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Dual solution for double‑diffusive 
mixed convection opposing 
flow through a vertical cylinder 
saturated in a Darcy porous 
media containing gyrotactic 
microorganisms
Abdulaziz Alsenafi1* & M. Ferdows2

The steady mixed convection flow towards an isothermal permeable vertical cylinder nested in a fluid‑
saturated porous medium is studied. The Darcy model is applied to observe bioconvection through 
porous media. The suspension of gyrotactic microorganisms is considered for various applications 
in bioconvection. Appropriate similarity variables are opted to attain the dimensionless form of 
governing equations. The resulting momentum, energy, concentration, and motile microorganism 
density equations are then solved numerically. The resulting dual solutions are graphically visualized 
and physically analyzed. The results indicate that depending on the systems’ parameters, dual 
solutions exist in opposing flow beyond a critical point where both solutions are connected. Our results 
were also compared with existing literature.

The study of mixed convection, which is the combination of free and forced convection flow, has become of great 
interest for many researchers over the last few decades because of its wide range of technological and industrial 
applications that have been reviewed in Refs.1–3. This includes heat exchanges placed in a low velocity environ-
ment, solar collectors exposed to wind currents, atmospheric boundary layer flows, nuclear reactors when cooled 
during emergency shutdowns, and various electronic equipment. Convection heat transfer in porous medium 
has many theoretical and practical studies, such as in Refs.4–7, where the effects of buoyancy phenomena on flow 
and temperature fields through porous media were studied. In a porous medium, the pores are typically filled 
with fluid (liquid or gas), which causes enhance heat transfer in fluid flow.

Several studies were performed on convection heat sources that are based on the Darcy  model8–12. For 
instance, in Ref.8, Lai et al. applied the Darcy model to observe mixed convection in porous media. Abbas 
et al.9 studied natural convection using the Darcy–Brinkman–Forcheimer model in a vertical cylinder. Srini-
vasacharya and  Reddy10,11 studied the problem of natural and mixed convection for a power-law fluid in a Darcy 
porous media. In Ref.12, Naveen et al. studied the velocity term impacts of both the maximum density and the 
momentum equation on the stability of a natural convection through a vertical layer in a Darcy porous media. 
Furthermore, other studies were done on convection flow through porous media, such as those in Refs.13–17. 
Very recently, Mondal et al.18 observed internal heat generation and thermal radiation for mixed convection flow 
over a porous vertical plate. Mixed convection through porous media with heat generation is also studied by 
Abu-hamdeh et al.19 and  Maleque20. Additionally, Shankar and Shivakumara studied the natural convection in a 
non-Newtonian Oldroyd-B fluid that is saturated in a vertical porous layer that is maintained at varying uniform 
 temperatures21–23. By analyzing the systems’ stability, the authors found that the system is unconditionally stable 
for Newtonian fluids, and is unstable with viscoelastic fluids.

Flow over vertical cylinder has become of great interest to authors due to its numerous applications. For 
example, it is used to insulate vertical porous pipes, connect with oil/gas lines, underground electrical power 
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transmission lines, radioactive waste disposal, polymer process, and heating or cooling of sheets and films. In 
Ref.24, Sankar and Do investigated the effects of discrete heating on convection heat transfer in a vertical cylindri-
cal annulus. Several works have also been done on free convection heat transfer in vertical cylinder  annulus25–28. 
Moreover, free convective boundary layer flows over a vertical porous cylinder have been investigated by Totala 
et al.29, Paul et al.30, Minkowyez and  Cheng31. In Ref.32, Popiel observed free convection heat transfer from the 
vertical slender cylinder, and Loganathan et al.33 observed natural convection flow for a vertical moving cylinder. 
Several researchers, such as  references34–36, studied mixed convection flow over a vertical cylinder. Very recently, 
Girish et al.37 studied mixed convection in vertical double annular passages through three coaxial cylinders, 
 Rihan38 observed mixed convection over a short vertical cylinder, and Mkhatshwa et al.39 studied mixed convec-
tion nanofluid flow over a vertical slender cylinder.

Bioconvection can be classified as a development process in the field of fluid flow, which deals with the steps 
of self-propelled up swimming microorganisms, such as algae and bacteria that contain oxytaxis, gyrotaxis, 
and gravitaxis organisms. Motile microorganisms are heavier than their encompassing liquid and usually swim 
in the upward direction, which brings about producing different flow profiles into the system, as described 
briefly in Refs.40–46. The advantages of adding motile microorganisms to the suspension include improved mass 
transfer and microscale mixing. In Refs.47,48, Ghorai et al. observed the stability and development of gyrotactic 
microorganisms in an in-depth cavity. Mixed convection nanofluid flow containing gyrotactic microorganisms 
is observed by several  researchers49–51. Moreover,  Mahdy49 studied gyrotactic microorganism mixed convection 
flow along with isothermal vertical wedge. Khan et al.50 observed mixed convection in a gravity-driven thin film 
for non-Newtonian nanofluid with microorganisms, and Saleem et al.51 presented the behavior of magneto Jeffrey 
nanofluid with gyrotactic microorganisms over a rotating cone. Recently, Rashad et al.52,53 and Sudhagar et al.54 
explored mixed convection nanofluid flow over a vertical circular cylinder containing gyrotactic microorganisms.

In convective heat transfer, there exist complex nonlinear problems. For highly nonlinear problems, multiple 
(dual) solutions can sometimes be obtained. It is important to compute unstable states along with stable ones as 
the unstable solutions often interact with stable solutions, which produce unexplainable phenomena, as observed 
by Rohni et al.55. The study on the existence of dual solutions in mixed convective boundary layer flows may bring 
a new outlook on engineering applications described in Ref.56. In Ref.57, Ridha et al. showed the existence of a 
dual solution for opposing flow. After that, Ref.58 extended on that research for assisting flow. Dual solutions for 
mixed convection boundary layer flow were first investigated by  Ingham59.  Merkin60 also studied dual solutions 
for mixed convection in a porous medium simultaneously. Ishak et al.61 and Rostami et al.62 investigated dual 
solutions on mixed convection over a vertical surface with micropolar fluid as described in Ref.61, as well as the 
presence of silica-alumina hybrid nanofluid in Ref.62. Very recently, Khan et al.63 also presented a dual solution 
for mixed convection with silica-alumina hybrid nanofluid for a curved surface.

