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Abstract 

The mitochondria are double membrane-bound organelles found in most eukaryotic cells. They generate most 
of the cell’s energy supply of adenosine triphosphate (ATP). Protein phosphorylation and dephosphorylation are 
critical mechanisms in the regulation of cell signaling networks and are essential for almost all the cellular func‑
tions. For many decades, mitochondria were considered autonomous organelles merely functioning to generate 
energy for cells to survive and proliferate, and were thought to be independent of the cellular signaling networks. 
Consequently, phosphorylation and dephosphorylation processes of mitochondrial kinases and phosphatases were 
largely neglected. However, evidence accumulated in recent years on mitochondria-localized kinases/phosphatases 
has changed this longstanding view. Mitochondria are increasingly recognized as a hub for cell signaling, and many 
kinases and phosphatases have been reported to localize in mitochondria and play important functions. However, the 
strength of the evidence on mitochondrial localization and the activities of the reported kinases and phosphatases 
vary greatly, and the detailed mechanisms on how these kinases/phosphatases translocate to mitochondria, their 
subsequent function, and the physiological and pathological implications of their localization are still poorly under‑
stood. Here, we provide an updated perspective on the recent advancement in this area, with an emphasis on the 
implications of mitochondrial kinases/phosphatases in cancer and several other diseases.
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Background
The mitochondria are double membrane-bound orga-
nelles found in most eukaryotic cells. They generate 
most of the cell’s energy supply of adenosine triphos-
phate (ATP). Protein phosphorylation/dephosphoryla-
tion is a crucial regulatory system of signal transduction 
which controls many aspects of cellular functions. It can 
greatly impact the properties of a protein’s enzymatic 
activity, structure, subcellular localization and stabil-
ity. Phosphorylation, accomplished via a kinase action, 
and its reverse-de-phosphorylation via a phosphatase 
are essential switching-on and -off mechanisms in cell 
signaling. Many kinases and phosphatases have been 

well-documented to play roles in the cell primarily out-
side mitochondria. Although the function and mecha-
nisms of translocation to mitochondria are not well 
understood, the evolution of imaging and molecular 
techniques has allowed the discovery that an increasing 
number of kinases and phophatases localize to mito-
chondria. The importance of phosphorylation/dephos-
phorylation in the governing of mitochondrial processes 
is supported by recent evidence that mitochondria con-
tain many protein kinases, phosphatases, and associated 
proteins.

The aim of this review is to provide an updated per-
spective on the kinases and phosphatases localized 
to mitochondria. We describe here kinases and phos-
phatases that associate with mitochondria, their function 
within mitochondria, identified thus far, and the possible 
physiological or pathological implications of their mito-
chondrial localization.
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Kinases localized in mitochondria
Tyrosine kinases
Abl
Abl is a non-receptor tyrosine kinase and is ubiquitously 
expressed in several cell types and tissues. Abl is local-
ized at distinct sub-cellular sites including the nucleus, 
cytoplasm and endoplasmic reticulum (ER) and has 
various binding partners including signaling adaptors, 
proliferation regulators, transcription factors, kinases, 
phosphatases and cytoskeletal proteins [1]. While Abl is 
primarily localized to the nucleus, ER, and cytoplasm, it 
has been found that about 4 % of the total Abl resides in 
the mitochondria of murine embryo fibroblasts [2]. It has 
been revealed that H2O2 treatment of various cell types 
causes translocation of Abl to mitochondria and then 
induces cell death. Apart from H2O2, stimuli of ER stress, 
calcium ionophore A23187 and brefeldin A, also promote 
the translocation of Abl to mitochondria [3]. Although 
Abl does not contain a typical mitochondrial localization 
signal of its own, a study showed that protein kinase Cδ 
binds to Abl in the ER. This PKCδ-Abl complex translo-
cates from ER to mitochondria and then triggers apopto-
sis [4].

Abl contributes to human diseases such as Alzheimer’s 
disease (AD) and chronic leukemia. Exposure of cultured 
neurons to various forms of multimeric amyloid-β pep-
tide led to an increase in Abl tyrosine kinase activity and 
subsequent tyrosine phosphorylation of tau at Y394 [5–
7]. Additionally, it was found that abnormal tau phospho-
rylation and subsequent cell death could be prevented by 
the Abl family kinase inhibitor [6, 7].

In chronic myeloid leukemia (CML) and acute promye-
locytic leukemia (AML), Abl is activated upon transloca-
tion within breakpoint cluster region (Bcr) gene [8, 12]. 
Bcr/Abl fusion protein is a constitutively active tyrosine 
kinase which allows cells to proliferate without cytokine 
regulation, leading to a clonal myeloproliferative disor-
der. Its inhibitor, imatinib mesylate, can trigger apoptosis 
of CML cells [9]. It will be intriguing to explore if Abl or 
Bcr/Abl-associated apoptosis in AD and chronic leuke-
mia is directed by mitochondrial localized Abl activity.

Src family kinases
There are multiple lines of evidence support the mito-
chondrial localization and function of Src family kinases. 
Although Src family kinases are permanent residents 
of cytoplasm, a previous study has suggested Src fam-
ily including Src, Fyn, Lyn, Fgr and a negative regulator 
of Src family kinases, CSK, can be localized in mito-
chondria [10]. The phosphotyrosine signal in mitochon-
dria was dramatically decreased by pretreatment with 
a Src inhibitor, PP2. This result suggests that Src family 
kinases may be associated with mitochondrial protein 

phosphorylation. Other groups performed subfractiona-
tion of mitochondria using proteinase K and/or Triton 
X-100, further supported the localization of Src family 
kinases within mitochondria [11].

