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Abstract: In recent years, mobile target localization for enclosed environments has been a growing
interest. In this paper, we have proposed a fuzzy adaptive tightly-coupled integration (FATCI) method
for positioning and tracking applications using strapdown inertial navigation system (SINS) and
wireless sensor network (WSN). The wireless signal outage and severe multipath propagation of WSN
often influence the accuracy of measured distance and lead to difficulties with the WSN positioning.
Note also that the SINS are known for their drifted error over time. Using as a base the well-known
loosely-coupled integration method, we have built a tightly-coupled integrated positioning system for
SINS/WSN based on the measured distances between anchor nodes and mobile node. The measured
distance value of WSN is corrected with a least squares regression (LSR) algorithm, with the aim
of decreasing the systematic error for measured distance. Additionally, the statistical covariance
of measured distance value is used to adjust the observation covariance matrix of a Kalman filter
using a fuzzy inference system (FIS), based on the statistical characteristics. Then the tightly-coupled
integration model can adaptively adjust the confidence level for measurement according to the
different measured accuracies of distance measurements. Hence the FATCI system is achieved using
SINS/WSN. This innovative approach is verified in real scenarios. Experimental results show that
the proposed positioning system has better accuracy and stability compared with the loosely-coupled
and traditional tightly-coupled integration model for WSN short-term failure or normal conditions.

Keywords: wireless sensor network (WSN); strapdown inertial navigation system (SINS); mobile
target; integrated positioning; tightly-coupled integration; fuzzy adaptive; Kalman filter

1. Introduction

In the past several years, mobile target localization in an enclosed environment has received
a lot of attention in many fields, such as indoor pedestrian navigation [1], coal mine automation [2],
mobile robot navigation, and other fields. Moreover, wireless sensor network (WSN) has enormous
potential for short-range positioning in an enclosed environment based on intelligence, networking,
and distribution. WSN is comprised of a mobile node and multiple anchor nodes through a self-organized
multi-hop. Anchor nodes detect the wireless signal, which is transmitted by mobile node; however,
the wireless signal is liable to be influenced by the barrier, floor, and ceiling through multipath wireless
channels and non-line-of-sight (NLOS) [3]. Among them, the barrier causes the most serious influence.
It can block the wireless signal and cause gross error or non-measurement for some anchor nodes.
Gharghan et al. [4] proposed a measured distance model between the mobile node and anchor node

Micromachines 2016, 7, 197; doi:10.3390/mi7110197 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
http://www.mdpi.com/journal/micromachines


Micromachines 2016, 7, 197 2 of 20

and improved the distance estimation accuracy with log-normal shadowing algorithm. Typically,
the WSN cannot calculate the accurate position based on the low-accuracy distance estimation. If the
number of anchor nodes that have received the wireless signal from the mobile node is less than
four on a two-dimensional plane, the WSN cannot solve a final position result using the time of arrival
(TOA) model.

In contrast to WSN, the strapdown inertial navigation system (SINS) can provide continuous
positioning information by processing inertial measurement unit (IMU) measurements without any
external aids after the required initialization and alignment [5]. The SINS can express the ability of
independent positioning and is used in many fields such as military arms, aerospace, indoor mobile
tracking [6], and so on. However, the positioning accuracy of SINS degrades rapidly over time due
to integration with IMU measured errors, especially for low-cost IMUs [7]. Sensor errors of IMU
can be easily parameterized, but can only be precisely estimated and compensated using external
information, such as GPS observations for outdoors or WSN measurements for indoors [8]. Therefore,
considerable research effort has been focused on the SINS/WSN integrated positioning system recently.
Hur [9] has built the IMU/WSN localization model with discrete-time for a mobile robot. Correa [10]
have developed an enhanced extended Kalman filter (EKF) method for indoor positioning H∞ filter
applications using WSN and IMU. Yang [11] proposed a fuzzy adaptive Kalman filter positioning
system based on INS and WSN integration to estimate the position of a mobile target indoors. However,
for the above methods, the WSN and SINS work independently and the fusion model combines their
positions and velocities, if the WSN finishes calculating the effective position. Otherwise, the integrated
positioning system will result in failure by means of the positions of WSN and SINS, when the WSN
does not calculate the accurate position. That integrated method has been defined as a loosely-coupled
integrated method according to [12].

