the genome as gapped alignments. We calculated the sequenced base coverage 

across collapsed exon models to quantify gene-level expression using the gene coverage 

analysis software developed at Canada’s Michael Smith Genome Sciences Centre. All 

external RNA-seq data (i.e., neuron progenitor data from the Roadmap Epigenomics 

Consortium and cranial neural crest data from Prescott et al., 2015) were processed using the 

same software pipeline and gene annotation versions as the MRT RNA-seq data, as 

previously described (Chun et al., 2016).

For gene expression analyses, we selected genes that were expressed above a noise threshold 

of 1 RPKM in all 90 samples. 27,790 out of 58,450 genes, annotated by EnsEMBL version 

69, were removed using this filter. To identify differentially expressed genes, we used the 

DESeq R package (version 1.14.0; R version 3.3.2; Anders and Huber, 2010) and an 

adjusted p value threshold of 0.05. For subsequent analyses, we further filtered low 

abundance transcripts that were identified to be overexpressed in one group compared to 

another group, but had a median expression level less than 1 RPKM. Pathway enrichment 

analysis was done using DAVID (version 6.8) (Huang et al., 2009), g:Profiler (Reimand et 

al., 2007), Metascape (Tripathi et al., 2015), and Ingenuity Pathway Analysis© tool, with an 

adjusted p value threshold of 0.05. We used EnrichmentMap plug-in (version 3.2.0) for 
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Cytoscape (version 3.7.1) to visualize networks of significantly enriched Gene Ontology 

(GO) biological processes from g:Profiler queries. Node color represents a BH-adjusted p 

value of enrichment tests. The size of a node is proportional to the number of genes in a 

biological process. The thickness of an edge is proportional to a similarity coefficient based 

on the fraction of shared genes between biological processes.

To cluster RT samples based on gene expression, we first removed genes expressed below 1 

RPKM in ≥ 75% of samples, and then ranked the remaining genes based on the coefficient 

of variation. We performed unsupervised non-negative matrix factorization (NMF) using the 

top 25% most variably expressed genes (n = 3,984), and considered a k value i.e., a 

clustering solution, at which the highest cophenetic coefficient and silhouette width were 

observed. We used the NMF R package (version 0.20.2; Gaujoux and Seoighe, 2010), with a 

default Brunet algorithm and 50 and 500 iterations for the rank survey and the clustering 

runs, respectively.

To deconvolute gene-expression signals originating from various immune cell types, we 

applied CIBERSORT analysis using the CIBERSORT R script (version 1.04; Newman et al., 

2015) to gene-level RPKM data with 5,000 permutations using the absolute signature score 

mode. To detect T cell receptor (TCR) sequences, we used MiXCR (version 2.1.9; Bolotin et 

al., 2015) on FASTQ data generated from paired-end RNA-seq of 25 ATRT and 65 MRT 

cases, and identified reads that aligned to reference germline V, D, J, and C gene sequences 

from GenBank, which were then assembled for clonotype mapping i.e., construction of full-

length CDR3 regions of the TCR. We then analyzed TCR β clonotypes generated from 

MiXCR to calculate Shannon Wiener index scores, which quantify the diversity of TCR 

repertoires in each sample using VDJTools (Shugay et al., 2015).

To compare gene expression levels in RTs against various normal tissue types, we used 

RPKM values from the Genotype-Tissue Expression dataset (GTEx version 9; number of 

samples = 2,500; number of normal tissue types = 52), and from normal cerebellum (n = 9) 

and normal kidney (n = 6) datasets.

Transcriptional network analysis consisted of three steps, as adapted from the SCENIC 

pipeline (Aibar et al., 2017): (1) Identify potential targets of each transcription factor (TF); 

(2) perform TF motif enrichment analysis to identify the putative direct targets of each TF to 

form a transcriptional network, and (3) score the activity of each network in each sample. 

Co-expression modules were constructed using the R package GENIE3 v0.99.7 (Huynh-Thu 

et al., 2010). The input used was a gene-expression matrix consisting of genes with >1 

RPKM in all samples (n = 90; 65 MRT and 25 ATRT cases). TF-gene pairs with co-

expression scores greater than 0.001 and having positive Spearman correlations were used to 

construct TF gene sets, each consisting of a TF and genes with co-expression patterns. TF 

motif enrichment analysis was then performed for each TF gene set using the R/

Bioconductor package RcisTarget (version 0.99.0), which contains motif rankings for ~1800 

TFs from iRegulon (Janky et al., 2014). From these, we inferred direct targets of a TF by 

filtering the genes that were significantly enriched for at least one of the TF’s binding 

motifs, and generated a TF network consisting of a TF and its putative direct targets. The 

activity of each TF network was quantified using the R package AUCell (version 0.99.5). An 
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area under the recovery curve (AUC) analysis was performed for each TF network identified 

in a sample to quantify the proportion of genes that are present within the highest-expressing 

genes in each sample. To identify active TF networks in each sample, a binary score 

indicating network activity states (1 = on/active, 0 = off/inactive) was assigned to each 

sample using a threshold determined based on the distribution of AUC values across all 

samples (Aibar et al., 2017).