Motivated by the above works, in this paper we present a dual solution for mixed convection over a vertical 
cylinder containing gyrotactic microorganisms in an opposing flow regime. Based on Refs.50,52, our work can 
be used in engineering, geothermal, and industrial domains, such as developing microbial fuel cells and bio-
convection technological devices. Additionally, dual solutions mathematical analysis can determine the most 
realistic, stable, physically acceptable solutions that significantly impact designing those devices. Examples of 
engineering applications include but are not limited to power systems, where they are used in system planning 
and operation to predict the systems’ response. Even though several  authors3,36,64 investigated dual solutions for 
mixed convection, they did not observe motile microorganism’s behavior in their studies. Moreover, according 
to our knowledge, very few works such as those mentioned in Refs.52,65 have been done on dual solutions for 
mixed convection with gyrotactic microorganisms, in which the behavior of nanofluid with microorganisms 
was studied. The novelty of this work is to observe dual solution phenomena in mixed convection opposing flow 
for water-based up-swimming microorganisms. This phenomenon has significant applicability potential in bio-
microsystems. Analyzing the existence of a dual solution in heat, mass, motile microorganism transfer rate and 
temperature, concentration microorganism profile beyond a critical point along a vertical cylinder is completely 
a new concept, and the obtained results are entirely unique.

Mathematical formulation
We consider the steady mixed convection boundary layer flow over a vertical cylinder with a radius r0 implanted 
in a saturated permeable medium that contains gyrotactic microorganisms, as shown in Fig. 1. In our work, we 
assume that the mainstream velocity is U(x) and the cylinder surface is maintained at a constant temperature 
of Tw . We denote the concentration of fluid by Cw and motile microorganism concentration by nw . The velocity, 
temperature, and concentrations are u∞,T∞,C∞ and n∞ . When it is far from the cylinder’s surface, the axial 
and radial coordinates are x and r; in contrast, the x-axis is measured vertically upward along the cylinder’s axis, 
and the r-axis is measured normal to the x-axis. The gravitational acceleration g acts in the downward direction 
in opposition to the x-direction.

We use the Darcy model in this research, and it assumes less velocity and porosity. It is worth mentioning 
that water has been chosen as the base fluid for the survival of microorganisms. The buoyancy term is used 
in the momentum (Darcy) equation due to up swimming microorganisms. Based on the model proposed by 
Sudnagar et al.54, under the assumptions along with the physical phenomena and Boussinesq approximations, 
the governing equations are

(1)∂(ru)
∂x +

∂(rv)
∂r = 0,

(2)∂u
∂r =

(1−C∞)ρβgk
µ

∂T
∂r −

ρgk
µ

∂C
∂r −

gγ∇ρk
µ

∂n
∂r ,
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In Eqs. (1) to (5) above, T , C , and n are the temperature, concentration, and volume fraction of motile micro-
organisms. k is the permeability of the porous medium, µ is the fluid viscosity, ρ is the density of the fluid, g is 
the acceleration due to gravity, β is the thermal expansion coefficient, α is the effective thermal diffusivity of 
the porous medium, Dm is the solute diffusivity, Dn is the diffusivity of the microorganism, b is the chemotaxis 
constant, and finally, Wc is the maximum cell swimming speed. The product b ·Wc is assumed to be a constant.

The boundary conditions take the following form:

Following Mahmood and  Merkin34, we also assume in this paper the following:

We now introduce the following dimensionless quantities:

where L is the characteristic length, and Pe is the Peclet number.
The continuity equation is satisfied by a stream function ψ such that:

Substituting Eqs. (9) and (10) in Eqs. (1) to (7) leads to the following coupled differential equations:

(3)u ∂T
∂x + v ∂T

∂r = α

(

1
r

∂
∂r

(

r ∂T
∂r

))

,

(4)u ∂C
∂x + v ∂C

∂r = Dm

(

1
r

∂
∂r

(

r ∂C
∂r

))

,

(5)u ∂n
∂x + v ∂n

∂r +
bWc
∇C

(

∂
∂r

(

n ∂C
∂r

))

= Dn

(

1
r

∂
∂r

(

r ∂n
∂r

))

.

(6)v = 0,T = Tw(x),C = Cw(x), n = nw(x) at r = r0,

(7)u → U(x),T → T∞,C → C∞, n → n∞as r → ∞.

(8)U(x) = u∞x
L ,Tw(x) = T∞ + x∇T

L ,Cw(x) = C∞ + x∇C
L , nw(x) = n∞ + x∇n

L .

(9)η =
r2−r0

2

2r0L
Pe

1
2 ,ψ = αr0Pe

1
2
x
L f (η),

(10)U(x) = αxPe
L2

,T = T∞ + x∇T
L θ(η),C = C∞ + x∇C

L φ(η), n = n∞ + x∇n
L χ(η),

u =
1

r

∂ψ

∂r
and v = −

1

r

∂ψ

∂x
.

(11)f
′′

= �

[

θ
′

− Nrφ
′

− Rbχ
′
]

,

(12)(1+ γ η)θ
′′

+ γ θ
′

+ f θ
′

− f
′

θ = 0,

Figure 1.  Physical model and coordinate system.
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The transformed boundary conditions become:

In the coupled differential equations, the mixed convection parameter is � = Ra
Pe  , Raleigh number is 

Ra =
gβkL∇T

υα
 , Peclet number is Pb =

u∞L
α

 , curvature parameter is γ = 2
r0

√

αL
u∞

 , buoyancy parameter is 

Nr = ∇C
(1−C∞)β∇T , bioconvection Rayleigh number is Rb =

∇ργ∇n
(1−C∞)β∇T , Lewis number is Le = α

Dm
 , bioconvection 

Lewis number is Lb = α
Dn

 , bioconvection Peclet number is Pb =
bWc
Dn

 , and the microorganism concentration 
difference parameter is A =

n∞
nw−n∞

.