In order to overcome the poor observability of measurement information for loosely-coupled
integration, Ascher [13] proposed a tightly-coupled UWB/INS system for pedestrian indoor
applications. Xu [14] has built a tightly-coupled integrated model with a Kalman filter (KF) for the
INS/WSN system. The above integrated positioning systems based on a tightly-coupled integration
scheme utilize the differences between the distances from the mobile node to the anchor nodes
measured by SINS and those measured by WSN. However, their positioning accuracies are highly
dependent on the accuracy of the distances measured, and differences are used as the measurement
information for KF. Note that the measurement errors of WSN can deteriorate the overall positioning
accuracy. Additionally, the tightly-coupled integrated system can be improved by the provision of
more accurate measured distances through correcting the residual correlated errors. Dwivedi [15]
estimated clock errors and range between two nodes simultaneously. Miloccol [16] proposed an efficient
pseudo-optimal low-power based distance estimation method for the measured distance error of WSN.
Go [17] and Li [18] discussed the accuracy of wireless localization, which is influenced by NLOS errors
in WSN. However, the above proposed methods involve very complicated calculations and cannot be
used directly for the integrated positioning system.

As for the tightly-coupled integrated positioning model, the statistical covariance of observation
noise can reflect the measured accuracy for the distance between anchor node and mobile node.
Meanwhile, the accuracy of the measured distance is certainly one deciding factor for the performance
of a tightly-coupled integration model. However, the estimated accuracy for the distance between the
mobile node and anchor node will be changed based on the varied real distance. Every anchor node
reads the distances with different estimated accuracies according to the varied actual distances from
the mobile node to every anchor node. Aiming at different measured accuracies for WSN, this paper
proposed a fuzzy adaptive tightly-coupled integration (FATCI) positioning system based on the
distance statistical covariance matrix with a fuzzy adaptive Kalman filter (FAKF). The tightly-coupled
integrated positioning model is built through analyzing the loosely-coupled integrated model with
SINS/WSN. Moreover, the error-corrected model for measured distance is built according to the basic
operating principles of WSN. The fuzzy adaptive control strategy is configured to take advantage of
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the statistical information of the measured distance. As a consequence, the measurement covariance
matrix of Kalman filter is tuned with the accuracy of measured distance. In this case, the confidence
coefficient for every measurement is adjusted based on the fuzzy inference system. Then the FATCI
model with SINS/WSN systems would be achieved.

The rest of the paper is organized as follows. The problem statement for loosely-coupled
integrated model is presented in Section 2. Section 3 describes a model-updated algorithm for measured
distance error based on the least squares regression, while Section 4 represents a FATCI model using the
SINS/WSN system. In Section 5, we examine the performance of the proposed method and compare it
to loosely-coupled and traditional tightly-coupled models. Finally, Section 6 concludes the paper.

2. Problem Statement

In this section, we focus on a SINS/WSN loosely-coupled integrated positioning system with
the aim of analyzing its localization performance. It is clear that the loosely-coupled integrated
method is a simple integration mode for the SINS/WSN integrated positioning system; its structure
is shown as Figure 1. For the loosely-coupled method, SINS and WSN work independently. Firstly,
the equations for error propagation of SINS are used for the state equation of the Kalman filter. Secondly,
the measurement equation of the Kalman filter combines their measured data, which includes the
positions and velocities of SINS and WSN, respectively. Finally, the optimal fusion result of the Kalman
filter is utilized to correct the drifted error of SINS. The loosely-coupled mode operates with a simple
rule and can be easily applied to engineering.
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2.1. State Equation

According to the well-known Newton’s second law, the discrete time equations of motion for
mobile target are illustrated as follows:{

Pn
k+1 = Pn

k + Vn
k T + Cn

b ab
kT2/2

Vn
k+1 = Vn

k + Cn
b ab

kT
, (1)

where Pn and Vn are the three-dimensional position and velocity of mobile target in the navigation
coordinate (n-frame, Onxnynzn) respectively; ab is the three-dimensional acceleration measured by
SINS in the body coordinate (b-frame, Obxbybzb); Cn

b is the b-n frame transformation matrix; T is the
sampling time of SINS; and k stands for the time index.

