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A B S T R A C T

Background: Although nutritional and metabolic factors are well established in obesity, neurocognitive de-
terminants are less understood. Using data from the Human Connectome Project, this study concurrently in-
vestigated neurocognitive performance, neural activation during a working memory task, and cortical brain
morphometry in relation to obesity in a group of young adults, 22–35 years old.
Methods: Using a case-control design, obese individuals (n=243, body mass index [BMI] ≥ 30 kg/m2) were
compared to a control group of lean BMI individuals (n=469, BMI=18–24.9 kg/m2). Performance tests
comprised a battery of behavioral neurocognitive assessments. Neural activity was measured as blood-oxyge-
nation-level-dependent (BOLD) activity during an N-Back task using functional magnetic resonance imaging
(fMRI). Cortical morphometry included indices of volume, thickness, and surface area.
Results: Relative to the control group, the obese group exhibited significantly worse performance in terms of the
National Institutes of Health Toolkit (NIH) 9-Hole Peg Board, Penn Working Memory Test, Delay Discounting,
Penn Progressive Matrices, NIH Picture Vocabulary Test, Dimensional Change Card Sort Test and the in-scanner
N-Back working memory test (FDR-corrected ps<0.05; ds= 0.231–0.405). The obese group also exhibited
significantly greater BOLD activation in N-Back task-negative regions, including the ventromedial prefrontal
cortex, posterior cingulate, and right precentral gyrus (FDR-corrected ps<0.05). Supplemental functional con-
nectivity analyses provided evidence that the implicated regions were part of the default mode network.
Significant differences in morphometry were present in the medial orbitofrontal cortex, rostral anterior cingulate
cortex, inferior and superior parietal gyri, and temporal pole (FDR-corrected p<0.001). A data-driven in-
tegrative model classified 73.8% of participants correctly.
Conclusions and Relevance: This multimodal investigation suggests diverse aspects of neurocognition are asso-
ciated with obesity, particularly implicating deficits in executive function and ineffective suppression of the
default mode network.

1. Introduction

Obesity poses a substantial public health problem, conferring sig-
nificant medical, psychosocial, and economic consequences
(Ogden et al., 2014). Estimates from the World Health Organization
suggest that the prevalence of obesity in the world has tripled since
1975, with 650 million meeting criteria for obesity in 2016
(World Health Organization 2018). Established medical consequences

of obesity include diabetes mellitus, cardiovascular risk, cere-
brovascular risk, and cancer (Hruby and Hu, 2014). Indeed, obesity is
an established ‘upstream’ antecedent of the most common ‘downstream’
forms of morbidity and mortality in developed nations (Malik et al.,
2013).

Metabolic, dietary, and physical activity factors are well established
as determinants of obesity, but neurocognitive processes are increas-
ingly being examined and implicated (Prickett et al., 2015). For
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example, recent results suggest that the most robust associations be-
tween obesity and cognitive impairment is present in tests of executive
functioning, specifically in the areas of planning, problem solving,
mental flexibility (Yang et al., 2018), and concept formation and set
shifting (Boeka and Lokken, 2008; Fagundo et al., 2012; Lokken et al.,
2010). Studies also reveal that obesity is associated with impairment in
processing speed (Cournot et al., 2006; Etou et al., 1989;
Sargénius et al., 2017), verbal memory (Cournot et al., 2006;
Davis et al., 2010; Gunstad et al., 2006a), complex attention
(Fergenbaum et al., 2009), inhibition and decision making
(Fagundo et al., 2012; Davis et al., 2010; Pignatti et al., 2006). Finally,
obesity has also been associated with delay discounting, or the ten-
dency to discount larger future rewards in place of smaller immediate
rewards, a behavioral economic measure of impulsivity
(Jarmolowicz et al., 2014). However, the existing studies in aggregate
have produced mixed findings across domains, which may be attribu-
table to. the scarcity of literature in a number of neurocognitive do-
mains and often small sample sizes because of the experimental de-
mands of neurocognitive testing.

Beyond behavioral performance on cognitive tasks, a small number
of studies have implicated functional and structural differences in brain
regions responsible for mediating cognition in general (executive
functioning, working memory) and with specific relevance to addictive
behavior (reward valuation, delay discounting) in obesity. In obese
adults, it has been reported that impaired working memory perfor-
mance may be mediated by white matter alterations in the left inferior
longitudinal fasciculus relative to age-matched controls (n=152)
(Alarcón et al., 2015), and it has also been linked to poor academic
performance in obese children (n=159) (Wu et al., 2017). In women
specifically, one study reported that obese women preferred immediate
rewards despite negative long-term consequences relative to lean BMI
controls (n=122) (Horstmann, 2011). Moreover BMI was positively
correlated with gray matter volume in the left dorsal striatum; em-
phasizing the potential role of dysregulated reward valuation on med-
iating obesity and weight gain (Horstmann, 2011). Studies also suggest
that decreased functional activation in brain regions associated with
executive functioning during difficult vs. easy delay discounting trials
may predictive of weight gain over the following 1–3 years in obese
women (n=19) (Kishinevsky et al., 2012).