Heat, mass, and motile microorganism transfer coefficient
The heat transfer rate, the Sherwood number, and the density parameter for the motile microorganisms are 
defined as:

where qw , qm , and qn represent the constant wall heat, mass, and microorganisms’ fluxes, respectively, and they 
are written as:

By using Eqs. (9), (10), (17), and (18), we obtain the dimensionless Nusselt number, Sherwood number, and 
the local density number of the motile microorganisms at the surface of the cylinder, respectively:

Method of solution
Using similarity transformations, the governing partial differential equations were converted into ordinary dif-
ferential equations, which are then solved numerically using Matlab bvp4c solver. Matlab bvp4c solver is a finite 
difference method with fourth-degree accuracy that is applied on a general two-point boundary value problem 
with an initial solution guess. It does this by integrating a system of ordinary differential equations on the inter-
val [a, b]. From this method, and using a diversity of initial guess f , f ′ , θ , θ ′

,φ,φ
′

,χ , and χ ′ we were able to find 
the first and second solutions. In the context of the bvp4c function described earlier, we need to transform the 
governing equations into a system of first order differential equations as follows:

First, we arrange Eqs. (11) through (14) as:

Next, we transform the above equations into a system of first order differential equations, and for this, we 
let η = x , and this gives us

(13)(1+ γ η)φ
′′

+ γφ
′

+ Le · f φ
′

− Le · f
′

φ = 0,

(14)
(1+ γ η)χ

′′

+ γχ
′

+ Lb · f χ
′

− Lb · f
′

χ − Pb
(

(1+ γ η)φ
′

χ
′

+ (χ + A)
(

γφ
′

+ (1+ γ η)φ
′′
))

= 0.

(15)η = 0, f = 0, θ = 1,φ = 1,χ = 1,

(16)η → ∞, f
′

→ 1, θ → 0,φ → 0,χ → 0.

(17)Nu =
Lqw

keff ∇T , Sh =
Lqm

Dm∇C , andNn =
Lqn
Dn∇n ,

(18)qw = −keff

(

∂T
∂r

)

r=r0
, qm = −Dm

(

∂C
∂r

)

r=r0
, qn = −Dn

(

∂n
∂r

)

r=r0
.

(19)Pe−
1
2Nu = −θ

′

(0), Pe−
1
2 Sh = −φ

′

(0), Pe−
1
2Nn = −χ

′

(0).

f
′′

= �

[

θ
′

− Nrφ
′

− Rbχ
′
]

,

θ
′′

=
−γ θ

′

− f θ
′

+ f
′

θ

1+ γ η
,

φ
′′

=
−γφ

′

− Lef φ
′

+ Lef
′

φ

1+ γ η
,

χ
′′

=
−γχ

′

− Lbf χ
′

+ Lbf
′

χ + Pb((1+ γ η)φ
′

χ
′

+ (χ + A)(γ φ
′

+ (1+ γ η)φ
′′

1+ γ η
.

y1 = f , y2 = f
′

,

y3 = θ , y4 = θ
′

,
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Therefore, the corresponding system of first order differential equations become:

For the boundary conditions, we consider that ya is the left boundary, and yb be the right boundary such that:

To validate our results, the differential equations are solved numerically using Maple 14.0 dsolve command. 
The asymptotic boundary conditions in Eqs. (15) and (16) are replaced by using a value of 8 for the similarity 
variable ηmax = 8 . The results for both cases are displayed in Table 1, and they indicate that there are good agree-
ment and preciseness of the numerical calculations. To further validate our results, in Table 2, we compare our 
present results for the special case against the results of investigations by Chamkha and  Khaled66 and Nima et al.67.

y5 = φ, y6 = φ
′

,

y7 = χ , y8 = χ
′

.

dy1

dx
= f

′

= y2,

dy2

dx
= f

′′

= �
[

y4 − y6Nr − y8Rb
]

,

dy4

dx
= θ

′′

=
−γ y4 − y1y4 + y2y3

1+ γ x
,

dy6

dx
= φ

′′

=
−γ y6 − y1y6Le + y2y5Le

1+ γ x
,

dy8

dx
= χ

′′

=
−γ y8 − y1y8Lb+ y2y8Lb+ Pb

(

(1+ γ x)y6y8 + (y7 + A)(γ y6 + (1+ γ x)(−γ y6 − Ley1y6 + Ley2y5)
)

1+ γ x
.

ya(1) = 0, yb(2)− 1 = 0,

ya(3)− 1 = 0, yb(3) = 0,

ya(5)− 1 = 0, yb(5) = 0,

ya(7)− 1 = 0, yb(7) = 0.

Table 1.  Effect of curvature parameter γ on −θ
′

(0).

Effect of curvature parameter γ on −θ
′

(0)

� γ

−θ
′

(0) (Matlab bvp4c) −θ
′

(0) (Maple 14.0)

First solution First solution

− 1 0.0 0.731408 0.7314073

− 1 0.5 0.873551 0.8735520

− 1 1.0 1.000111 1.0001002

− 1 3.0 1.436533 1.4364811

− 1 5.0 1.824377 1.8243414

Table 2.  Comparison of f ′(0) when � = 0 . Here we have N1 = 0,N2 = 0,m = 0, γ = 0, ω = 0, Lb = 0, Le = 0,Pe = 0,A = 0.