To quantify endogenous retroviral element (ERE) transcript abundance levels, we used reads 

that mapped to loci containing short or long interspersed nuclear elements (SINEs or LINEs, 

respectively) and long terminal repeat (LTR) retrotransposons including endogenous 

retroviruses (ERV), annotated by UCSC RepeatMasker (hg19 version). A list of 5,467,457 

repeat elements and their genomic coordinates was obtained from RepeatMasker (version 

hg19 - Feb 2009 - RepeatMasker open-4.0.5 - Repeat Library 20140131; Smit et al., 2013). 

The list was filtered to remove EREs with uncertain annotations (i.e., those annotated with 

“?”) and EREs on the Y and non-canonical chromosomes. We further selected EREs that did 

not overlap with gene promoters (includes 1500 bp upstream of a TSS) and gene bodies to 

obtain ERE transcript abundance levels that were not likely to be confounded by “host” gene 

transcription (n = 3,877,818). Raw transcript abundance levels were quantified for each ERE 

by counting the number of reads that mapped unambiguously, with their mate reads mapping 

within 10kb from a read center. ERE transcript abundance levels were normalized for a 

library depth, and represented in reads per million reads mapped (RPM).

DNA Methylation Array Analysis—We processed the raw IDAT files using the minfi R 

package (version 1.20.2; Aryee et al., 2014) and applied the single-sample Noob (normal-

exponential out-of-band) method to correct the background. To enable comparisons between 

450K and the EPIC arrays, only the probes represented on both arrays were used for the 

analysis. In addition, the following filtering criteria were applied: Removal of probes 

targeting the X and Y chromosomes; removal of probes containing a single nucleotide 

polymorphism (dbSNP132Common) within five base pairs of and including the targeted 

CpG-site (n = 24,536), and removal of probes not mapping uniquely to the human reference 

genome (hg19), allowing for one mismatch (Zhou et al., 2017).

Fort-SNE analysis, the R-package tSNE (version 0.1.3) was used. Unsupervised hierarchical 

clustering and Consensus Clustering were carried out as described previously with varying 

numbers of CpG sites (Johann et al., 2016).

To assess the extent of molecular similarities and identify subgroups of RTs, we combined 

DNA methylation array data generated from 161 ATRT and 140 MRT samples to perform 

unsupervised NMF analysis. We first filtered out CpG sites that were targeted by probes 

annotated to be less robust (e.g., those with SNPs) according to the published annotation 

(Zhou et al., 2017). We also removed CpG sites with 0% methylation across all 301 samples. 

We considered only CpG sites on autosomes, and selected CpG sites that were positively 

methylated with beta-values >0.3 in at least 10% of samples, following the methods applied 

by TCGA (Cancer Genome Atlas Research Network, 2014a; Brat et al., 2015). The 

remaining CpG sites were then ranked using standard deviation, such that the most variably 

methylated CpG sites could be selected for downstream analyses. We performed 
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unsupervised NMF using the top 10,000 CpG sites with a default Brunet algorithm and 50 

and 500 iterations for the rank survey and the clustering runs, respectively.

To test for non-random distribution of covariates between subgroups of interest, we applied 

Fisher’s exact test (using the fisher.test function in R) and performed Benjamini-Hochberg 

multiple hypotheses testing adjustments using the p.adjust function in R to obtain adjusted p 

values.

We performed hierarchical clustering (Spearman correlation coefficient as the distance 

metric, complete linkage clustering) on 9,758 DNA methylation profiles representing 33 

tumor types (n = 9,012), 23 normal tissue types (n = 746) from TCGA, and 464 DNA 

methylation profiles representing four pediatric tumor types (n = 452) and 12 pediatric 

normal brain tissues from TARGET. We also included DNA methylation profiles from 8 

normal adult and 2 fetal brain samples from DKFZ. For each cancer and normal tissue type, 

a median beta value for CpG probes was determined (probes were previously filtered using 

the method described above). These median values, together with DNA methylation profiles 

from primary MRT and ATRT cases, were then used for the clustering analysis. The TCGA 

cancer types included BRCA (n = 796; Breast invasive carcinoma); LGG (n = 534; Low-

grade glioma), HNSC (n = 530; Head and neck squamous cell carcinoma), THCA (n = 515; 

Thyroid carcinoma), PRAD (n = 503; Prostate adenocarcinoma), LUAD (n = 475; Lung 

adenocarcinoma), SKCM (n = 473; Skin cutaneous melanoma), UCEC (n = 439; Uterine 

corpus endometrial carcinoma), BLCA (n = 419; Bladder urothelial carcinoma), STAD (n = 