In a small number of studies investigating brain structure and
obesity, lower gray matter density has been detected in frontal regions,
such as the frontal operculum and middle frontal gyrus (n=24)
(Pannacciulli et al., 2006), and the orbitofrontal cortex (n=42)
(Shott et al., 2014), brain areas that are associated with decision
making and executive function more generally. Cortical thinning in
obese BMI compared to lean BMI individuals and individuals who lost
weight and maintained their weight loss was also reported in cognitive
control regions (n=53) (Hassenstab et al., 2012). A negative correla-
tion between the thickness of the right ventromedial prefrontal cortex
and the left lateral occipital cortex and BMI was also reported in a
comparatively large sample of individuals (n=202) (Medic et al.,
2016). Higher BMI and body fat percentage has been associated with
decreased volumes of white matter tracts associated with activity in
default mode, central executive and salience networks (Figley et al.,
2016). Obesity has also been shown to impact large scale brain net-
works (Ronan et al., 2016) and associated with increased brain age in
midlife (Bischof and Park, 2015).

Collectively, the preceding findings individually implicate diverse
aspects of neurocognitive performance, task-related neural activity, and
brain morphometry in obesity. However, inconsistencies have been also
present, perhaps due to small sample sizes. In addition, no studies to
date have concurrently examined neurocognitive, functional, and
structural changes in obesity. Thus, the current literature does not ad-
dress independent roles or the potential overlap among these domains.
To address these issues, the present study used a multi-modal approach
to investigate the neurocognitive correlates of obesity in the Human

Connectome Project (Van Essen et al., 2013), a large ‘open science’
investigation of human brain connectomics. Using a case-control de-
sign, obese individuals (i.e., BMI of over 30 kg/m2) were compared to
lean BMI control participants (BMI: 18–24.9 kg/m2). Cognitive func-
tioning was tested using a battery of well-validated neurocognitive
tests, neural activity during a working memory task was assessed using
functional magnetic resonance imaging (fMRI), and cortical morpho-
metry was measured from high-resolution T1-weighted MRI images,
providing indices of volume, thickness, and surface area. Finally, in-
tegrative models were used to examine the implicated processes con-
currently. The superordinate hypothesis was that obesity would be as-
sociated with deficits in tasks and brain regions associated with
executive functioning.

2. Methods

2.1. Design and participants

We intentionally elected to use a case-control design over a di-
mensional design (examining BMI as a continuous variable) because we
were specifically interested in neurocognitive correlates of the clinical
condition of obesity. Individuals who are defined as overweight (BMI
>25<30) are a clinically ambiguous group insofar as their overweight
status may reflect a prodrome to obesity or a more transient elevation
that may prompt an individual to initiate a weight-loss regimen. In
other words, in understanding neurocognition in relation to obesity,
overweight individuals represented a gray area, whereas a case-control
comparison of obese individuals versus healthy weight individuals was
anticipated to bring differences into sharper relief. Cases and controls
were extracted from the total S1200 Release of the Human Connectome
Project (HCP). Overall, HCP participants were young adults (ages
22–35), with no significant history of neurological disorder, cardio-
vascular disease, or Mendelian genetic disease, and no contra-
indications for MRI. General HCP information can be found in
Van Essen et al. (2013). The goal of the overall HCP project was to
systematically assess the role of macro-level neuronal connections in a
large sample of generally healthy young adults. Participants were re-
cruited in Missouri and Minnesota. All participants gave informed
consent and all aspects of the protocol were approved by the Wa-
shington University School of Medicine Institutional Review Board.
Participants were categorized into two groups according to their BMI
(obese: > BMI of over 30 kg/m2; lean BMI: 18–24.9 kg/m2). Individuals
with a BMI between 18 and 25 were excluded to create two separate
groups of individuals with clinically significant differences in BMI, as
were individuals with BMI < 18 to exclude underweight individuals.
The total sample comprised 712 participants (Obese, n=243, lean BMI
controls, n=469; Table 1). Consistent with the intentions of the de-
sign, the two groups differed very substantially in terms of BMI

Table 1
Participant characteristics (n=712).

Obese Group Control Group P
N==243M (SD) N==469M (SD)

BMI 34.40 (3.61) 22.36 (1.55) <0.001
Height, inches 67.17 (3.96) 67.09 (3.53) 0.99
Weight, pounds 221.24 (31.9) 143.73 (19.65) <0.001
M/F 103/140 184/285 0.46
Age (SD), years 29.29 (3.62) 28.46 (3.67) 0.004
Race 163 (67.1%) 360 (76.7%) <0.001
Handedness 66.6 66.65 0.943
Income 4.60 (1.99) 5.25 (2.18) <0.001
Alcohol Use 4.11 (6.22) 3.99 (5.71) 0.804
Smokers (number,%) 23 (9.5%) 29 (6.2%) 0.148

NOTE: Income was defined according to SSAGA income score - Total household
income: <$10,000=1, 10K-19,999=2, 20K-29,999= 3, 30K-39,999= 4,
40K-49,999= 5, 50K-74,999= 6, 75K-99,999=7, >=100,000=8.
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(d=4.33; Table 1). Reflecting this, the two groups had almost identical
height but differed in weight by ~80lbs. There were no significant
differences in sex, height, Latino ethnicity, drug use, alcohol use, or
smoking between groups. Age, income, and racial diversity were sig-
nificantly different between groups, and were used as covariates.