Comparison of f ′ (0) for � = 0

Chamkha and  Khaled66

For B = 0

Nima et al.67

For ǫ = 1 Present results (first solution)

f
′

(0) 1.0000 1.0000 1.0000
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Results and discussion
In this section, dual solutions of different flow profiles are analyzed. Dual solutions represent two different 
branches of solutions that are obtained under the same conditions by guessing some missing initial values. These 
solutions are called upper branch, or first solution, and lower branch or second solution. In this paper’s visuali-
zations, the solid line represents the first solution, while dotted lines represent the second solution. A stability 
analysis described by Sparrow et al.68, Weidman et al.69, and very recently Postelnicu and  Pop70, reveal that upper 
branch solutions (first solution) are stable and physically realizable. In contrast, lower branch solutions (second 
solution) are unstable, and therefore not physically realizable.

Figure 2 shows that multiple solutions are possible for different values of �. For example, when � < 0 , mul-
tiple solutions exist. In the same figure, dual solutions are obtained for � = −1,−2,−3,−4 . Finally, either no 
solution exists, or a unique solution exists for � > 0 . The figures also show that dual solutions are possible for 
all values of �c ≤ � < 0, where �c < 0 is the critical value. For the first solution in Fig. 2, the velocity profile 
increases with the augmented values of mixed convection parameter  � for the dominance of buoyancy force for 
the up-swimming microorganisms.

Figure 3 shows the velocity profile f ′(η) against η for random values of Nr when � = −3 . The velocity profiles 
provide the existence of the dual solution when � < �c with a diversity of Nr . From the figure, we see that the 
first solutions are stable as the velocity profile went into the positive range. We also see that the second solutions 

Figure 2.  Velocity profile f ′(η) for various � when γ = 5, Lb = 0.5, Le = 0.5,Pb = 0.5,Nr = 0.5,Rb = 0.6,A = 0.2.

Figure 3.  Velocity profile f ′(η) for various Nr when � = −3, γ = 5, Lb = 0.5, Le = 0.5, Pb = 0.5,Rb = 0.6,A = 0.2.
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are unstable as the velocity profile became negative. Figure 3 illustrates the influence of Buoyancy parameter Nr 
over the dual solution. Figure 3 shows a decrease in Buoyancy parameter Nr , where velocity profile decreases 
for the first solution but increases in the second solution. Although the second solutions have negative values, 
there are no physical significances that can be made.

The velocity profile f ′(η) against η for several values of Rb is visualized in Fig. 4 when � = −3 . The velocity 
profile provides the existence of the dual solution with � = −3 with a certain change of bioconvection Rayleigh 
number Rb . Figure 4 shows the effect of Rb over the dual solution when the curvature parameter γ = 5 , Peclet 
number Pb = 0.5 , bioconvection Lewis number Lb = 0.5 , Lewis number Le = 0.5 , buoyancy parameter Nr = 0.5 , 
and microorganism concentration difference parameter A = 0.2 . The greater values of Rb increase the buoyancy 
force because of the bio-convection process. It is observed in Fig. 4 that when the parameter Rbisdecreased , the 
first solutions of the dual velocity profile decrease, and the second solutions increase, which implies that the first 
solution is the stable one.

The velocity profile f ′(η) against η for several values of γ is shown in Fig. 5 for � = −4 . The velocity profiles 
provide the existence of the dual solution with � = −4 with a certain change of curvature parameter γ . Figure 5 
shows the effect of γ over the dual solution when the bioconvection Rayleigh number Rb = 0.6 , Peclet number 

Figure 4.  Velocity profile f ′(η) for various Rb when � = −3, γ = 5, Lb = 0.5, Le = 0.5,Pb = 0.5,Nr = 0.5,A = 0.2.

Figure 5.  Velocity profile f ′(η) for various γ when � = −4, Lb = 0.5, Le = 0.5,Pb = 0.5,Nr = 0.5,Rb = 0.6,A = 0.2.
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Pb = 0.5 , bioconvection Lewis number Lb = 0.5 , Lewis number Le = 0.5 , Buoyancy parameter Nr = 0.5, and 
the microorganism concentration difference parameter A = 0.2 . The curvature parameter has an inverse relation 
with the radius of curvature. Thus, when the curvature parameter increases, the radius of the cylinder decreases. 
Also, less contact within the surface area will produce less resistance towards the fluid particles. As a result, the 
velocity profile shows stimulant values.

Variation of Nusselt number with � for different values of  γ is shown in Fig. 6. It is seen that dual solutions 
exist for the temperature profile � > �c where �c = −4.80,−4.81,−4.92, and  γ = 3, 4, 5, respectively. The critical 
value �c is where both the upper and lower branch solutions connect, and at this exact point, a unique solution 
exists. From these critical values, the boundary layer separates, and the solution becomes invalid. It is found 
from the heat transfer rate −θ

′

(0) that it increases strongly with the parameter � and decreases relatively weakly 
with the curvature parameter γ.

Figure 7 shows the temperature profile θ(η) against η for different values of γ when � = −4 . The tempera-
ture profiles provide the existence of the dual solution when � > �c for different values of γ . An increase of the 
curvature parameter γ causes a decrease in curvature radius because the fluid velocity particle enhances. As a 
result, the average kinetic energy increases, which causes an increment in the temperature profile. It is seen in 
Fig. 7 that when the curvature parameter γ decreases, the temperature profiles also decrease for both solutions.

Variation of Sherwood number with � for different values of  γ is shown in Fig. 8. The dual solution is observed 
for the concentration profile � > �c , where �c = −4.75,−4.80,−5.06, and γ = 3, 4, 5, respectively. At this critical 
point �c , a unique solution exists. Under these critical values, the boundary layer separates, and the solution-based 

Figure 6.  Variation of Nusselt number with � for various γ when Lb = 1, Le = 1,Pb = 1, 
Nr = 0.5,Rb = 0.6,A = 0.2.

Figure 7.  Temperature profile θ(η) for various γ when � = −4, Lb = 1, Le = 1,Pb = 1,Nr = 0.5,Rb = 0.6,A = 0.2.
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become invalid. It is also observed that the Sherwood number increases with the increasing values of � and γ for 
the first solution, while it decreases for the second solution.