Since Src family kinases do not contain typical mito-
chondrial localization signals, they seem to be dependent 
on unidentified adaptor proteins for translocation into 
mitochondria. Several studies revealed that two anchor-
ing proteins of protein kinase A (PKA), A Kinase Anchor 
Proteins 121 (AKAP121) and Dok-4, associate with Src. 
It is well known that AKAP121 acts as a multifunctional 
protein binding to protein tyrosine phosphatase D1 
(PTPD1). PTPD1 anchors Src to the outer membrane of 
mitochondria upon activating the protein [12, 13]. Inter-
estingly, a study showed that AKAP121 is found in the 
mitochondrial inner membrane with Src and Lyn [14]. 
Dok-4 is an adapter protein and appears to be responsi-
ble for the mitochondrial importation of Src in bovine 
endothelial cells. While deficiency of Dok-4 induces Src 
localization to extra-mitochondria, overexpression of 
Dok-4 causes Src localization to mitochondria [15].

Mitochondrial electron transport chain (ETC) is the 
final component of aerobic respiration, which contains 
a series of electron transporters embedded in the inner 
mitochondrial membrane. It includes complex I to IV 
and creates a chemical gradient that allows for the pro-
duction of ATP. Several ETC complexes have been identi-
fied as substrates for Src. The first protein shown to be 
activated by mitochondrial Src was cytochrome c oxidase 
(complex IV in ETC) [11]. Src phosphorylates a subunit 
of cytochrome c oxidase, and leads to the enzymatic acti-
vation of complex IV in osteoclasts. Recently, it has been 
found that Src also affects other complexes within the 
ETC. One study showed that an increase in Src activity, 
as a response to changes in ATP levels in mitochondria 
of the rat brain, leads to an increase in the activities of 
complexes I, III, and IV, along with decreases in activ-
ity of complex V [16]. Two groups reported that inhibi-
tion of Src activity led to reduction in mitochondrial 
respiration mediated by a specific decrease in actions of 
complex I’s NADH dehydrogenase-ubiquinone oxidore-
ductase system. NADH ubiquinone flavoprotein 2 at Tyr 
193 of complex I and succinate dehydrogenase A at Tyr 
215 of complex II, are the targets of Src phosphorylation 
[17, 18].

c-Src, normal proto-oncogene Src, possesses anti-
apoptotic properties and shows increased protein levels 
and activity in a variety of human cancers [19]. Further, 
c-Src has been found to be a crucial player in multiple 
signaling pathways regulating proliferation, survival, 
metastasis, and angiogenesis [19]. One of these pathways 
is that of the mitochondrial, hypoxia-mediated ROS-
induced activation of c-Src, HIF-1α, and NF-κB which 
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contributes to cell survival in various cancers includ-
ing hepatomas, colon carcinomas, and neuroblastomas 
[20]. Additionally, c-Src has an important role in serum 
deprived pancreatic cancer cell survival [21]. Also, c-Src 
leads to metastasis of diverse cancers including breast 
cancer [22].

Mitochondrial Fgr kinase regulates complex II activity 
by tyrosine phosphorylation and plays an important role 
in regulating NADH/FADH2 ratio. H2O2 promotes Fgr 
localization to mitochondria, but it does not seem that 
Fgr has a consensus signal sequence for mitochondrial 
localization [23].

Hibbs et al. found that mice homozygous for Lyn locus 
aberrations show abnormalities connected to B lympho-
cyte lineage and mast cell function [24]. Lyn-/- mice did 
not mediate an allergic response to IgE cross-linking and 
exhibited severe glomerulonephritis caused by the kidney 
deposition of IgG immune complexes [24, 25], indicat-
ing that Lyn is associated with autoimmune disease. Lyn 
was also discovered to be critical for maintenance of the 
leukemic phenotypes of many different hematopoietic 
cancers including AML, CML and B cell lymphocytic 
leukemia [26–28]. Lyn was also expressed in some solid 
tumors. Therefore, it could serve as a potential therapeu-
tic target for prostate cancer, glioblastomas, and aggres-
sive subtypes of breast cancer [29–31]. Recent study 
revealed that Lyn-mediated mitochondrial tyrosine phos-
phorylation is required for hepatocyte survival under 
partial hepatectomy, pro-apoptotic conditions [32]. How-
ever, the role of Lyn in mitochondria and human diseases 
needs to be further elucidated.

Receptor tyrosine kinases
EGFR
A recent study demonstrated that epidermal growth fac-
tor receptor (EGFR) is localized to mitochondria where 
it interacts with cytochrome c oxidase subunit II (CoxII) 
in mouse fibroblasts over-expressing EGFR and Src [33]. 
EGF stimulation promotes translocation of EGFR into 
mitochondria. The translocation depends upon the phos-
phorylation of EGFR on Y845 by Src. The translocation is 
not observed upon overexpression of a catalytically inac-
tive Src mutant or upon replacement of Y845 by phenyla-
lanine (Y845-EGFR). A similar study showed that CoxII 
was phosphorylated by Src and EGFR, and the EGFR’s 
mitochondrial localization was increased by EGF stimu-
lation. Mitochondrial EGFR decreased the activity of Cox 
and reduced cellular ATP, indicating that mitochondrial 
EGFR regulates the function of mitochondria [34]. More-
over, new evidence showed that EGFR and EGFRVIII, a 
constitutively active variant of EGFR were localized in 
mitochondria [35, 36]. EGFR co-localized with FAK and 
Src in the mitochondria in glioma and xenografts. This 

suggests a role of mitochondrial EGFR in cancer progres-
sion [37].