2.2. Neurocognitive assessment

Neurocognitive functioning was examined across several cognitive
domains, including both out-of-scanner and fMRI behavioral assess-
ments of working memory. Out-of-scanner tasks included the NIH 9-
Hole Peg Board, measuring psychomotor dexterity; the Penn Working
Memory Test (Form A), measuring working memory; the Delay
Discounting Task, measuring impulsivity; Penn Progressive Matrices,
measuring fluid intelligence; NIH Toolbox Picture Vocabulary Test,
measuring language and vocabulary comprehension; the NIH Toolbox
Dimensional Change Card Sort, measuring cognitive flexibility; the
Short Penn Continuous Performance Task, measuring behavioral in-
hibition; the NIH Toolbox List Sort Working Memory Test, measuring
working memory; the NIH Toolbox Flanker Inhibitory Control and
Attention Test, measuring inhibition and attention; and the NIH Pattern
Processing Comparison Processing Speed Test, measuring processing
speed.

For task fMRI, we specifically selected the N-Back working memory
paradigm because decrements in working memory are among the most
consistent neurocognitive correlates of obesity (for a meta-analysis, see
Yang et al., 2018) (Yang et al., 2018). Furthermore, the paradigm was
best suited for characterizing higher order cognitive processing, as
opposed to social cognition or emotion processing (Owen et al., 2005).
The N-back fMRI paradigm was presented to participants in blocks of
trials with stimuli that consisted of places, tools, faces, and body parts.
Within each run, the 4 different stimulus types were presented in se-
parate blocks. Each of two runs contained 8 N-back task blocks (27.5 s
each), consisting of four 0-back blocks and four 2-back blocks, and four
resting/eye fixation blocks (15 s each). A 2.5 s cue was presented at the
beginning of each block to inform participants which task followed (i.e.,
0-back or 2-back), 10 trials of 2.5 s each were included in each block.
On each trial, the stimulus was presented for 2 s, followed by a 500ms
inter-trial interval. During 0-back task blocks, participants were pre-
sented with a target cue and then instructed to identify any stimuli that
matched the target. During 2-back task blocks, the subject was required
to identify stimuli that matched the stimulus presented two trials prior.
For a full description of fMRI task see (Barch et al., 2013). Functional
MRI data was collected during the N-Back paradigm across two
5.01 min imaging runs using a 3T Siemens Skyra (Seimens AG, Er-
langer, Germany) with a 32-channel head coil with the following ac-
quisition parameters: TR= 720ms, TE=33.1 ms, flip angle= 52°,
FOV=208×180mm, 72 2mm-thick coronal slices, 2.0 mm isotropic
voxels. A multi-band acceleration factor of 8 was used. One imaging run
was acquired with left to right phase encoding, and the other was ac-
quired with right to left phase encoding. Data were preprocessed by
HCP scientists using the minimal preprocessing pipeline (Glasser et al.,
2013) that includes gradient unwarping, motion correction, field-map
based EPI distortion correction, brain boundary-based registration of
EPI to the structural scan, registration into MNI152 space, and grand-
mean intensity normalization.

High resolution T1-weighted structural images were acquired using
the same MR scanner and head coil with a resolution of 0.7mm3 iso-
tropic (FOV=224×240, matrix= 320×320, 256 sagittal slices;
TR=2400ms, TE= 2.14ms). Further details of MRI data acquisition
parameters and data preprocessing are in Glasser et al. (2013) and
Van Essen et al. (2012). All scans were subject to rigorous quality
control. To ensure images were of the highest quality, all images were
checked by a scanning technician immediately following acquisition.
Scans were rated on a scale from 1–4 (poor to excellent) for image
quality based on the crispness of the image, blurriness, motion accuracy

of defacing and other artifacts. Scans rated 3 (good) or below were
reacquired, meaning all structural images were of the highest quality
(excellent, level 4). Details of the HCP quality control approach are in
Marcus et al. (2013).