Figure 9 shows the concentration profile φ(η) against η for random values of γ when � = −4 . The concen-
tration profile provides the existence of the dual solution when � > �c with different values of γ . We see that 
both solutions are stable as the velocity profile went into the positive range. Figure 9 illustrates the influence of 
curvature parameter γ over the dual solution. We also see that a decrease in curvature parameter γ makes the 
concentration profile decrease for both the first and second solutions.

The concentration profile φ(η) against η for several values of Le in Fig. 10 when � = −4 . The concentration 
profiles provide the existence of the dual solution with � = −4 ( � > �c ) with a certain change of Lewis number 
Le . Both solutions are shown to be stable as the concentration profile went into the positive range. Figure 10 
shows the effect of Le over the dual solution when the curvature parameter γ = 5 , Peclet number Pb = 0.5 , bio-
convection Lewis number Lb = 0.5 , bioconvection Rayleigh number Rb = 0.6 , buoyancy parameter Nr = 0.5 , 
and the microorganism concentration difference parameter A = 0.2 . The Lewis number Le is defined as the ratio 
of thermal diffusivity and mass diffusivity, which is the prominent factor in studying heat and mass transfer. As 
Lewis number Le reduces the mass diffusivity, this in turn decreases the penetration depth of the concentration 
boundary layer. We observe in Fig. 10 that as the parameter Le decreases, the first solutions of concentration 
profile increase, and the second solutions decrease.

In Fig. 11, the density of motile microorganism transfer rates is also increased with the mixed convection 
parameter and curvature parameter. It is known that the motile microorganism density is higher than liquid, and 
they usually swim in an upward direction of the exterior of the cylinder wall. Therefore, the curvature parameter 

Figure 8.  Variation of Sherwood number with � for various γ when Lb = 1, Le = 0.5,Pb = 1,Nr = 0.5,Rb = 0.6,A = 0.2.

Figure 9.  Concentration profile φ(η) for various γ when � = −4, Lb = 0.5, Le = 1, Pb = 0.5,Nr = 0.5,Rb = 0.6,A = 0.2.
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γ increases the motile microorganism transfer rate. The dual solution is observed for the microorganism profile 
� > �c , where �c = −5.06,−4.76,−4.88, and γ = 3, 5, 8, respectively. At this critical point �c , a unique solution 
exists. From these critical values, the boundary layer separates, and the solution is based on becomes invalid. It is 
found from microorganism transfer rate −χ

′

(0) that it increases strongly with parameter � , and grows relatively 
stronger with curvature parameter γ.

Figures 12, 13, 14 and 15 show the existence of dual solution of microorganism profile when � > �c  for the 
values γ = 3, 5, 7, Le = 0.5, 0.8, 1.0, Lb = 0.5, 0.8, 0.1, andPb = 0.3, 0.5, 0.8 is shown. The Bioconvection Lewis 
number Lb and bioconvection Peclet number Pb tend to decrease the microorganism profile. In addition, the 
Bioconvection Lewis number Lb and bioconvection Peclet number Pb raises the mobility of fluid and causes the 
quantity of motile microorganism’s thickness to reduce. Microorganism profiles decrease with the decreasing 
values of γ , Lb, and Pb for both the first and second solutions. Additionally, increasing the Lewis number’s values 
also decreases the boundary layer thickness of the microorganism profile for the first solution, where the profile 
increases with Le in the second solution. We see that both solutions are stable as the microorganism profile went 
into the positive range.

Figure 10.  Concentration profile φ(η) for various Le when � = −4, γ = 5, Lb = 0.5, Pb = 0.5,Nr = 0.5,Rb = 0.6,A = 0.2.

Figure 11.  Microorganism transfer rate −χ
′

(0) with � for various values of γ when 
Pb = 0.5, Le = 1,Nr = 0.5,Rb = 0.6,A = 0.2.
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Conclusion
The steady mixed convection boundary layer flow with gyrotactic microorganisms past a vertical cylinder is 
analyzed. Dual solutions are found to exist in case of opposing flow when the mixed convection parameter � 
is negative (Cylinder is cooled Tw < T∞) . The consequences of various flow influencing parameters have been 
thoroughly discussed in detail. The critical reviews are summarized as follows:

• The variation of Nusselt number indicates that dual solutions exist for temperature profile � > �c , where the 
critical value �c = −4.80,−4.81,−4.92 for the curvature parameter γ = 3, 4, 5 . The curvature parameter γ 
increases heat transfer rate and temperature profile for the first solution, which is physically stable.

• The variation of Sherwood number shows the existence of dual solutions in concentration profile when 
� > �c = −4.75,−4.80,−5.06 for γ = 3, 4, 5, respectively. The mass transfer rate and concentration profile 
increase due to the dependence on curvature parameter γ and Lewis parameter Le for the stable solutions.

• The variations of density number of microorganisms show the dual solution of microorganism profile arise 
when � > �c = −5.06,−4.76,−4.88 for γ = 3, 5, 8, respectively. For the case of stable solutions, motile micro-
organism transfer rate and microorganism profile increase with the enhancement of γ , and it is observed 
that the bioconvection Lewis parameter Lb and Bioconvection Peclet number Pb have pronounced effects 
on Microorganism profile.

Figure 12.  Microorganism profile χ(η) for various γ when � = −4, Lb = 0.5, Le = 1, Pb = 0.5,Nr = 0.5,Rb = 0.6,A = 0.2.

Figure 13.  Microorganism profile χ(η) for various Lb when � = −4, γ = 5, Le = 1,Pb = 0.5,Nr = 0.5,Rb = 0.6,A = 0.2.
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Several studies were performed on dual solutions for mixed convection along a vertical cylinder for different 
engineering applications. Moreover, there are many engineering and practical bio-microsystems where mixed 
convection flow over a vertical cylinder in porous media with Gyrotactic Microorganism occurs. However, very 
few works have been done on dual solutions for mixed convection with gyrotactic microorganisms. Analyzing 
the existence of a dual solution in heat, mass, motile microorganism transfer rate, temperature, and concentra-
tion microorganism profile beyond a critical point along a vertical cylinder is a novel concept. The obtained 
results are also unique. Our study shows mutual relations between different parameters, which can affect the 
performance of those systems.