There is a debate as to whether the translocation of 
EGFR depends upon its endocytosis. One group con-
cluded that the EGFR’s localization to mitochondria 
depends on its endocytosis [38]. The report revealed that 
EGFR’s mitochondrial translocation can be dramatically 
decreased in the presence of 3-methyladenine (3-MA), 
an autophagy inhibitor. Also, the knockdown of Beclin 
1, an autophagy related gene, markedly decreased the 
mitochondrial translocation of EGFR. However, another 
group suggested that mitochondria-localized EGFR is 
independent of its internalization [39]. Therefore, the 
detailed mechanisms of EGFR mitochondrial localization 
still remain unclear.

ErbB2
ErbB2 is a human version of EGFR2. Recent study 
revealed that ErbB2 localizes to mitochondria of breast 
cancer cells and tumor samples of patients [40]. The study 
also found that localization of ErbB2 into mitochondria 
is mediated via association with mtHSP70 and reduces 
mitochondrial respiratory functions, including oxygen 
consumption, while it enhanced cellular glycolysis. It also 
showed that mitochondrial ErbB2 decreased membrane 
potential as well as the cellular ATP levels. However, 
detailed molecular mechanisms or direct substrates of 
mitochondrial EGFR and ErbB2 remain unclear. It is well 
known that EGFR and ErbB2 have been associated with 
the development of numerous human cancers. Tumors 
with changes in EGFRs tend to be more aggressive, and 
are considered as indicators of a poor clinical outcome, 
therefore they are intensely studied as therapeutic targets 
[41].

Serine/threonine kinases
Akt
It is well known that activated protein kinase B (Akt) is 
localized to diverse subcellular compartments: these 
include the Golgi, endoplasmic reticulum, and the 
nucleus. Also, it was shown that Akt could be localized 
in mitochondria when stimulated by 17β-estradiol and 
insulin in endothelial cells [42]. In human neuroblas-
toma, it was reported that the activation of PI3  K/Akt 
signaling via insulin or insulin-like growth factor-1, is 
greatly amplified by mitochondrial Akt locolization [43]. 
Recent studies also showed that treatment with leukemia 
inhibitory factor (LIF) increased the amount of total and 
phospho-Ser473-Akt in mitochondria [44], and insulin 
treatment could translocate Akt to mitochondria in car-
diac muscle cells [45].

Several studies reported that mitochondrial Akt causes 
phospho-inactivation of the pro-apoptotic protein BAD, 
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and recruitment of Raf-1 to the mitochondria promoted 
cell survival [46, 47]. Recent studies also discovered new 
targets for mitochondrial Akt such as mitochondrial elec-
tron complex V and hexokinase-II [44, 45]. Akt isoform 1 
modulates mitochondrial complex V activity, enhances 
the production of ATP, and increases phosphocreatine 
in cardiomyocytes, indicating that Akt is associated 
with ATP metabolism [45]. Akt also has a direct effect 
in mitochondria, which is mediated by phosphorylation 
of hexokinase-II, resulting in protection of the mito-
chondria from oxidant or Ca2+-induced mitochondrial 
permeability transition pore (MPTP) opening [44]. Yang 
et  al. found that translocation of phospho-Akt to mito-
chondria was enhanced in the streptozotocin-induced 
diabetic mice and insulin stimulates translocation of 
Akt to mitochondria [48]. Barksdale et  al. revealed that 
HSP90 is responsible for Akt accumulation in mitochon-
dria in unstimulated cells [49]. Taken together, mitochon-
drial Akt may play important roles in energy metabolism 
associated with diabetes.

JNK
It was well established that the c-Jun N-terminal kinase 
(JNK) localizes in cytoplasm and the nucleus. Many stud-
ies show that JNK may be activated in or translocated to 
the mitochondria. It was first revealed that JNK is local-
ized in mitochondria in the phorbol ester response of 
myeloid leukemia cells [50]. Recent studies suggested 
an important role of JNK in mitochondria-related func-
tions. These studies include murine heart mitochondria, 
hydrogen peroxide-treated rat brain or primary cortical 
cultures, acetaminophen-induced liver damage, multiple 
myeloma cells treated with anti-cancer drugs, and neona-
tal ischemia [51–57].

As mentioned before, JNK regulates apoptosis in gen-
eral, indicating that targets of JNK can be apoptosis 
related proteins. JNK mediates phosphorylation and 
oligomerization of proapoptotic BAD, initiating apop-
tosis [58]. Conversely, there are studies reporting that 
JNK reduces apoptosis. For example, JNK is necessary 
for IL-3-mediated cell survival via phosphorylation and 
inactivation of BAD [59]. Also, activated JNK may co-
localize with, and phosphorylate, Bcl-2 in mitochondrial 
membranes of hematopoietic cells [60]. This effect is pre-
sent during interleukin-3-mediated stress, resulting in 
enhanced anti-apoptotic functions of Bcl-2. These con-
tradictory results indicate that the localization and func-
tion of JNK in mitochondria are not well understood and 
warrant further investigation.