2.3. Data analysis

There was little missing data, with no individual neurocognitive test
missing scores for any more than 6 participants; fMRI data was missing
from 32 participants; and no participants were missing structural MRI
data. Age-adjusted scores on neurocognitive tests were used where
available. As noted, age, income, and racial diversity were used as
covariates Specifically, for race, as white participants were more
common in the lean BMI group, White/Non-white status was used as a
dichotomous covariate. In addition, because the cohort oversampled for
twins, monozygotic and dizygotic twin status were covaried per
Pagliaccio et al. (2015). For behavioral performance on neurocognitive
tasks, difference between groups was examined using analysis of cov-
ariance (ANCOVA) with the aforementioned covariates. Functional MRI
data was downloaded after preprocessed by the minimal preprocessing
pipeline described above (Glasser et al., 2013). Additional fMRI data
processing and analysis were then conducted using the Analysis of
Functional NeuroImages software (Cox, 1996). Data were spatially
smoothed using a 6mm full width half maximum Gaussian filter.
General linear modeling was completed using regressors for the time
course of blocks of each condition (2-back, 0-back, and instruction
screens), six nuisance regressors to account for observed head motion
(x, y, z, roll, pitch, yaw), and regressors for linear, quadratic, and cubic
trends. Activation associated with the 2-back was measured relative to
an active control baseline of activation during the 0-back task, which is
matched on most visual/behavioral/cognitive characteristics (except
WM demands) and is effectively a task of sustained attention. A whole
brain voxelwise GLM analysis, with a two-tailed false discovery rate
correction (Benjamini and Hochberg, 1995) of q=0.05 to reduce in-
flation of type I error rate, was used to quantify the unique association
between the 2-back time course and the observed BOLD signal in each
voxel after accounting for the 0-Back and other covariates. For further
details of the N-back analysis, see Owens et al. (2018). The measure of
WM performance was accuracy on the 2-back, which was tested for its
association with GLM effects in clusters exhibiting significant brain
response during the 2-back task. Preprocessing of T1-weighted MRI
data was completed using a modified version of the FreeSurfer pipeline,
available in the FreeSurfer Image Analysis Suite version 5.3
(Fischl et al., 1999; Fischl and Dale, 2000) and using Rorden's DICOM
to NIFTI conversion software (Li et al., 2016) Cortical thickness was
extracted from 68 regions defined by the Desikan et al. (2006). For
structural brain analyses, correlations between bilateral regions from
the Desikan atlas were examined and those sharing >50% variance
were consolidated to reduce type 1 error rate inflation. Group differ-
ences were then compared using an ANCOVA with the previous cov-
ariates and also total intracranial volume to account for head size and
corrected with false discovery rate, q=0.05. Finally, integrative ana-
lyses examined all three domains of indicators concurrently to char-
acterize unique contributions and potential overlap using a data-driven
approach. Zero-order associations among the neurocognitive tests,
BOLD signal regions, and cortical thickness regions that differentiated
obese from control individuals were examined using a partial correla-
tion matrix, incorporating with aforementioned covariates. Then, the
differentiating variables were entered into a binary logistic regression
using the fixed covariates and backward conditional inclusion of the
implicated variables to determine which variables uniquely sig-
nificantly discriminated between obese and control groups when con-
sidered in concert. Finally, two machine learning approaches, su-
pervised vector machines using a linear kernel and random forest
classification, were employed to attempt to improve prediction of group
status.
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3. Results

3.1. Behavioral neurocognitive assessment

Relative to controls, the obese group exhibited significantly worse
performance on the 9-Hole Peg Board, Penn Working Memory Test,
Delay Discounting, Penn Progressive Matrices, Picture Vocabulary Test
and Dimensional Change Card Sort Test (Table 2). Effect sizes were
generally small to medium in magnitude (ds= 0.231–0.405). There
was no difference in performance on the Short Penn Continuous Per-
formance Test, List Sort Working Memory Test, Flanker Inhibitory
Control and Attention Test or Pattern Processing Comparison Proces-
sing Speed Test (ps>0.05).

3.2. Working memory and associated brain activity

Significant behavioral differences in 2-Back accuracy between the
two groups was present (Table 2), with obese individuals exhibiting
worse N-Back performance compared to control individuals. For BOLD
signal, significant activation or deactivation was present in the medial
frontal gyrus, superior frontal gyrus, ventromedial prefrontal cortex,
supplementary motor area, precentral gyrus, inferior parietal lobule,
precuneus, posterior cingulate, and cerebellum (Fig. 1). All regions
were significantly positively or negative correlated with task perfor-
mance (Table 3), suggesting both task-positive and task-negative roles
(i.e., either recruitment or suppression for successful task performance).
Moreover, in obese individuals compared to controls, BOLD activation
during the 2-Back was significantly increased in the ventromedial
prefrontal cortex, posterior cingulate, and precentral gyrus (Table 3),
all of which were significantly inversed correlated with task perfor-
mance (ps<0.01). This suggests less attenuation of task-negative brain
regions among obese individuals, implying inadequate suppression of
the default mode network (DMN).

3.3. Brain morphometry

In comparison to controls, the obese group exhibited decreased
cortical thickness in the right entorhinal cortex, and right and left
temporal pole (Table 4; p<0.001, FDR-corrected). In contrast, com-
pared to controls, obese individuals exhibited greater cortical thickness
in the right medial orbital frontal cortex, right and left rostral anterior
cingulate cortex, and bilateral inferior and superior parietal gyri
(Table 4; p<0.001, FDR-corrected).

3.4. Integrative analysis

Associations among the indicators differentiating the obese group
and the control group varied considerably, from negligible to large
magnitude (Fig. 2). When entered into a binary logistic regression,
variables predicted 73.8% (control = 89.0%; obese= 44.3%) of group
status correctly (Cox & Snell R2= 0.207; Nagelkerke R2= 0.286).