In this paper, dual solution phenomena in the presence of gyrotactic microorganisms are observed only in the 
case of mixed convective opposing flow. For further extensions of this paper, we can consider non-Newtonian 
fluid with the effect of an aligned magnetic field to observe dual solution phenomena for both assisting flow 
and opposing flow.

Received: 14 January 2021; Accepted: 23 September 2021

Figure 14.  Microorganism profile χ(η) for various Le when � = −4, γ = 5, Le = 1,Pb = 0.5,Nr = 0.5,Rb = 0.6,A = 0.2.

Figure 15.  Microorganism profile χ(η) for various Pb when � = −4, γ = 5, Le = 1,Nr = 0.5,Rb = 0.6,A = 0.2.



13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19918  | https://doi.org/10.1038/s41598-021-99277-x

www.nature.com/scientificreports/

References
 1. Nasir, N. A. A. M., Ishak, A. & Pop, I. Stagnation-point flow and heat transfer past a permeable quadratically stretching/shrinking 

sheet. Chin. J. Phys. 55, 2081–2091 (2017).
 2. Tamim, H., Dinarvand, S., Hosseini, R., Khalili, S. & Pop, I. Unsteady mixed convection flow of a nanofluid near orthogonal 

stagnation point on a vertical permeable surface. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 228, 226–237 (2014).
 3. Grosan, T. & Pop, I. Axisymmetric mixed convection boundary layer flow past a vertical cylinder in a nanofluid. Int. J. Heat Mass 

Transf. 54, 3139–3145 (2011).
 4. Oztop, H. F., Al-Salem, K., Varol, Y. & Pop, I. Natural convection heat transfer in a partially opened cavity filled with porous media. 

Int. J. Heat Mass Transf. 54, 2253–2261 (2011).
 5. Tanmay, B., Roy, S., Paul, T. & Pop, I. Natural convection in a square cavity filled with a porous medium: Effects of various thermal 

boundary conditions. Int. J. Heat Mass Transf. 49, 1430–1441 (2006).
 6. Varol, Y., Oztop, H. F. & Pop, I. Natural convection in a diagonally divided square cavity filled with a porous medium. Int. J. Therm. 

Sci. 48, 1405–1415 (2009).
 7. Varol, Y. Natural convection in divided trapezoidal cavities filled with fluid saturated porous media. Int. Commun. Heat Mass 

Transf. 37, 1350–1358 (2010).
 8. Lai, F. C., Kulacki, F. A. & Prasad, V. Mixed convection in saturated porous media. In Convective Heat and Mass Transfer in Porous 

Media, NATO ASI Series. (Springer, 1991).
 9. Abbas, A. H., Messaoud, H., Saada, D. & Abdennacer, B. Numerical study of laminar natural convection in porous media: Darcy–

Brinkman–Forcheimer model. Energy Proc. 74, 77–86 (2015).
 10. Srinivasacharya, D. & Reddy, G. S. Double diffusive natural convection in power-law fluid saturated porous medium with Soret 

and Dufour Effects. J. Braz. Soc. Mech. Sci. Eng. 34, 525–530 (2012).
 11. Srinivasacharya, D. & Reddy, G. S. Mixed convection on a vertical plate in a power law fluid saturated porous medium with cross 

diffusion effects. Proc. Eng. 127, 591–597 (2015).
 12. Naveen, S. B., Shankar, B. M. & Shivakumara, I. S. Finite Darcy–Prandtl number and maximum density effects on Gill’s stability 

problem. J. Heat Transf. 142, 102601. https:// doi. org/ 10. 1115/1. 40475 06 (2020).
 13. Ingham, D. B. & Pop, I. Transport Phenomena in Porous Media III (Elsevier Science, 2005).
 14. Vadasz, P. Emerging Topics in Heat and Mass Transfer in Porous Media: From Bioengineering and Microelectronics to Nanotechnology 

(Springer, 2008).
 15. Nield, D. A. & Bejan, A. Convection in Porous Media (Springer, 2013).
 16. Vafai, K. Handbook of Porous Media (CRC Press, 2014).
 17. Shankar, B. M., Shivakumara, I. S. & Naveen, S. B. Impact of thermal non-equilibrium on the stability of natural convection in an 

Oldroyd-B fluid-saturated vertical porous layer with internal heat sources. Transp. Porous Media 133, 437–458 (2020).
 18. Mondal, H., De, P., Goqo, S. & Sibanda, P. A numerical study of nanofluid flow over a porous vertical plate with internal heat 

generation and nonlinear thermal radiation. J. Porous Media 23, 517–529 (2020).
 19. Abu-Hamdeh, N. H., Oztop, H. F. & Alnefaie, K. A. A computational study on mixed convection in a porous media filled and 

partially heated lid-driven cavity with an open side. Alex. Eng. J. 59, 1735–1750 (2020).
 20. Maleque, K. A. Similarity requirements for mixed convective boundary layer flow over vertical curvilinear porous surfaces with 

heat generation/absorption. Int. J. Aerosp. Eng. 2020, e7486971. https:// doi. org/ 10. 1155/ 2020/ 74869 71 (2020).
 21. Shankar, B. M. & Shivakumara, I. S. On the stability of natural convection in a porous vertical slab saturated with an Oldroyd-B 

fluid. Theor. Comput. Fluid Dyn. 31, 221–231 (2017).
 22. Shankar, B. M. & Shivakumara, I. S. Effect of local thermal nonequilibrium on the stability of natural convection in an Oldroyd-B 

fluid saturated vertical porous layer. J. Heat Transf. 139, 044503. https:// doi. org/ 10. 1115/1. 40351 99 (2017).
 23. Shankar, B. M. & Shivakumara, I. S. Stability of penetrative natural convection in a non-Newtonian fluid-saturated vertical porous 

layer. Transp. Porous Media 124, 395–411 (2018).
 24. Sankar, M. & Do, Y. Numerical simulation of free convection heat transfer in a vertical annular cavity with discrete heating. Int. 