ERK1/2
Although extracellular signal-regulated kinase 1 and 2 
(ERK1/2) normally translocates between cytosol and 

the nucleus to influence trophic and pro-survival func-
tions, recent studies found that ERK1/2 can localize 
to mitochondria of mouse heart [51], renal epithelial 
cells [61], mouse hippocampus [53] and human alveo-
lar macrophages [62]. Mitochondrial ERK1/2 appears 
to play a crucial part in mitochondrial function [61, 62] 
including mitochondrial dysfunction, mitophagy, and 
apoptosis [63–65]. Recent investigation found that mito-
chondrial ERK1/2 phosphorylates steroidogenic acute 
regulatory protein (StAR), and this phoshporylation by 
ERK is required for the maintenance of this protein in 
mitochondria. Mitochondrial StAR together with mito-
chondrial active ERK and PKA are necessary for maximal 
steroid production [66].

p38 MAPK
Several studies revealed that the p38 mitogen-activated 
protein kinase (p38 MAPK) could reside in mitochon-
dria. One group, using immunoblotting and immunoflu-
orescence, showed that p38 MAPK is localized in cardiac 
mitochondria [51]. p38 MAPK was activated in the mito-
chondrial fraction by ischemia [67] and increased in 
mitochondria under H2O2 treatment [68]. Although it 
is well known that p38 MAPK performs a crucial func-
tion in mitochondria-mediated apoptosis, the precise 
function of mitochondrial p38 MAPK remains to be 
elucidated.

GSK3β
It has been established that glycogen synthase kinase 
(GSK) 3β can be localized in cytosol and nucleus. Some 
substrates of GSK3β (e.g., tau), are cytosolic, whereas 
others (many transcription factors) are nuclear. How-
ever, in 1995, it was revealed that GSK3β is present in 
mitochondria in rat cerebellum [69]. Since then several 
studies showed that GSK3β regulates the function of 
mitochondrial proteins such as adenine nucleotide trans-
locator (ANT) and cyclophilin D [70–72]. The mecha-
nism of GSK3β’s translocation to the mitochondria is 
unclear, but TOM20 may be integral, as in the example 
of connexin-43 [73]. In mitochondria, GSK3β phospho-
rylates and suppresses a critical mitochondrial enzyme, 
pyruvate dehydrogenase activity [74]. Also, it has been 
demonstrated that GSK3β has a role in determining the 
threshold for mitochondrial permeability transition pore 
(MPTP) opening [75], indicating that GSK3β regulates 
mitochondria-mediated apoptosis.

Accumulated evidence shows that GSK3β is highly 
associated with neurodegenerative diseases. GSK3 is a 
key kinase contributing to aberrant phosphorylation of 
the microtubule-binding protein tau in a process thought 
to cause neurofibrillary tangles in Alzheimer’s disease 
[76]. In 1994, Mulot et  al. found, via SDS-PAGE, that 
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paired helical filament-tau from the AD brain comprises 
four species which can be mimicked by GSK3β mediated 
human brain tau phosphorylation in  vitro [77]. Recent 
study also revealed that, in primary cortical neurons, 
GSK3β is involved in Amyloid-β phosphorylation [78]. 
GSK3β polymorphism was found to be associated with 
Parkinson’s disease (PD) that alters GSK3β transcription 
and splicing [79].

There is much interest in GSK3β as a potential thera-
peutic target in many types of cancer. However, the appli-
cation is complicated by findings that GSK3β behaves as 
a tumor suppressor, but may promote cell proliferation in 
different types of cancer. There is evidence that GSK3β 
functions as a tumor suppressor in skin and breast cancer 
[80, 81] and that repression of RNA polymerase 1 tran-
scription by GSK3β contributes to this tumor suppressor 
action [82]. However, there are contradictory findings 
that GSK3β mediates tumor promotion and/or GSK3β 
shows anti-proliferative effects in certain types of tumors 
including colon and pancreatic cancer [83, 84]. Whether 
these appeared contradictory functions of GSK3β can be 
explained by the different localizations of this protein? 
It is still not clear if mitochondrial GSK3β is associated 
with neurodegerative diseases or cancer.

PKA
It has been acknowledged for many years that Protein 
kinase A (PKA) is crucial to mammalian mitochondrial 
physiology. Since the 1970s, it has been shown that PKA 
associates with, and in, mitochondria [85–88]. While 
catalytic subunits of PKA are predominantly found in 
the mitochondrial outer membrane [89], there is much 
evidence that PKA localizes to the mitochondrial inner 
membrane and matrix as well [87, 90–93]. In general, 
PKA is concentrated in cellular membranes and orga-
nelles through interactions with A kinase anchor proteins 
(AKAPs) [94, 95]. One group showed that de-localization 
of PKA from mitochondria was prompted by dominant 
negative AKAP121 mutation [96]. Indeed, expression 
of AKAP121 targets PKA to the cytoplasmic surface of 
mitochondria and then refines cAMP-PKA signaling to 
mitochondria [97]. Recent investigation revealed that 
AKAP1 recruits PKA and other signaling proteins to the 
outer mitochondrial membrane and thereby integrates 
several second messenger cascades by inhibitory phos-
phorylation of dynamin-related protein 1 (Drp1) and 
maintenance of mitochondrial integrity [98].

Drp1 is a mechanoenzyme using GTP hydrolysis to fuel 
the division of mitochondria. PKA mediated phospho-
rylation of Ser637 on Drp1 blocks Drpl’s translocation to 
the mitochondrial surface and influences on fission [99]. 
Other findings indicate that outer mitochondrial PKA, 
and phosphatase PP2A, regulate neuronal development 

by inhibiting and promoting mitochondrial division 
[100].

The cAMP response element-binding protein (CREB) is 
a transcription factor which regulates the transcription of 
cAMP response element-regulated genes and is found to 
bind to the mitochondrial DNA [101]. It has been shown 
that CREB is involved in regulation of mitochondrial 
gene expression and neuron longevity. Interestingly, it 
has been suggested that CREB may be phosphorylated by 
PKA within mitochondria [102].