Beyond the covariates, the final model included 9-Hole Pegboard
Dexterity Test, Penn Progressive Matrices, Dimensional Change Card
Sort Test, Delay Discounting, right temporal pole thickness, left rostral
anterior cingulate thickness, left temporal pole thickness, bilateral su-
perior parietal thickness and BOLD signal in the left posterior cingulate
cortex during the NBack WM task (Table 5). Machine learning accuracy
of the differentiating indicators did not improve accuracy in cross-va-
lidated solutions: SVM=71.94% and Random Forest= 72.32%.

3.5. Supplementary connectivity and co-activation analysis

Coordinates from the task-negative ROIs in the working memory
paradigm were examined further for clarification. Specifically, func-
tional connectivity of the implicated ROIs that are most associated with
the DMN (PCC, vmPFC) were investigated in the full Human
Connectome Project (n=1003) (Fig 3). Although this sample con-
tained individuals from a range of BMI, we considered it optimal to
understand the functional significance of the ROIs. The patterns of ac-
tivity in both cases was consistent with the ROI being part of the DMN.
In addition, to further clarify whether task-negative regions of interest
(PCC and vmPFC) are part of the DMN, functional connectivity co-ac-
tivation analyses were completed using NeuroSynth, an open science
meta-analytic functional connectivity platform (www.neurosynth.org).
The PCC showed functional co-activation with regions consistent with
the default mode network, including the medial prefrontal cortex (in-
cluding the vmPFC), inferior parietal lobule and the medial temporal
lobe. Similarly, the vmPFC also showed functional co-activation with
the default mode network; the medial prefrontal cortex (including the
vmPFC), inferior parietal lobule and the medial temporal lobe (Fig 4).

4. Discussion

The current study examined the neurocognitive correlates of obesity
in three major domains - neurocognitive performance in behavioral
tasks, neural activity during an fMRI working memory task, and cortical
morphometry – and did so in the largest case-control study to date.
When taken together, the results reveal numerous aspects of neuro-
cognition that are implicated in obesity. In particular, the results
highlight that, compared to controls, obese individuals exhibited worse
neurocognitive test performance in cognitive flexibility, impulsivity,
verbal memory, fluid intelligence, language and vocabulary compre-
hension, and psychomotor dexterity. Common themes were deficits in
attention, memory and executive function, the mental processes that
underlie higher-order cognition such as deliberation and decision
making. Reduced capacity in these domains may lead to a reduction in
overall self-regulatory control needed to maintain a healthy lifestyle,
giving rise to overeating in ways that are parallel to overconsumption of
addictive drugs (Volkow et al., 2012; Filbey and Yezhuvath, 2016). A
growing body of literature suggests that neurocognitive impairment
and dysregulated self-control seen in obesity may mirror that seen in
addictive disorders (Amlung et al., 2016a). Particularly consistent with

Table 2
Neurocognitive performance for obese participants compared to lean BMI control participants.

Neurocognitive Test ControlM (SD) ObeseM (SD) F P d

NIH 9-Hole Peg Board 102.02 (9.51) 97.77 (9.35) 26.112357 4.16E-07 0.405
Penn Working Memory Test (Form A) 36 (2.78) 35.03 (3.10) 15.470938 0.000092 0.312
Delay Discounting 0.4130 (0.22) 0.3353 (0.21) 13.158289 0.000307 0.287
Penn Progressive Matrices 16,357.079 (9229) 13,901.378 (8365) 10.638344 0.001162 0.258
NIH Picture Vocabulary Test 111.48 (14.66) 105.28 (16.25) 13.281877 0.000288 0.289
Dimensional Change Card Sort 102.83 (9.38) 100.06 (10.57) 8.536461 0.003593 0.231
Short Penn Continuous Performance Task 470.72 (46.27) 470.44 (44.49) 0.266824 0.605635 0.041
List Sort Working Memory Test 103.67 (12.98) 101.81(14.15) 0.292984 0.588487 0.043
NIH Toolbox Flanker Inhibitory Control and Attention Test 101.71 (9.94) 101.13 (9.92) 0.000179 0.989338 0.001
NIH Pattern Processing Comparison Processing Speed Test 104.35 (19.68) 102.69 (19.67) 0.048476 0.8258 0.017
N-Back Test Accuracy 84.83 (10.28) 80.96 (11.15) 7.696634 0.005686 0.22
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this perspective, obese individuals in the current study exhibited sig-
nificantly greater preference for smaller immediate rewards compared
to larger delayed rewards, which is both consistent with other studies
obesity (Amlung et al., 2016a) and parallels individuals with addictive
disorders (MacKillop et al., 2011; Amlung et al., 2016b).

Worse performance in the obese group relative to controls was also
seen on the N-Back working memory test and this difference was as-
sociated with increased BOLD signal of in task-negative brain regions.
Specifically, deficits in working memory performance corresponded
with increased activation of several region of the default mode network
including the medial prefrontal cortex, precentral gyrus, and posterior

cingulate. These task-negative regions correspond to the default mode
network, an interpretation that is further supported by the fact that
their suppression was associated with better performance. The default
mode network is responsible for spontaneous cognition and self-refer-
ential processing, and is typically deactivated during task-based acti-
vation and anti-correlated with brain networks associated with execu-
tive functioning (Andrews-Hanna et al., 2010; Buckner et al., 2008;
Greicius et al., 2008). Heightened DMN activation in addition to worse
N-Back performance than controls may reflect a decreased capacity for
maintaining attention and focus, thereby leading to poor performance.
Since we did not find lower BOLD signal in regions associated with

Fig. 1. Empirical regions of interest for the contrast of 2-Back vs 0-back during the N-Back Working Memory task. Note that the highlighted regions reflect spatial
locations and do not denote signal intensity.
NOTE: IPL: inferior parietal lobule; SFG: superior frontal gyrus; MFG: middle frontal gyrus; SMA: sensory motor association cortex; vmPFC: ventromedial prefrontal
cortex; PCC: precentral gyrus.