396; Stomach adenocarcinoma), LIHC (n = 380; Liver hepatocellular carcinoma), LUSC (n 

= 370; Lung squamous cell carcinoma), KIRC (n = 325; Kidney renal clear cell carcinoma), 

COAD (n = 316; Colon adenocarcinoma), CESC (n = 309; Cervical squamous cell 

carcinoma and endocervical adenocarcinoma), KIRP (n = 276; Kidney renal papillary cell 

carcinoma), SARC (n = 265; Sarcoma), ESCA (n = 186; Esophageal carcinoma), PAAD (n 

= 185; Pancreatic adenocarcinoma), PCPG (n = 184; Pheochromocytoma and 

paraganglioma), TGCT (n = 156; Testicular germ cell tumors), GBM (n = 153; Glioblastoma 

multiforme), LAML (n = 140; Acute myeloid leukemia), THYM (n = 124; Thymoma), 

READ (n = 99; Rectum adenocarcinoma), MESO (n = 87; Mesothelioma), UVM (n = 80; 

Uveal melanoma), ACC (n = 80; Adrenocortical carcinoma), KICH (n = 66; Kidney 

chromophobe), UCS (n = 57; Uterine carcinosarcoma), DLBC (n = 48; Diffuse large B cell 

lymphoma), CHOL (n = 36, Cholangiocarcinoma), and OV (n = 10; Ovarian serous 

cystadenocarcinoma). The TARGET cancer types included CCSK (n = 11; Clear cell 

sarcoma of the kidneys), NBL (n = 224; Neuroblastoma), OS (n = 86; Osteosarcoma), and 

WT (n = 131; Wilms tumor). The level 3 TCGA and TARGET data were generated using 

Illumina Human Methylation 450 platform, and were obtained through the TCGA GDC 

Data Portal at https://portal.gdc.cancer.gov/ and the TARGET Data Portal at ftp://

caftpd.nci.nih.gov/pub/OCG-DCC/TARGET/.

For hierarchical clustering, we used the hclust R package (R version 3.3.2) and clustered 

samples using the top 10,000 most variably methylated CpGs, using complete linkage and 

the Spearman correlation coefficients as the distance metrics. We also performed 

hierarchical clustering using the top 1% most variably methylated CpGs (n = 3,958) using 

complete linkage and the Pearson correlation coefficient as the distance metrics. We used the 
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heatmap.2 function within the gplots R package (version 2.16.0) for visualization of 

clustering results.

Analysis of ChIP-Seq Data—Alignment of sequencing data was performed as described 

in Johann et al. (2016). In brief, BWA was used to align sequence reads. Duplicate reads 

were marked using Picard MarkTools. For enhancer and peak-centered analyses of H3K27ac 

and H3K27me3 data, we used MACS2 (Zhang et al., 2008) with default settings to call 

peaks. Peak calling was performed for each sample in the sample cohort, and peaks that 

were present in two or more samples were retained for analyses. Resulting peaks were 

merged and used for further analyses.

The signals at peaks were calculated as previously described (Hisano et al., 2013), using the 

“countsForRegions” function followed by scaling the counts to library size. We applied the 

same method to calculate H3K27ac signal at promoters, which are defined as regions ± 500 

bp around the transcription start site (TSS). Peaks (enhancers) with the most variable signal 

across all MRT samples were chosen. For unsupervised hierarchical clustering, the top 1,500 

most variable peaks over all samples were used.

For TF enrichment analyses, enhancers specific to MRTs were defined based on statistical 

testing of MRT enhancers versus all enhancers specific to the three ATRT subgroups 

characterized in our previous report (Johann et al., 2016). Briefly, we applied ANOVA with 

an FDR cut-off of 0.05 and required at least log2 fold change of 1.5 between MRT and 

ATRT enhancer signals. Nucleosome free regions (NFRs) of these specific enhancers were 

identified using the HOMER software (http://homer.ucsd.edu/homer/; version 4.10; Heinz et 

al., 2010). For TF enrichment, the ENCODE motifs were downloaded from http://

compbio.mit.edu/encode-motifs/. Each motif was overlapped with the NFRs from MRT-

specific enhancers. Chi-square tests were applied to identify significantly enriched TF motifs 

(FDR < 0.01). Enrichment values for ATRT subgroup-specific enhancers were taken from 

previous analyses (Johann et al., 2016).

Identification of Super-Enhancers and Target Genes of Super-Enhancers—
Super-enhancers were identified using the HOMER software (http://homer.salk.edu/

homer/ngs/index.html) and the findPeaks command with “-style super” option. ATRT super-

enhancers had been identified previously in Johann et al. (2016). For MRT-specific super-

enhancers, H3K27ac data were combined for all MRT samples and compared to ATRT 

subgroups. To identify super-enhancers that were common between MRT and ATRT-MYC, 

we compared the coordinates of super-enhancers and selected those that overlapped by at 

least 25% between MRT and ATRT-MYC-specific enhancers (as defined in Johann et al., 

2016), but not between MRT and other ATRT subgroup-specific enhancers.