Many heat shock proteins (Hsps) are known to play 
essential protective roles in the cardiovascular system. 
Hsp20 is expressed at high levels in cardiac, skeletal, 
and vascular smooth muscle. Hsp20 is regulated by the 
β-adrenergic/cAMP/PKA signaling pathway, which is 
known to be chronically activated in heart failure [103]. 
A recent study also revealed that PKA’s phosphorylating 
Ser16 of Hsp20 is vital to the small Hsp’s cardioprotective 
action [104]. For therapeutic development, it will be criti-
cal to distinguish if PKA mediated cardiprotective effects 
are due to mitochondrial PKA activity.

PKC
Protein kinase C (PKC) is a group of phospholipid-
dependent serine/threonine kinases regulating numer-
ous cellular functions through key signaling molecules. 
The activated PKCs translocate to multiple subcellular 
sites. Interestingly, analysis of the subcellular distribution 
of PKCε in mouse heart with constitutively active PKCε 
revealed that activated PKCε is associated with a vari-
ety of mitochondrial proteins [51]. It has been suggested 
that mitochondrial translocation of PKCε is associated 
with cardioprotection [105], and several studies showed 
that PKCε substrates reside within cardiac mitochondria 
[106–108]. COX IV has been identified as a substrate of 
PKCε in mitochondria [106]. Phosphorylation and activ-
ity of COX IV were increased by PKC activator, phorbol 
12-myristate 13-acetate (PMA), but were blocked by the 
selective PKCε inhibitor, εV1-2. Another known mito-
chondrial target for PKCε is the MPTP [107]. MPTP 
remains tightly closed under normal conditions, but it 
opens under cell death conditions. PKCε interacts with 
presumed components of the MPTP in heart mitochon-
dria, leading to reduced MPTP opening. Another target 
for PKCε is a mitochondrial ATP-sensitive K+ channel 
(mitoKATP) [108]. It was recently found that PKC medi-
ates interactions between conexin43 and mitoKATP sub-
unit in mitochondria of cardiomyocytes [109]. These 
channels are normally closed, but are opened during 
periods of metabolic stress as ATP levels decline, leading 
to channel opening-mediated protective effects. This evi-
dence reveals that mitochondrial PKCε has a pro-survival 
role in a stress condition.
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Hamasaki et  al. found that expression of PKCε 
decreases by 40  % in cardiac ventricles of hyperthyroid 
rats [110]. The expression of PKCε was reduced in cytosol 
and membrane fractions but was not reduced in extracts 
of hypertrophied cardiac ventricles generated by aorto-
caval shunt or aortic banding. Other groups also revealed 
that hypertrophic stimuli activated PKCε in rat-cultured 
cardiac myocytes, and in  vivo, and that PKCε overex-
pression in mice leads to cardiac hypertrophy related to 
concentric remodeling and the preservation of cardiac 
contractility [111, 112].

Recent study revealed that PKCɛ increases the activ-
ity of endothelin converting enzyme, which degrades 
amyloid-β, and decreases amyloid plaque in transgenic 
mice [113], indicating that greater neuronal PKCɛ acti-
vation may promote amyloid-β clearance, reducing 
Alzheimer’s neuropathology. However, it has not been 
examined whether mitochondrial PKCɛ is needed for AD 
progression.

PKCδ also translocates to mitochondria. Diverse stud-
ies revealed that treatment in a variety of neoplastic 
cells with hydrogen peroxide, phorbol esters, or antican-
cer agents such as cisplatin and etoposide causes PKCδ 
translocation into the mitochondria [114–116]. A study 
also found that mitochondrial PKCδ triggers the release 
of cytochrome c and resultant cell death. Thus, overex-
pressed PKCδ promotes apoptosis in neoplastic and 
normal keratinocytes by targeting mitochondria and dis-
turbing their membrane potential [117]. However, direct 
targets for mitochondrial PKCδ still remain unclear.

PINK1
The PTEN-induced kinase 1 (PINK1) is a serine/threo-
nine kinase. It is well known that PINK1 is a factor in 
autosomal recessive familial PD [118]. A large amount of 
evidence shows that PINK1 is localized in mitochondria 
and regulates mitochondrial function. A study found a 
strong mitochondrial targeting signal domain at its N ter-
minus and showed that N-myc-tagged PINK1 expressed 
in mammalian cells accumulated in mitochondria. The 
protein could be found on the inner and outer mito-
chondrial membrane [119, 120]. PINK1 regulates Parkin 
(a protein related to PD), which acts as an E3 ubiquitin 
ligase [121]. PINK1 recruits Parkin to depolarized mito-
chondria. While PINK1 is imported and rapidly degraded 
by presenilin-associated rhomboid-like serine protease 
(PARL) in mitochondria with intact membrane poten-
tial, PINK1 breakdown is impaired in mitochondria with 
reduced membrane potential [120]. Apart from Parkin, 
PINK1 phosphorylates the mitochondrial fusion protein 
MFN2, which then acts as a mitochondrial receptor for 
Parkin [122] and Miro, an atypical Rho GTPase that teth-
ers mitochondria to the tubulin network [123]. Several 

studies showed that the PINK1/Parkin pathway is asso-
ciated with fission and fusion events of mitochondria. 
Those studies revealed that the PINK1/Parkin in mito-
chondria regulates pro-fusion pathway given that the 
overexpression of PINK1 leads to interconnected and 
structurally elongated mitochondria, whereas knock-
down of PINK1 leads to fragmentation of mitochondria 
[124, 125].