Commun. Heat Mass Transf. 37, 600–606 (2010).
 25. Venkatachalappa, M., Do, Y. & Sankar, M. Effect of magnetic field on the heat and mass transfer in a vertical annulus. Int. J. Eng. 

Sci. 49, 262–278 (2011).
 26. Venkatachalappa, M., Sankar, M. & Natarajan, A. A. Natural convection in an annulus between two rotating vertical cylinders. 

Acta Mech. 147, 173–196 (2001).
 27. Sankar, M., Do, Y., Ryu, S. & Jang, B. Cooling of heat sources by natural convection heat transfer in a vertical annulus. Numer. Heat 

Transf. Part A Appl. 68, 847–869 (2015).
 28. Sankar, M. Numerical study of double diffusive convection in partially heated vertical open ended cylindrical annulus. Adv. Appl. 

Math. Mech. 2, 763–783 (2010).
 29. Totala, N., Shimpi, M., Shete, N. & Bhopate, V. Natural convection characteristics in vertical cylinder. Int. J. Eng. Sci. 3, 27–31 

(2013).
 30. Paul, T. & Singh, A. K. Natural convection between coaxial vertical cylinders partially filled with a porous material. Forsch. Ing-Wes 

64, 157–162 (1998).
 31. Minkowycz, W. J. & Cheng, P. Free convection about a vertical cylinder embedded in a porous medium. Int. J. Heat Mass Transf. 

19, 805–813 (1976).
 32. Popiel, C. O. Free convection heat transfer from vertical slender cylinders: A review. Heat Transf. Eng. 29, 521–536 (2008).
 33. Loganathan, P. & Eswari, B. Natural convective flow over moving vertical cylinder with temperature oscillation in the presence of 

porous medium. Glob. J. Pure Appl. Math. 13, 839–855 (2017).
 34. Mahmood, T. & Merkin, J. H. Mixed convection on a vertical circular cylinder. Z. Angew. Math. Phys. 39, 186–203 (1988).
 35. Khouaja, H., Chen, T. S. & Armaly, B. F. Mixed convection along slender vertical cylinders with variable surface heat flux. Int. J. 

Heat Mass Transf. 34, 315–319 (1991).
 36. Ishak, A. Mixed convection boundary layer flow over a vertical cylinder with prescribed surface heat flux. J. Phys. A Math. Theor. 

42, 195501. https:// doi. org/ 10. 1088/ 1751- 8113/ 42/ 19/ 195501 (2009).
 37. Girish, N., Sankar, M. & Reddy, K. Analysis of fully developed mixed convection in open-ended annuli with viscous dissipation. 

J. Therm. Anal. Calorim. 143, 503–521 (2021).
 38. Rihan, Y. A. Mixed convection heat transfer from a short vertical cylinder placed in a cross flow. Eng. Res. J. 43, 195–197 (2020).
 39. Mkhatshwa, M. P., Motsa, S. S., Ayano, M. S. & Sibanda, P. MHD mixed convective nanofluid flow about a vertical slender cylinder 

using overlapping multi-domain spectral collocation approach. Case Stud. Therm. Eng. 18, 100598. https:// doi. org/ 10. 1016/j. csite. 
2020. 100598 (2020).

 40. Alloui, Z., Nguyen, T. H. & Bilgen, E. Numerical investigation of thermo-bioconvection in a suspension of gravitactic microorgan-
isms. Int. J. Heat Mass Transf. 50, 1435–1441 (2007).

 41. Avramenko, A. A. & Kuznetsov, A. V. The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid 
layer with an inclined temperature gradient. Int. J. Numer. Method Heat Fluid Flow 20, 111–129 (2010).

 42. Avramenko, A. A. & Kuznetsov, A. V. Stability of a suspension of gyrotactic microorganisms in superimposed fluid and porous 
layers. Int. Commun. Heat Mass Transf. 31, 1057–1066 (2004).

https://doi.org/10.1115/1.4047506
https://doi.org/10.1155/2020/7486971
https://doi.org/10.1115/1.4035199
https://doi.org/10.1088/1751-8113/42/19/195501
https://doi.org/10.1016/j.csite.2020.100598
https://doi.org/10.1016/j.csite.2020.100598


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19918  | https://doi.org/10.1038/s41598-021-99277-x

www.nature.com/scientificreports/

 43. Kuznetsov, A. V. The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension 
of oxytactic microorganisms. Eur. J. Mech. B. Fluids 25, 223–233 (2006).

 44. Kuznetsov, A. V. Bio-thermal convection induced by two different species of microorganisms. Int. Commun. Heat Mass Transf. 38, 
548–553 (2011).

 45. Hill, N. A. & Pedley, T. J. Bioconvection. Fluid Dyn. Res. 37, 1–20 (2005).
 46. Nield, D. A. & Kuznetsov, A. V. The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer: 

Oscillatory convection. Int. J. Therm. Sci. 45, 990–997 (2006).
 47. Ghorai, S. & Hill, N. A. Development and stability of gyrotactic plumes in bioconvection. J. Fluid Mech. 400, 1–31 (1999).
 48. Ghorai, S. & Hill, N. A. Periodic arrays of gyrotactic plumes in bioconvection. Phys. Fluids 12, 5–22 (2000).
 49. Mahdy, A. Gyrotactic microorganisms mixed convection nanofluid flow along an isothermal vertical wedge in porous media. Int. 

J. Aerosp. Mech. Eng. 11, 840–850 (2017).
 50. Khan, N. S., Gul, T., Khan, M. A., Bonyah, E. & Islam, S. Mixed convection in gravity-driven thin film non-Newtonian nanofluids 

flow with gyrotactic microorganisms. Results Phys. 7, 4033–4049 (2017).
 51. Saleem, S. et al. Magneto jeffrey nanofluid bioconvection over a rotating vertical cone due to gyrotactic microorganism. Math. 