Analysis of WGBS Data—WGBS data from ATRT and MRT cases were previously 

published (Chun et al., 2016; Johann et al., 2016). Alignment of the data was performed as 

previously described (Hovestadt et al., 2014) using Bismark (Krueger and Andrews, 2011). 

Identification of partially methylated domains (PMDs) in MRT was performed using the 

same method as described in Johann et al. (2016). In brief, average methylation levels within 

windows of 10 kb were calculated in steps of 1 bp. Overlapping 10 kb windows with an 
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average methylation level < 0.6 were merged, and resulting regions larger than 100 kb were 

termed PMDs.

To identify differentially methylated regions (DMRs), we used the bsseq R package (version 

1.18.0; Hansen et al., 2012) to create the data frames for methylated reads and to calculate 

the whole coverage per sample based on aligned reads. A CpG site with a minimum 

coverage of 5 reads was selected for downstream analyses. For each sample, a bsseq object 

was generated, and then analyzed to identify DMRs specific for each of the five subgroups, 

using the callDMR function in the DSS R package (version 2.12.0; parameters used: minlen 

= 50, minCG = 5). To identify a gene that overlapped with DMRs, the longest transcript of a 

protein-coding gene was considered. For visualization of WGBS data, the GVIZR package 

was used (version 1.26.4; Hahne and Ivanek, 2016).

Immunohistochemistry (IHC)—Two multi-color immunohistochemical panels were 

stained on whole tissue slides using two staining schemes. All reagents were sourced from 

Biocare Medical (Pacheco, CA) unless noted otherwise. Slides were incubated overnight at 

37°C, then deparaffinized manually using xylene and graded alcohols. The slides were then 

subjected to antigen retrieval using a Biocare decloaking chamber plus™ at 110°C for 15 

minutes in Diva decloaking solution. Slides were then loaded onto a Biocare Intellipath 

FLX® autostainer. The first two steps of the staining schemes required blocking of 

endogenous peroxidase activity using peroxidased-1 dispensed using the Intellipath FLX for 

5 minutes followed by blocking of non-specific binding using a blocking reagent, 

background sniper, for 10 minutes. All antibodies were diluted in Biocare Da Vinci Green 

diluent.

For multiplex IHC targeting CD3 and CD8, we used the following staining scheme: Primary 

antibodies of CD8 (clone C8/144b from Cell Marque) and CD3 (clone SP7 from Spring 

Bioscience) were combined into a cocktail diluted in Da Vinci Green diluent at 1/250 and 

1/500 dilutions, respectively, which was manually added to the slides for 30 minutes. These 

were then followed by Mach2 Double Stain #2 polymer dispensed using the Intellipath 

FLX® for 30 minutes to put CD8 on IP DAB chromogen and CD3 on IP Warp Red 

chromogen. Following the chromogen step, slides were counterstained with CAT 

Hematoxylin at a 1/5 dilution and then washed and air-dried prior to coverslipping with 

Ecomount. The staining scheme for the multiplex IHC targeting PD1, PD-L1, and CD68 was 

done as follows: In the first round of staining, primary antibodies of PD-L1 (clone SP142 

from Abcam) and CD68 (clone KP-1 from Biocare Medical) were combined into a cocktail 

diluted 1/100 in Da Vinci Green diluent, and applied to the slides for 30 minutes, followed 

by Mach2 Double Stain #1 polymer for 30 minutes to put CD68 on IP Ferengi Blue 

chromogen and PD-L1 on IP DAB chromogen. The slides then underwent a denaturation 

step with SDS-glycine pH2.0 at 50°C for 45 minutes (Pirici et al., 2009). In the second 

round of staining, we manually applied primary PD1 antibody (clone EPR4877(2) from 

Abcam) diluted 1/250 in Da Vinci diluent for 30 minutes, followed by Mach2 Rabbit-AP 

polymer for 30 minutes to put PD1 on IP Warp Red chromogen. Slides were then 

counterstained with CAT Hematoxylin at a 1/5 dilution and then washed and air-dried, 

followed by coverslipping with Ecomount.
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IHC Analysis—IHC-stained slides were scanned at 10X to create whole slide scans using 

the Vectra 3 multispectral imaging system (Perkin Elmer, Waltham, MA). The files 

generated were then passed to a pathologist (B.T-C.) for selection of 15 tumor-rich (TT), 5 

peri-vascular (PV), and 5 peri-stromal (PS) regions based on whole slide scans of H&E 

stained slides using the Pannoramic Midi system (3D Histech). Slides were then re-scanned 

using the Vectra 3 multispectral imaging system, generating multispectral images at 20X 

magnification based on the digitally annotated fields of view. Multispectral imaging enabled 

spectral separation between different chromogens for better visualization of images and 

spectral superimposition of different chromogens to identify co-expression of proteins. 