PINK1/Parkin pathway also regulates transport of 
mitochondria. Damaged mitochondria, prior to their 
clearance, are sequestered via the PINK1/Parkin pathway 
where mitochondrial movement is prevented through 
PINK1 mediated-Miro phosphorylation [123, 126]. 
PINK1 regulates mitochondrial content through mecha-
nisms independent of mitophagy and PINK1-knockout 
mice showed a decreased Complex I activity [127, 128]. 
PINK1 mutant flies showed complex I deficiency and 
impaired ATP generation; however, supplementing these 
PINK1-deficient flies with complex 1 or ubiquinone cor-
rects reductions in ATP generation allowing for recov-
ery of flight muscle [129]. In both PINK1 and Parkin 
null flies, there lies a widespread defect with turnover 
of electron transport chain proteins [130]. Recent study 
demonstrated that PINK1 and Parkin mediate local-
ized translation of respiratory chain component mRNAs 
along the mitochondrial outer membrane [131].

Dagda et al. studied the relationship between a PINK1 
knock down and mitochondrial dysfunction in PD [132]. 
Stable knockdown of PINK1 produced mitochondrial 
fragmenting and autophagy in SH-SY5Y cells. Recent 
study found that loss of PINK1 accelerates neurodegen-
erative phenotypes induced by mitochondrial stress in 
transgenic animals where exists the conditional expres-
sion of mitochondrial unfolded ornithine transcarbam-
ylase [133]. Mutations associated with PD were found 
throughout PINK1; however, the majority lay within 
the kinase domain, suggesting that loss of PINK1 kinase 
function is part of the pathogenesis [134]. Further, muta-
tions within the carboxy terminus of PINK1 turn out to 
be critical to control an optimal kinase activity [135].

There is substantial evidence, based on epidemiological 
studies, for lower rates of cancer in patients with PD. The 
relationship between cancer incidence and PD may be 
related to the presence of genes common to both diseases 
[136]. Investigators found that PTEN knock-down sup-
presses PINK1 levels and shows cardioprotective effects, 
and concluded that PINK1 is a potential novel cardiopro-
tective kinase [137]. However, the role of PINK1 in can-
cer development and progression is unclear. One study 
reported a link between Type II diabetes and PINK1 
[138]. Investigators found that PINK1 was reduced in the 
skeletal muscle of Type II diabetic patients and in con-
ditions of obesity or inactivity (or both) in patients and 
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controls. One study found glucose transporter inhibition 
under loss of PINK1 [139]. Recently, Deas et al. reported 
that the loss of PINK1 function seems to disturb glucose-
sensing, resulting in enhanced insulin release, which is 
uncoupled from glucose uptake in beta cells [140], sug-
gesting that a deficiency of the Parkinson’s-associated 
PINK1 protein may directly alter insulin secretion at the 
pancreas.

Phosphatases translocate into mitochondria
Protein phosphatases
MKP1
MAP Kinase Phosphatases (MKPs) are dual specificity 
phosphatases which dephosphorylate both pSer/pThr 
and pTyr. MKP1 is localized in the nucleus through a 
LXXLL motif and appears to be confined to the dephos-
phorylation of nuclear MAPKs [141]. However, recent 
study found that MKP1 translocates to mitochondria 
after nerve growth factor treatment [142]. This result 
appears reasonable given that its substrates, and MAPKs, 
are also localized in mitochondria.

Wang et  al. found that, in malignant samples, MKP1 
is increased five  fold over non-malignant samples [143]. 
This indicates that therapeutic suppression of MKP1 
action may allow for expression of pro-apoptotic signal-
ing of JNK in malignant cells. MKP1 is highly expressed 
in various human tumors, including non-small-cell lung 
cancer (NSCLC), bladder, ovarian, breast, osteosarcoma 
and prostate cancers [144–146]. They also found that 
MKP1 plays a critical part in the pathology of NSCLC, 
both in tumor growth and in response to treatment with 
cisplatin [146]. Recent study demonstrated that interfer-
ence of MKP1 actions led to diminished invasion poten-
tial, tumor growth, and metastasis in mice [147].

A role for MKP1 in modulation of innate immune 
responses is strongly supported by several recent papers 
using models of endotoxic shock, anaphylaxis and arthri-
tis. Mice deficient in MKP1 were hypersensitive to 
endotoxic shock; this was associated with prolonged acti-
vation of MAPKs, and enhanced production of TNF-α, 
IL-6, and IL-10 [148–150]. Moreover, it has been found 
that the absence of MKP1 markedly exacerbates disease 
development in mouse model of rheumatoid arthri-
tis (RA). Overall, MKP1 controls dephosphorylation of 
MAPKs, but it is not clear whether this is the case for 
mitochondrial MAPKs and whether MKP1 is associ-
ated with human diseases due to mitochondrial MKP1 
function.

Shp2
Src homology 2 domain-containing phosphatase 2 (Shp2) 
is ubiquitously expressed and contains two N-terminal 
SH2 domains along with a C-terminal protein tyrosine 

phosphatase domain. Shp2 was primarily located inside 
the mitochondria related to cristae and the intercris-
tal space [16, 151]. Recent study also found that sepsis 
induced Shp2 mitochondrial localization and expression 
[152]. Mutations of Shp2 give rise to many distinct 
human diseases: Germ  line Shp2 mutations result in 
Noonan Syndrome (NS), one of the most common auto-
somal dominant disorders, and LEOPARD Syndrome 
(LS), known, as its acronym reminds us, for its major 
manifestations: multiple Lentigines, Electrocardiographic 
aberrations, Ocular hypertelorism, Pulmonary stenosis, 
Abnormalities of genitalia, Retardation of growth, and 
sensorineural Deafness [153, 154]. The distinct patho-
genic routes of NS and LS are driven by different Shp2 
mutations: NS-associated Shp2 mutations typically alter 
residues at the interface of N-SH2 and PTP domains 
[155], leading to increased enzymatic activity and RAS/
ERK activation. LS mutations impact residues of the 
PTP domain, resulting in dramatic reduction of catalytic 
activity along with reduced activation of RAS/ERK [156].