Probl. Eng. 2019, e3478037. https:// doi. org/ 10. 1155/ 2019/ 34780 37 (2019).
 52. Rashad, A., Chamkha, A., Bandaru, M. & Abdou, M. M. M. Mixed bioconvection flow of a nanofluid containing gyrotactic micro-

organisms past a vertical slender cylinder. Front. Heat Transf. https:// doi. org/ 10. 5098/ hmt. 10. 21 (2018).
 53. Rashad, A. M. & Nabwey, H. A. Gyrotactic mixed bioconvection flow of a nanofluid past a circular cylinder with convective 

boundary condition. J. Taiwan Inst. Chem. Eng. 99, 9–17 (2019).
 54. Sudhagar, P., Kameswaran, P. K. & Kumar, B. R. Gyrotactic microorganism effects on mixed convective nanofluid flow past a 

vertical cylinder. J. Therm. Sci. Eng. Appl. https:// doi. org/ 10. 1115/1. 40441 85 (2019).
 55. Rohni, A. M., Ahmad, S. & Pop, I. Note on cortell’s non-linearly stretching permeable sheet. Int. J. Heat Mass Transf. 55, 5846–5852 

(2012).
 56. Subhashini, S. V. & Sumathi, R. Dual solutions of a mixed convection flow of nanofluids over a moving vertical plate. Int. J. Heat 

Mass Transf. 71, 117–124 (2014).
 57. Ridha, A. & Curie, M. Aiding flows non-unique similarity solutions of mixed-convection boundary-layer equations. Z. Angew. 

Math. Phys. 47, 341–352 (1996).
 58. Subhashini, S. V., Sumathi, R. & Pop, I. Dual solutions in a double-diffusive MHD mixed convection flow adjacent to a vertical 

plate with prescribed surface temperature. Int. J. Heat Mass Transf. 56, 724–731 (2013).
 59. Ingham, D. B. Singular and non-unique solutions of the boundary-layer equations for the flow due to free convection near a 

continuously moving vertical plate. Z. Angew. Math. Phys. 37, 559–572 (1986).
 60. Merkin, J. H. On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 20, 171–179 (1986).
 61. Ishak, A., Nazar, R. & Pop, I. Dual solutions in mixed convection boundary layer flow of micropolar fluids. Commun. Nonlinear 

Sci. Numer. Simul. 14, 1324–1333 (2009).
 62. Rostami, M. N., Dinarvand, S. & Pop, I. Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina 

hybrid nanofluid. Chin. J. Phys. 56, 2465–2478 (2018).
 63. Khan, M. R., Pan, K., Khan, A. U. & Nadeem, S. Dual solutions for mixed convection flow of  SiO2−Al2O3/water hybrid nanofluid 

near the stagnation point over a curved surface. Phys. A Stat. Mech. Appl. 547, 123959. https:// doi. org/ 10. 1016/j. physa. 2019. 123959 
(2020).

 64. Shu, J. J., Wang, Q. W. & Pop, I. Dual solutions for opposing mixed convection in porous media. J. Heat Transf. https:// doi. org/ 10. 
1115/1. 40367 27 (2017).

 65. Ferdows, M., Hossan, A., Bangalee, M. Z. I., Sun, S. & Alzahrani, F. Stability theory of nano-fluid over an exponentially stretching 
cylindrical surface containing microorganisms. Sci. Rep. 10, 17004. https:// doi. org/ 10. 1038/ s41598- 020- 72545-y (2020).

 66. Chamkha, A. J. & Khaled, A. R. A. Hydro magnetic simultaneous heat and mass transfer by mixed convection from a vertical plate 
embedded in a stratified porous medium with thermal dispersion effects. Heat Mass Transf. 36, 63–70 (2000).

 67. Nima, N. I., Ferdows, M. & Ardekani, M. M. Effects of cross diffusion and radiation on magneto mixed convective stagnation 
flow from a vertical surface in porous media with gyrotactic microorganisms: Similarity and numerical analysis. Special Top. Rev. 
Porous Media Int. J. 11, 203–219 (2020).

 68. Sparrow, E. M., Patankar, S. V. & Ramadhyani, S. Analysis of melting in the presence of natural convection in the melt region. J. 
Heat Transfer 99, 520–526 (1977).

 69. Weidman, P. D., Kubitschek, D. G. & Davis, A. M. J. The effect of transpiration on self-similar boundary layer flow over moving 
surfaces. Int. J. Eng. Sci. 44, 730–737 (2006).

 70. Postelnicu, A. & Pop, I. Falkner–Skan boundary layer flow of a power-law fluid past a stretching wedge. Appl. Math. Comput. 217, 
4359–4368 (2011).

Acknowledgements
The authors are grateful to the reviewers for their valuable comments and suggestions. This work was supported 
and funded by Kuwait University Research Grant No. [SM02/20].

Author contributions
A.A. developed the main conceptual ideas and were in charge of overall direction, planning and the numerical 
simulations. M.F. developed the theoretical framework, performed the mathematical formulation. All authors 
discussed the results and shared the write up of the manuscript equally. All authors reviewed and approved the 
final version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1155/2019/3478037
https://doi.org/10.5098/hmt.10.21
https://doi.org/10.1115/1.4044185
https://doi.org/10.1016/j.physa.2019.123959
https://doi.org/10.1115/1.4036727
https://doi.org/10.1115/1.4036727
https://doi.org/10.1038/s41598-020-72545-y
www.nature.com/reprints


15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:19918  | https://doi.org/10.1038/s41598-021-99277-x

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Dual solution for double-diffusive mixed convection opposing flow through a vertical cylinder saturated in a Darcy porous media containing gyrotactic microorganisms
	Mathematical formulation
	Heat, mass, and motile microorganism transfer coefficient
	Method of solution
	Results and discussion
	Conclusion
	References
	Acknowledgements