Multispectral images were analyzed using the inForm Image Analysis software (Perkin 

Elmer) to automatically identify cell phenotypes and perform cell counts. Five phenotyping 

algorithms were created using a training set of images (10 per algorithm) selected to 

recognize diverse cell phenotypes. The resulting cell counts were compared and visually 

validated in all cases by a researcher (H.-J.E.C). Normalized immune cell densities for each 

image were calculated by dividing validated cell counts by the scanned area (mm2; 

calculated by multiplying a number of pixels of the scanned image by 2.5 × 10−7), and were 

then compared across all samples. Normalized cell counts were plotted using R, and 

statistical significance of cell count differences was calculated using either of the Wilcoxon 

Mann-Whitney U or Kruskal-Wallis tests.

To enhance visibility and discrimination between IHC colors, IHC images shown in Figure 

7E were adjusted to reduce the blue hematoxylin signals by 50% and were re-colored with 

the following pseudocolors: CD8+ signals in brown and CD3+ in green. To better visualize 

PD-L1+ CD68+ and PD-L1− CD68+ cells, IHC images were modified as false 

immunofluorescence images as shown in Figure S7B, with following pseudocolors applied: 

CD68+ in green, PD-L1+ in red, PD1+ in cyan, and PD-L1+CD68+ in yellow. All data 

analyses were performed on raw images using inForm.

Text-Mining Analysis for Identifying Putative Tumor-Associated Antigens—In 

order to build a list of putative tumor antigens, we used a text-mining method (Lever and 

Jones, 2017) to extract mentions of tumor antigens found in published abstracts and full-text 

papers. From PubMed abstracts and all downloadable PubMed Central articles, we extracted 

sentences that mention the phrase “tumor antigen” (variable spellings considered) and 

contain a gene name from the NCBI gene list with additional synonyms. We then used an 

active learning approach to annotate the sentences as to whether the gene name was a 

potential tumor antigen. This used the Kindred relation extraction Python package (Lever 

and Jones, 2017) to train a logistic regression classifier based on dependency parse-based 

features. Relations that the classifier found ambiguous, which were those classified 

differently using a bootstrapping method, were presented to an in silico annotator. This 

annotation provided a training set to train a final relational classifier that was applied to all 

relevant sentences and used to build a list of putative tumor antigens that was then reviewed 

manually. All code is accessible at https://github.com/jakelever/tumorantigens.
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DATA AND CODE AVAILABILITY

Raw DNA methylation array data generated from ATRT samples from DKFZ have been 

deposited in the Gene Expression Omnibus (GEO). The accession number for the ATRT 

DNA methylation array data reported in this paper is GEO: GSE123601. The accession 

number for raw DNA methylation array data and sequence data generated from MRT 

samples from TARGET reported in this paper is NCBI dbGaP: phs000470, with additional 

data available at http://target.nci.nih.gov/dataMatrix/TARGET_DataMatrix.html. Details for 

other data and software availability are in the Key Resources Table. Requests for additional 

data and code should be directed to the Lead Contact.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• MYC subgroup of cranial RTs (ATRT-MYC) is molecularly similar to extra-

cranial RTs

• Five DNA methylation subgroups are identified in RTs across multiple organ 

sites

• Groups 1, 3, and 4 exhibit cytotoxic T cell infiltration and PD1 and PD-L1 

expression
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Figure 1. Unsupervised Clustering of DNA Methylation Profiles from 140 MRTs (92 Renal, 48 
Extra-Renal) and 161 ATRTs Indicate Similarity between ATRT-MYC and MRT
(A) t-SNE analysis was performed using the top 2,000 most variably methylated CpG sites 

and to reveal three clusters that consisted primarily of ATRT-MYC (n = 44 cases) and MRT 

(n = 140 cases), ATRT-SHH (n = 64 cases), or ATRT-TYR (n = 53 cases).

(B) Unsupervised hierarchical clustering was performed using the top 1% most variably 

methylated CpG sites (n = 3,958) and yielded a clustering result consistent with (A). See 

also Figure S1 and Table S1.
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Figure 2. Five DNA Methylation Subgroups of RTs from Cranial and Extra-Cranial Sites 
Correlate with Previously Known ATRT and MRT Subgroups, Anatomical Sites, and SMARCB1 
Deletion Patterns
(A) Unsupervised NMF analysis was performed using the top 10,000 most variably 

methylated CpG sites and revealed five subgroups (top). Clinical features, gene expression 

subgroups of MRTs, and previously characterized ATRT subgroups are shown in colored 

tracks (middle). Chronological age and predicted DNA methylation age (Horvath, 2013) are 

shown in bar plots (bottom). ATRT-SHH and Group 1 exhibited increased DNA methylation 

age compared to the other subgroups (Wilcoxon p values = 1.62e-05 and 6.30e-10 for ATRT-
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SHH and Group 1, respectively). Neither chronological age nor gender were significantly 

associated with the subgroups (Kruskal-Wallis p value = 0.25 and Fisher’s exact p values = 

0.16 – 0.86, respectively).