Somatic Shp2 mutations are found in ∼35  % of 
patients with sporadic juvenile myelomonocytic leuke-
mia (JMML), a clonal pediatric myeloproliferative disor-
der (MPD) featuring the amplified expansion and tissue 
infiltration of myeloid cells, along with macrocytic ane-
mia and persisting fetal hemoglobinemia [157, 158]. LS 
patients often undergo hypertrophic cardiomyopathy; in 
addition they may see an elevated potential for neuro-
blastoma and AML [159, 160]. Although shp2 expression 
and activity is closely associated with several diseases, 
connection between mitochondrial shp2 and disease pro-
gression has not been well established.

PTPs
Several protein tyrosine phosphases (PTPs) such as 
PTPD1, PTP1B, and PTPMT1 has been reported as 
mitochondrial localized PTPs. PTPD1 is localized 
to outer membrane of mitochondria by binding to 
AKAP121 (or spliced isoform AKAP84) and increase a 
magnitute of EGF stimulated signaling [13]. In addition, 
PTPD1 binds to Src and activate Src, enhancing EGF-
dependent mitogen signaling, enhancing oxidative phos-
phorylation and mitochondrial membrane potential [12]. 
PTP1B also localizes to mitochondria and enhances Src 
mediated mitochondrial oxidative phosphorylation [161]. 
Dual phosphatase PTPMT1 (PTP localized to the mito-
chondrion 1) has N-terminal mitochondrial localization 
signal sequence and is found in the matrix face. Knock-
down of PTPMT1 alters mitochondrial phosphoprotein 
profile and markedly enhances ATP production [162]. 
This study clearly demonstrated the importance of pro-
tein phosphorylation/dephosphorylation switch in regu-
lating mitochondrial function.
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Lipid phosphatase
PTEN
Phosphatase and tensin homolog deleted on chromo-
some 10 (PTEN) is a well-known lipid phosphatase. Early 
studies proposed that PTEN localized exclusively to the 
cytoplasm and was able to transiently associate with 
the plasma membrane depending on the local PIP2 and 
PIP3 concentrations [163]. However, PTEN has recently 
been shown to localize to specialized subcellular com-
partments, such as the nucleus and the nucleolus, the 
mitochondria and the endoplasmic reticulum. Zhu et al. 
observed that a gradual buildup of PTEN in mitochon-
dria occurred after induction of apoptosis, which was 
accompanied by the translocation of Bax to mitochon-
dria [164]. Further, Zu et al. revealed that ischemia/reper-
fusion (I/R) induces mitochondrial localization of PTEN 
in the myocardium. Moreover, ischemic preconditioning 
attenuates mitochondrial localization of PTEN post-I/R, 
possibly blocking the translocation of Bax to the mito-
chondria, and leading to improved cell viability [165]. 
Liang et al. characterized an N-terminally extended form 
of PTEN (named PTENα) that localizes to the cytoplasm 
and mitochondria, and induces cytochrome c oxidase 
activity and ATP generation in mitochondria [166]. This 
evidence showed that PTEN could exist in mitochondria, 
playing a crucial role in cellular functions such as apop-
tosis. However, whether this function of PTEN depends 

on its lipid or protein phosphatase activities and what are 
the substrates in mitochondria are still not clear.

Molecular machinery for protein import 
into mitochondria
The majority of mitochondrial proteins are encoded in 
the nucleus, synthesized in the cytosol, and then deliv-
ered into their proper organelle. These mitochondrial 
proteins are imported into one of four mitochondrial 
compartments: outer membrane, intermembrane space, 
inner membrane, and matrix (Fig. 1). Each compartment 
contains translocases, which interact with precursor 
proteins to regulate their transport. The major molecu-
lar machinery which translocates proteins across the 
mitochondrial outer membrane is TOM (translocase of 
the outer membrane of mitochondria) complex. TOM 
comprises numerous integral membrane protein com-
ponents: receptor subunits including Tom70 and Tom20, 
and core translocase subunits including Tom5, Tom6, 
Tom7, Tom22, and Tom40 [167, 168]. Upon transiting 
the channel of the TOM complex, substrate proteins may 
interact with one of three distinct machineries: translo-
case of inner mitochondrial membrane (TIM) complex 
23, Tim9-Tim10 chaperone complex, and mitochondrial 
intermembrane space assembly machinery (MIA). The 
classic mitochondrial protein import pathway involves 
N-terminal presequences on the precursor proteins. 

TOM 

TIM23 

SAM 

TIM22 

PAM 

Tim9/10 

MIA 

Precursor proteins 

Outer membrane 
 β-barrel proteins  

Inner membrane  
spanning proteins 

Matrix proteins 

IMS proteins 

Fig. 1  Mitochondrial import pathways. First, nuclear-encoded mitochondrial proteins are imported by the TOM complex. Then, these proteins head 
to different pathways. Proteins with presequence are transported by the TIM23 complex and the PAM into the matrix. The intermembrane space 
localized proteins are imported via the MIA. β-barrel precursors of the outer membrane are transferred by the Tim9–Tim10 complex from TOM to 
SAM. Precursors of inner membrane carriers are inserted by the TIM22 complex into the inner membrane
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These proteins, following passage through the TOM com-
plex, are directed to TIM23 complex and TIM23 bound 
presequence translocase-associated motor (PAM) which 
completes pre-protein translocation into the matrix. 
Following this, mitochondrial processing peptidases 
remove the presequences, and the proteins are folded to 
their native conformations. However, many mitochon-
drial precursor proteins are translated without cleavable 
presequences. These proteins also can be imported into 
mitochondria. The precursors of outer membrane beta-
barrel proteins are transported, via the Tim9-Tim10 
chaperone complex, to the sorting and assembly machin-
ery (SAM) complex of the outer membrane [169]. Span-
ning proteins of the inner membrane also interact with 
the Tim9-Tim10 chaperone complex, after which they are 
inserted into the inner membrane by the TIM22 complex 
[170]. Several proteins of the intermembrane space con-
tain cysteine motifs and are imported and oxidized by 
MIA [171].