Table 3
2-Back vs 0-Back BOLD signal differences for obese participants compared to lean BMI controls. Clusters of differences in BOLD signal between obese and lean BMI
controls. Correlation between BOLD signal and N-Back accuracy is seen in the Task Correlation column. Task Direction highlights whether N-Back task performance
was negatively or positively correlated with brain activity.

Voxels Peak X, Y, Z Region Task Correlation P value Task Direction Obesity vs Control (F) P η2p

1425 +48.0 −44.0+54.0 right IPL 0.302 P<0.001 + 0.261 0.610 0.000
1086 +28.0+ 12.0+60.0 right SFG/MFG 0.375 P<0.001 + 0.449 0.502 0.000
931 −32.0 −60.0 −30.0 left cerebellum 0.281 P<0.001 + 2.505 0.114 0.004
813 −40.0 −56.0+54.0 left IPL 0.287 P<0.001 + 0.377 0.539 0.001
729 0.0+18.0+ 50.0 bilateral SMA 0.330 P<0.001 + 0.001 0.971 0.000
722 −26.0+ 8.0+ 62.0 left SFG/MFG 0.337 P<0.001 + 0.235 0.628 0.000
614 +32.0 −60.0 −30.0 right Cerebellum 0.309 P<0.001 + 0.012 0.913 0.000
588 +42.0+ 38.0+32.0 right MFG 0.331 P<0.001 + 0.002 0.969 0.000
497 +2.0 −68.0+ 50.0 bilateral Precuneus 0.380 P<0.001 + 0.667 0.414 0.001
346 −2.0+ 60.0+ 4.0 bilateral vmPFC −0.276 P<0.001 – 13.301 <0.001 0.019
321 +60.0 0.0+ 6.0 right precentral gyrus −0.187 P<0.001 – 9.638 0.002 0.014
249 +34.0+ 24.0 −2.0 right Insula 0.293 P<0.001 + 0.167 0.683 0.000
122 +40.0 −66.0 −52.0 right cerebellum 0.312 P<0.001 + 0.775 0.379 0.001
106 −2.0 −52.0+ 22.0 left PCC −0.256 P<0.001 – 21.283 <0.001 0.031
98 −32.0+ 26.0+0.0 left insula 0.300 P<0.001 + 0.506 0.477 0.001
72 −44.0+ 30.0+34.0 left MFG 0.283 P<0.001 + 0.624 0.430 0.001

NOTE: IPL: inferior parietal lobule; SFG: superior frontal gyrus; MFG: middle frontal gyrus; SMA: sensory motor association cortex; vmPFC: ventromedial prefrontal
cortex; PCC: precentral gyrus.
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Table 4
Brain structural differences in cortical thickness in obese participants versus
lean BMI control participants. Significant regions following FDR correction are
reported. mOFC: medial orbital frontal cortex; ACC: anterior cingulate cortex.

Cortical Region ControlM (SD) ObeseM (SD) F p d

Right mOFC 2.728 (0.14) 2.751 (0.13) 8.816 0.003
0.235

Right rostral ACC 2.992 (0.09) 3.037 (0.19) 8.996 0.002
0.238

Right Entorhinal
Cortex

3.433 (0.22) 3.372 (0.24) 6.490 0.01
0.202

Bilateral Inferior
Parietal Gyrus

2.601 (0.09) 2.624 (0.09) 16.587 0.00005
0.323

Right Temporal
Pole

3.680 (0.28) 3.593 (0.31) 10.041 0.001
0.251

Left rostral ACC 3.011 (0.17) 3.062 (0.18) 18.642 0.00001
0.342

Bilateral Superior
Parietal Gyrus

2.292 (0.25) 2.322 (0.09) 22.718 0.000002
0.378

Left Temporal
Pole

3.460 (0.25) 3.363 (0.28) 19.522 0.00001
0.35

Fig. 2. Correlations among neurocognitive indicators associated with obesity status.
NOTE: Pearson correlations between variables showing significant differences between obese and control groups. L_TempPole_Thck: Left Temporal Pole Thickness;
R_TempPole_Thck: Right Temporal Pole Thickness; R_Entor_Thck: Right Entorhinal Thickness; B_InfPar_Thck: Bilateral Inferior Parietal Thickness; B_SupPar_Thck:
Bilateral Superior Parietal Thickness; L_RostAC_Thck: Left Rostral Anterior Cingulate Thickness; R_RostAC_Thck: Right Rostral Anterior Cingulate Thickness;
R_MOF_Thck: Right Medial Orbital Frontal Thickness; PicVocab: Picture Vocabulary; Penn_Prog_Mat: Penn Progressive Matrices; NBack_Test_Acc: NBack Test
Accuracy; Penn_Mem: Penn Working Memory Test; mAUC: Delay Discounting mean Area Under the Curve; CardSort: Dimensional Change Card Sort Test; Dexterity:
9-Hole Peg Board; left.PCC_1: Left Posterior cingulate cortex BOLD activity bi.vmPFC_1: Bilateral ventromedial prefrontal cortex BOLD activity; r.precentral_1: Right
precentral gyrus BOLD activity.