(B) Cophenetic coefficients (top) and silhouette widths (bottom) for NMF cluster solutions 

from k = 2 to k = 15. The highest cophenetic coefficients and silhouette widths were from 

the NMF solutions with 5 and 6 clusters.

(C) Heatmap indicates chromosomal copy gain (indicated by red) or loss (blue), estimated 

using DNA methylation data, centered at the SMARCB1 locus across the five DNA 

methylation subgroups (n = 301 cases).

(D) Boxplot shows the mean expression levels of 74 genes (top) co-deleted with SMARCB1 
across the five subgroups (n = 19 cases for Group 1, n = 41 for Group 3, n = 11 for Group 4, 

n = 11 for ATRT-SHH, n = 8 for ATRT-TYR) and expression levels of MIF (bottom). The 

asterisk indicates a significant difference (Wilcoxon p value < 0.05) between Group 1 and 

other RT subgroups.

See also Figures S2 and S3 and Table S2.
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Figure 3. ATRT-MYC and MRT Exhibit Similar DNA Methylation Profiles Distinct from ATRT-
SHH and -TYR
(A) Boxplot shows the distribution of mean genome-wide DNA methylation levels based on 

WGBS data. MRT (n = 69 cases) and ATRT-MYC (n = 3 cases) showed significant 

hypomethylation compared to ATRT-SHH (n = 7 cases) and -TYR (n = 7 cases; *Wilcoxon 

p value < 0.05).

(B) Boxplot displays the distribution of fractions of the genome covered by PMDs in MRT 

and ATRT-MYC, which exhibited significantly more abundant PMDs compared to ATRT-

SHH and -TYR (*Wilcoxon p value < 0.05).
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(C–E) Gene set enrichment of DMRs that are specific for Groups 1 (C), 3 (D), and 4 (E). 

The x axes indicate the statistical significance of the enrichment test. (F) Heatmap (left) 

shows average CpG methylation levels at the NCOR2 locus in Group-1-specific DMRs (red 

= 100%; blue = 0% methylation). Boxplot (right) shows significantly increased NCOR2 
expression levels in Group 1 compared to other RT subgroups (*Wilcoxon p value < 0.05).

See also Figure S4 and Table S3.
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Figure 4. ATRT-MYC and MRT Exhibit Distinct Enhancer Profiles
(A) Unsupervised clustering of H3K27ac ChIP-seq read densities resulted in a cluster of 

ATRT-MYC cases (n = 4) and MRT cases (n = 34) indicated by green and purple bars, 

respectively.

(B) Line plots show the average H3K27ac signal densities of the five RT subgroups at 

Group-1- (including ATRT-MYC; n = 460 DMRs), Group-3- (n = 426 DMRs), and Group-4-

specific DMRs (n = 280), respectively. Subgroup-specific DMRs showed the highest 

H3K27ac signal density levels in the respective subgroups.
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(C) Mean H3K27ac density at the HOXC locus, which was specific to MRT (n = 34 cases) 

and ATRT-MYC (n = 4 cases) and absent in ATRT-SHH (n = 5 cases) and -TYR (n = 5 

cases).

(D) Boxplots show HOXC (top) and HOTAIR (bottom) gene expression levels, which were 

significantly higher in MRT cases (n = 65) and ATRT-MYC (n = 6 cases) compared to 

ATRT-SHH (n = 11 cases) and -TYR cases (n = 8; * adjusted p values < 0.05).

(E) Unsupervised hierarchical clustering using enrichment scores of TFBS at enhancers 

specific to MRT (n = 312 enhancers), ATRT-MYC (n = 443 enhancers), -SHH (n = 511 

enhancers), and -TYR (n = 1,385 enhancers). Heatmap colors represent the log2 enrichment 

scores of TFs in the enhancers. Colors next to gene names indicate known biological 

processes associated with TFs.

See also Table S4.
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Figure 5. Dysregulation of Mesenchymal Development Genes Is Associated with ATRT-MYC and 
MRT, whereas Dysregulation of Neural Genes Is Associated with ATRT-SHH and -TYR
(A) Volcano plot shows the statistical significance of differential expression (DE; adjusted p 

values < 0.05) on the y axis, and the fold change (FC) of gene expression in ATRT-MYC (n 

= 6 cases) and MRT (n = 65 cases) compared to ATRT-SHH (n = 11 cases) and -TYR (n = 8 

cases) on the x axis. The top 20 significant DE genes, HOX genes, and genes involved in 

neural or mesenchymal development are labeled in colors as shown.