As far, the detailed information of the mechanism of 
translocation of the kinases and phosphatases to mito-
chondria are elusive. The majority of the reported mito-
chondrial localized kinases/phosphatases lack typical 
mitochondrial localization signal. This raises three pos-
sibilities. First, it does not need a typical mitochondrial 
localization signal to be localized in mitochondria; sec-
ond, there are hidden undiscovered mitochondrial 
localization signal; third, it is passively transported to 

mitochondria by a cargo carrier. Since it has been shown 
that mitochondrial kinases/phosphatases play important 
roles in regulating various cellular functions, more inves-
tigations on the mechanism of the importation are defi-
nitely needed.

Concluding remarks and future directions
This review summarizes recent findings concerning 
mitochondrial localization of kinases and phosphatases, 
recaps our knowledge on their function to cellular 
domains beyond those commonly cited in textbooks 
(Table  1). Over the past many years, the role of mito-
chondria has been underestimated and understudied. 
Evidence revealed by recent advanced laboratory tech-
niques such as tandem mass spectrometry, confocal 
imaging, and electron microscopy, reevaluate mitochon-
dria as a crucial platform for cellular signaling beyond 
just energy production in the cell. Mitochondria have 
diverse reported phosphoproteins, kinases and phos-
phatases, as we have described here. Mounting evidence 
support that phosphorylation or dephosphorylation of 
mitochondrial proteins influences mitochondrial func-
tion, including metabolism of sugar, amino acids, and 
lipids; oxidative phosphorylation, antioxidant protein 
expression, mitochondrial fission and fusion, and deci-
sion for survival/death. Emerging evidence has shown 
that mitochondrial kinases/phosphatases regulate a vari-
ety of key regulatory processes in diverse mammalian 

Table 1  Mitochondrial kinases/phosphatases

WB western blot, Co-IP Co-immunoprecipitation, IP Immunoprecipitation, IF Immunofluorescence, GST GST pull-down assay, DEAE diethylaminoethyl cellulose 
chromatography

Proteins Evidences of mitochondria 
localization

Functions in mitochondria References

Abl Co-IP, WB, IF Apoptosis [3, 4]

Src WB, IP, Co-IP, Kinase array Cytochrome C oxidase, ROS production and respiration [10, 11, 15–18]

EGFR WB, IP, IF Apoptosis, respiration and cellular metabolism [33–40]

Akt WB, IP, Co-IP, IF Cell survival and regulation of respiration [43–45, 47–49]

JNK WB, IF Apoptosis, neuro inflammation and mitochondria biogenesis
Possibly regulation of signal transduction

[50–57, 60]

ERK1/2 WB, IF Respiration, ATP production, membrane potential, mitophagy, 
autophagic cell death, MPTP and steroidogenesis

[51, 53, 61–66]

P38 MAPK WB, IF, GST Apoptosis [51, 67, 68]

GSK3β WB, Co-IP MPTP and energy metabolism [70–72, 74, 75]

PKA WB, IF, DEAE, GST,  
in vitro kinase assay

Respiration, mitochondria division and steroidogenesis [87, 89– 93, 95, 98, 99, 102]

PKC WB, IP, IF Respiration, K + channel and apoptosis [105–109]

PINK1 WB, IF Mitochondria trafficking at outer membrane. Pathogenesis  
of PD. Localized translation of respiration chain complex

[121, 122, 125–128, 130, 131]

MKP1 WB, IF Apoptosis [142]

Shp2 WB, Co-IP ROS production [16, 151, 152]

PTPs WB, Co-IP, IF ATP production [12, 13, 161, 162]

PTEN WB, IF Apoptosis and ATP production [164, 165]
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tissue [172–175]. Intriguingly, a recent phosphoproteome 
analysis of functional mitochondria showed there are 
155 phosphorylation sites in 77 mitochondrial proteins 
including inner membrane ETS and enzymes in resting 
human muscle [176]. Although the detailed functions 
of these kinases/phosphatases in mitochondria are still 
unclear, there is evidence that the translocated mito-
chondrial kinases/phosphatases may be seen in mito-
chondria in several mitochondrial compartments: Those 
in the matrix likely regulate enzymes of the TCA cycle, 
amino acid metabolism, free-radical balance, ETC activ-
ity, and ATP synthesis (Fig. 2). Those in the outer mem-
brane regulate transport, cell death-related proteins, and 
mitochondrial fission/fusion. Those at the inner mem-
brane regulate free-radical balance, nucleotide transport, 
ETC activity and complex assembly.

In summary, the research community has accumulated a 
large amount of evidence to support that phosphorylation 
and dephosphorylation of mitochondrial proteins influ-
ence mitochondrial function. However, the strength of the 
evidence on mitochondrial localization and their activi-
ties of the reported kinases and phosphatases vary greatly, 
and the detailed mechanisms on how these kinases/phos-
phatases translocate to mitochondria and the physiologi-
cal and pathological roles related to their mitochondrial 
localization are still poorly understood. Due to increasing 
evidence supporting the important functions of mitochon-
drial kinases/phosphatases, mitochondrial biology is due 
for more intense exploration in this area.
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