Table 5
Backward conditional logistic regression using covariates and implicated neu-
rocognitive indicators in relation to group status (obese vs control group).

Factor B S.E. Sig.

Covariate
Age in Years .125 .029 .000
Race (White Status) −0.418 .233 .072
Monozygotic Twin Status −0.264 .229 .249
Dizygotic Twin Status .133 .261 .611
Household Income −0.115 .048 .016
Intracranial Volume .000 .000 .006
Neurocognitive indicators
9-Hole Peg Boars −0.029 .010 .005
Penn Progressive Matrices −0.053 .021 .014
Dimensional Change Card Sort Test −0.019 .010 .055
Delay Discounting (mAUC) −1.202 .442 .006
Right Temporal Pole Thickness −0.664 .366 .069
Left Rostral ACC Thickness 1.948 .528 .000
Left Temporal Pole Thickness −1.184 .403 .003
Bilateral Superior Parietal Thickness 4.408 1.039 .000
Left PCC Thickness .018 .005 .000

NOTE: ACC: anterior cingulate cortex; PCC: posterior cingulate cortex.
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NBack performance in the obese group, the inability to disengage the
default mode network during the N-Back Test suggests interference
from inadequate default mode suppression, as opposed to specific def-
icits in the task-positive cognitive network. Alterations in DMN activity
in obese individuals relative to controls has been reported at rest
(Kullmann et al., 2011) and in response to overfeeding (Tregellas et al.,
2011). In this capacity, increased DMN activation was suggested to
reflect increased attention to internal states mediating appetite or gut
signals (Tregellas et al., 2011). Deficient suppression of the default
mode network during working memory tasks has been associated with a
number of other psychiatric syndromes in which cognitive impairment
is a hallmark, including early psychosis (Fryer et al., 2013) and major
depressive disorder (Bartova et al., 2015). The hypothesis that in-
efficient DMN suppression could affect attentional processing is also
supported by evidence ineffective default mode network suppression is
linked to distractibility in attention deficit hyperactivity disorder and
this inattention may contribute to poor decision making
(Fassbender et al., 2009).

Significant differences in cortical morphometry were present

bilaterally for the anterior cingulate, temporal pole, and the inferior
and superior parietal gyrus, and localized in the right hemisphere for
orbitofrontal cortex and entorhinal cortex. Further, our multimodal
approach highlighted that obese individuals have a thinner cerebral
cortex in regions associated with the limbic system, and a thicker cer-
ebral cortex in regions associated with the default mode network, in-
hibition and salience network. Previous studies suggest that decreased
cortical thickness in the temporal pole reflect impairment in emotional
regulation, attention and decision making (Fernández-Jaén et al.,
2014). When taken together, both increased BOLD activity and cortical
thickness in regions associated with the default mode network may
reflect enhanced interference of the DMN during task-based activity
and, as a result, a decreased functional capacity.

Finally, in integrative analyses, it was notable that the data-driven
logistic regression included variables from all three domains. Thus, it
was not the case that any single set of neurocognitive findings was
largely attributable to findings from another domain (e.g., all im-
plicated behavioral performance indicators being attributable to dif-
ferences in morphometry). An interesting collateral finding in the

Fig. 3. Resting state functional connectivity for seed regions based on coordinates from the task-negative regions of interest in the N-Back Working Memory Paradigm
in the Human Connectome Project (N=1003) total sample. Each image shows a voxelwise correlation of all voxels on the cortical surface (no subcortical regions
were shown) with a seed identified from the task-negative regions of interest identified from the N-Back Working Memory Paradigm between obese individuals and
controls (white sphere). Seeds were A) posterior cingulate cortex and B) ventromedial prefrontal cortex. Panel C shows the colour scale used.
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partial correlations was significant inverse associations between task-
negative brain activation and neurocognitive test performance (other
than delay discounting). This suggests that beyond the in-scanner N-
Back paradigm, inadequate or inefficient suppression of default mode
network is associated with poorer behavioral performance on multiple
cognitive tasks and it suggests that, methodologically, assessing default
mode network suppression on one task has relevance to others.