(B) Bar plots show the most significantly enriched pathways and adjusted enrichment p 

values based on analyses of 584 relatively overexpressed genes (top) and 2,500 relatively 
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under-expressed genes (bottom) in MRTs and ATRT-MYC compared to ATRT-SHH and -

TYR.

(C) Gene expression levels and H3K27ac and H3K27me3 densities (i.e., average read 

coverage) at the promoters of HES7 and its interactors are shown in boxplots.

(D-F) Enrichment map networks of Gene Ontology (GO) terms significantly enriched for 

Group-1- (D), Group-3- (E), and Group-4-specific (F) DE genes. A node size is proportional 

to the number of genes in the category and a node color indicates an adjusted enrichment p 

value. The edge thickness is proportional to a fraction of shared genes between GO terms.

See also Figure S5 and Table S5.
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Figure 6. Gene Expression Analysis Indicates Increased T Cell Presence in RT Subgroups
(A) Stacked bar plot shows CD8+ cytotoxic T cell proportions (yellow) and T cell scores 

(blue), which are based on the sum of absolute proportions of effector T cells (i.e., all T cell 

types except regulatory T cells [TVeg]). The samples (n = 90) are ordered based on CD8+ 

cytotoxic T cell proportions(and in all subsequent sub-figures in Figure 6). A subgroup of 

each sample is indicated in (B).

(C) Heatmap shows absolute proportions of 22 immune cell types predicted using 

CIBERSORT.
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(D) Bar plot shows expression levels of the TBXT gene, which encodes T-brachyury.

(E-G) Heatmaps indicate expression levels of genes involved in antigen presentation and 

processing (E), T cell activation and homing (F), and immunosuppressive signaling (G). All 

genes were significantly overexpressed in cases with CD8+ T cell proportions greater than 

the median (adjusted p values < 0.05, except for CTLA4 [adjusted p value = 0.10]).

See also Figure S6.
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Figure 7. Comparison of T Cell Presence in RTs to Other Cancer Types and Validation of 
Increased T Cell Infiltration using IHC
(A) Boxplot shows T cell scores across the five RT subgroups (19 cases from Group 1, 41 

from Group 3, 11 from Group 4, 11 from ATRT-SHH, and 8 from ATRT-TYR), pediatric 

medulloblastomas (n = 105 cases), and Wilms tumors (n = 130; *Wilcoxon p values < 0.05). 

IHC profiling was performed on 2,979 regions selected from 185 tumor tissue slides from 35 

extra-cranial MRT cases (9 from Group 1, 20 from Group 3, and 6 from Group 4) and 27 

ATRT cases (10 from ATRT-MYC, 10 from ATRT-SHH, and 7 from ATRT-TYR). CD68+ 

myeloid cells were profiled from 915 tumor-enriched (TT), 304 peri-vascular (PV), and 297 
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peri-stromal (PS) regions. CD3+ lymphoid cells were profiled from 888 TT, 287 PV, and 

288 PS regions.

(B and C) Scatter plots show comparisons between T cell scores and median CD3+ 

leukocyte densities determined for each sample using IHC (B), as well as between CD8+ T 

cell proportions and median CD3+CD8+ cytotoxic T cell densities determined for each 

sample using IHC (C; x and y axes in log10 scale). Dashed lines indicate positive linear 

correlations (Pearson rho = 0.540 and 0.569, linear regression p values = 0.0025 and 0.0019 

for CD3+ and CD3+CD8+ cells, respectively).

(D) Boxplots show distributions of CD8+ cytotoxic T cell densities in tumor-enriched (TT), 

peri-stromal (PS), and peri-vascular (PV) regions (y axis, log10 scale). MRT cases in Groups 

1, 3, and 4 and ATRT-MYC cases showed significantly higher CD8+ T cell densities 

compared to ATRT-SHH and -TYR in all regional types (Wilcoxon p values = 2.2e-16, 

6.94e-15, and 3.84e-12, respectively).

(E) Examples of cases with high (top) and low (bottom) T cell infiltration revealed by 

multiplex IHC staining (CD3+ green; CD8+ brown). Images are at 30x magnification. Scale 

bars: 100 μm.

(F and G) Boxplots show distributions of overall PD-L1 + cell (F; y axis, log10 scale) and 

PD-L1-positive CD68+ immune cell densities (G; y axis, log10 scale). The asterisk indicates 

statistical significance p value < 0.05.

(H) Boxplot shows distributions of PD-L1-negative CD68+ immune cell densities, which are 

significantly higher in ATRT-SHH compared to other subgroups (*Dunn’s adjusted p value < 

0.05).

See also Figure S7 and Table S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-CD8, clone C8/144B Esbe/Cell Marque, Rocklin, CA Cat#108M-94; RRID: AB_1158205

Rabbit anti-CD3, clone SP7 Abcam (Supplier Spring Bioscience) Cat#ab16669; RRID: AB_443425

Mouse anti-PD-L1, clone SP142 Abcam (Supplier Spring Bioscience) Cat#ab228462

Mouse anti-CD68, clone KP-1 Biocare Medical (Distributed by 
Intermedico), Pacheco, CA

Cat#CM033

Rabbit anti-PD1, clone EPR4877(2) Abcam Cat#ab137132

Biological Samples

Primary tumor samples Multiple tissue source sites, processed 
through the Biospecimen and Library 
Construction Core Resource

See STAR Methods and Table S1.

Critical Commercial Assays

Infinium MethylationEPIC BeadChip Illumina WG-317–1001

Deposited Data

Raw DNA methylation data (ATRT 
cases from DKFZ)

This paper GEO Accession: GSE123601

Raw DNA methylation data (MRT 
cases from TARGET)

This paper NCBI dbGaP Accession: phs000470

Raw sequencing data from TARGET 
MRT cases

This paper NCBI dbGaP Accession: phs000470

Processed data from TARGET MRT 
cases

This paper http://target.nci.nih.gov/dataMatrix/
TARGETDataMatrix.html

Raw sequencing data previously 
generated from MRT cases

Chun et al., 2016 NCBI dbGaP Accession: phs000470

Processed data previously generated 
from MRT cases

Chun et al., 2016 http://target.nci.nih.gov/dataMatrix/
TARGETDataMatrix.html

Raw sequencing data previously 
generated from ATRT cases

Johann et al., 2016 EGA Study Accession: EGAS00001001297

Raw DNA methylation array data 
previously generated from ATRT 
cases

Johann et al., 2016 GEO Accession: GSE70460

Raw gene-expression array data 
previously generated from ATRT 
cases

Johann et al., 2016 GEO Accession: GSE70678

Software and Algorithms

BWA v0.5.7 Li and Durbin, 2010 http://bio-bwa.sourceforge.net/; RRID:SCR_010910

Picard v1.71 https://broadinstitute.github.io/picard/ RRID:SCR_006525

SAMtools v0.1.17 Li et al., 2009 http://samtools.sourceforge.net/; RRID:SCR_002105

Strelka v2.0.7 Saunders et al., 2012 ftp://strelka@ftp.illumina.com/; RRID:SCR_005109

MutationSeq Ding et al., 2012 http://www.shahlab.ca; RRID:SCR_006815

APOLLOH v012.2014a Ha et al., 2012 https://shahlab.ca/projects/apolloh/; RRID:SCR_006648

ABySS v1.4.10 Robertson et al., 2010 http://www.bcgsc.ca/platform/bioinfo/software/; 
RRID:SCR_010709

CNASeq v1.0.10 Jones et al., 2010 https://www.bcgsc.ca/one/login.cgi?came_from=http
%3A//www.bcgsc.ca/platform/bioinfo/software/cnaseq
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REAGENT or RESOURCE SOURCE IDENTIFIER

JAGuaR v2.2.2 Butterfield et al., 2014 http://www.bcgsc.ca/platform/bioinfo/software/jaguar

DESeq R package v1.26.0 Anders and Huber, 2010 https://bioconductor.org/packages/release/bioc/html/
DESeq.html; RRID:SCR_000154

NMF R package v0.20.6 Gaujoux and Seoighe, 2010 https://cran.r-project.org/web/packages/NMF/index.html

Minfi R package v1.20.2 Aryee et al., 2014 https://bioconductor.org/packages/release/bioc/html/
minfi.html; RRID:SCR_012830

GVIZ R package v1.26.4 Hahne and Ivanek, 2016 https://bioconductor.org/packages/release/bioc/html/
Gviz.html

Pheatmap R package v.1.0.10 https://cran.r-project.org/web/packages/
pheatmap/index.html

RRID:SCR_016418

Bsseq R package v1.18.0 Hansen et al., 2012 http://www.bioconductor.org/packages/2.13/bioc/html/
bsseq.html; RRID:SCR_001072

HOMER v4.10 Heinz et al., 2010 http://homer.ucsd.edu/homer/; RRID:SCR_010881

inForm Cell Analysis PerkinElmer https://www.perkinelmer.com/product/inform-cell-
analysis-one-seat-cls135781

CIBERSORT v1.04 Newman et al., 2015 https://cibersort.stanford.edu/; RRID:SCR_016955

MiXCR v2.1.9 Bolotin et al., 2015 https://mixcr.readthedocs.io/en/master/

MACS2 Zhang et al., 2008 https://github.com/taoliu/MACS; RRID:SCR_013291

Bismark Krueger and Andrews, 2011 https://www.bioinformatics.babraham.ac.uk/projects/
bismark/; RRID:SCR_005604
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