As a cross-sectional investigation, the current study cannot address
whether the differences observed are causes or consequences of obesity.
In particular, several hypotheses have emerged proposing a con-
sequential relationship between high BMI and poor cognitive outcomes.
Adiposity has been theorized to induce innate immune activation and
low-grade inflammation in individuals with obesity (Yang et al., 2018;
Miller and Spencer, 2014) and systemic low-grade inflammation may
then translate to localized inflammation in brain regions responsible for

mediating reward processing and cognitive functioning. Specifically,
localized inflammation in these brain regions may impair neurogenesis,
precipitate neuronal apoptosis and synaptic remodeling, and disrupt the
integrity of the blood brain barrier (Miller and Spencer, 2014), ulti-
mately giving rise to diminished cognitive capacity (Patel and
Frey, 2015). On the other hand, it is equally possible that neurocog-
nitive deficits play an etiological role, contributing to the development
of obesity. In support of this, there is evidence that deficits in the do-
mains implicated here have been shown to predict the development of
substance abuse (Fernie et al., 2013; Audrain-McGovern et al., 2016).
However, another important aspect to the association between obesity
and subsequent lower brain performance may be the link between
obesity and socioeconomic adversity (Puhl and Heuer, 2012). It is
certainly credible that socioeconomic adversity decreases environ-
mental enrichment and access to resources, leading to less brain sti-
mulation and fewer opportunities for acquiring new knowledge
(Puhl and Heuer, 2012). Moreover, due to decreased access to resources
children that require additional support may not afford those valuable
resources to aid in the resolution of maladaptive patterns of behaviour
or learning difficulties. As an example, early life stress, an established
risk-factor for subsequent obesity (Gunstad et al., 2006b), has also been
linked to self-regulatory deficits also (Lovallo, 2013; Oshri et al., 2015).
Low socioeconomic status and, probably as a result, lower expenditures
on food has been linked to less-healthy eating choices (Drewnowski and
Darmon, 2005). Equally, it is important to recognize that etiological or
consequential roles may differentially apply to the indicators im-
plicated. Longitudinal studies of neurocognitive factors and obesity will
be essential to systematically address causal versus consequential roles.

Interestingly, the nature of obesity can also be explored through the
lens of food addiction, as a growing body of literature suggests that food
addiction can be thought of as a subtype of obesity or perhaps even an
independent condition (Murphy et al., 2014; Epstein and Leddy, 2006).
Specifically, there are neurobiological similarities between the effects
of high palatability foods (high-sugar, high-salt, high-fat) and the ef-
fects of addictive drugs, insofar as high palatability foods similarly in-
crease extracellular dopamine levels in the striatum (Fortuna, 2012).
Behaviorally, like obese participants in this study, food addiction is
associated with impulsive delay discounting (Murphy et al., 2014);
indeed, food addiction has been found to mediate the link between
delay discounting and obesity (Murphy et al., 2014). In this study, we
focused exclusively on differences based on obesity status as no mea-
sure of food addiction was available, but concurrently probing the
neurocognitive intersection (and lack thereof) of obesity and food ad-
diction in future studies is clearly warranted.

The current study should be considered in the context of its
strengths and limitations. Among its strengths are the fact it is the first
study to use a multimodal approach to investigate the neurocognitive
correlates of obesity and is the largest to date by several hundred
participants. Further, the case and control groups were largely similar
to each other in terms of age, sex distribution, income, and other sub-
stance use, differing most substantially in terms of their BMI.
Furthermore, the obese individuals did not have obesity-related med-
ical conditions that would potentially result in frank negative con-
sequences on brain structure or function, or would significantly impact
cognitive abilities (e.g., hyperlipidemia, diabetes mellitus, cere-
brovascular disease). Therefore, the results in neurocognitive func-
tioning and brain changes do not appear to be attributable to specific
medical sequelae of obesity. A limitation of the current study is that it
does not contain precise measures of adiposity, other anthropometrics,
or metabolic functioning and thus solely relies on BMI as a measure of
obesity, which is a relatively coarse measure. A further consideration is
that most of the effect sizes were relatively small in absolute magnitude.
However, when considered together, the classification was substantially
improved, and the integrative analyses revealed that the neurocognitive
indicators increased accuracy by almost a quarter of the maximum
classification possible. Interestingly, although considered promising,

Fig. 4. Neurosynth co-activation meta-analysis of PCC and vmPFC, threshold at
false discovery rate of p≤ 0.05. Neurosynth had 14,371 studies and 150 000
brain locations at the time of analysis (August 4, 2019). Red activation re-
presents positive co-activation with seed region (white corresponds with the
seed). Maps show co-activation in the sagittal plane of the following seed re-
gions: A) PCC (−2.0 −52.0+ 22.0); B) vmPFC.(−2.0+ 60.0+ 4.0).
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machine learning did not improve classification accuracy in this study.
Finally, a further nuance was that the neurocognitive variables were
better at classifying healthy individuals rather than obese individuals,
perhaps suggesting greater cognitive heterogeneity within the obese
group.

5. Conclusions

In sum, this multimodal study revealed numerous neurocognitive
differences between individuals with obesity compared to controls. In
behavior, brain activity, and brain structure, these differences collec-
tively appeared to reflect deficits in executive functioning, memory,
and attention; and insufficient suppression of default mode network.
This may reflect early stage neuroinflammatory consequences of obe-
sity on the brain, cognitive vulnerabilities that contribute to the de-
velopment of obesity, or a combination of the two. Disentangling
whether these differences reflect adverse consequences or etiological
pathways is a high priority for future investigations.
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