Equation (1) operates with the perfect differential for its parameters and the result is expressed
as Equation (2):  δPn

k+1 = δPn
k + δVn

k T −
(

Cn
b ab

k×
)

T2

2 δAk + Cn
b

T2

2 δab
k

δVn
k+1 = δVn

k −
(

Cn
b ab

k×
)

TδAk + Cn
b Tδab

k

, (2)
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where δPn and δVn are the vectors of position error and velocity error in the n-frame, respectively;
δA is the vector of attitude error, and the attitude angles are yaw (ϕ), pitch (θ), and roll (γ); δab is
a measured noise of accelerometer in the b-frame; and ab× is expressed as an antisymmetric matrix for
the acceleration vector.

The navigation filter is an error state space Kalman filter, closed loop filter, based on [19,20],
where the inertial data is used to estimate position, velocity, and attitude. Additionally, let us consider
the following state space representation of mobile target. First, a state variable is defined as:

xk =
[

δPn
k δVn

k δAk

]T
. (3)

So the state equation for the Kalman filter can be obtained as in Equation (4):

xk = Fk,k+1xk + GkWk, (4)

where Wk is the system noise of state equation, and its vector form is expressed as Wk =
[

ωε δab
]T

k
;

ωε is the bias of gyroscope which is a component of IMU; Gk is a one-step transition disturbance
matrix; and Fk,k+1 is a one-step transition matrix. Let us define them as:

Fk,k+1 =


I3×3 T·I3×3 −

(
Cn

b ab
k×
)

T2/2

03×3 I3×3 −
(

Cn
b ab

k×
)

T

03×3 03×3 I3×3

 (5)

Gk =

 03×3 Cn
b T2/2

03×3 Cn
b T

Cn
b 03×3

. (6)

2.2. Measurement Equation

The position of the mobile target can be measured by the WSN, which is estimated by Equation (7).
In practice, the measurement vector P̂W,k at sampling time k has the measured noise and the relationship
is represented with the vector VW,k as follows:

P̂W,k = PW + VW,k (7)

VW,k =
[

δPW,x δPW,y δPW,z

]T

k
. (8)

According to the IMU readings, the position of the mobile target can be calculated through the
navigation solution algorithm, which is expressed as Equation (9). VI,k is the calculated error at
sampling time k. Namely,

P̂I,k = PI + VI,k (9)

VI,k =
[

δPI,x δPI,y δPI,z

]T

k
. (10)

For the loosely-coupled integrated model, the measurement of the SINS/WSN system is the set of
difference between the positions from WSN and SINS. The measurement equation can be obtained
based on Equations (7) and (9), expressed as:

zk = Hkxk + vk, (11)

where zk = P̂I,k − P̂W,k, vk is the measured noise and vk = VI,k − VW,k. The observation matrix Hk is
denoted as
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Hk =
[

I3×3 03×6

]
. (12)

Note that the easiest integration technique for position measurements, as known from GPS/INS
integration algorithms, is the loosely-coupled approach. Here measurements first go through the
position calculation (Figure 1) and the result is combined with the inertial sensor data in an error
state Kalman filter. This model works only if more than three range measurements are available on
a two-dimensional plane. This is why we propose the use of a tightly-coupled approach instead.

3. Measurement Model of WSN

In this section, we discuss a TOA-based measured distance error model of WSN to be taken into
account the statistics of the measurement. In addition, according to the error model, an error corrected
algorithm for the systematic error of measured distance is applied based on the least squares regression
(LSR). Finally, we design some experiments to evaluate the performance for the measured distance
model and its error-corrected algorithm.

3.1. Measured Distance Model of WSN

In a three-dimensional field, N anchor nodes with known locations are deployed around the
to-be-located node, which is called a mobile node. In a localization process, the position and measured
distance can be obtained, where d̃ij represents the measured distance between i-th anchor node and
j-th mobile node, and can be derived by the TOA method. The position of the i-th anchor node is
denoted as (xi, yi, zi). Let dij be the true distance, then the relationship between d̃ij and dij is

d̃ij = f dij + εij + cij + ∆ij, (13)

where f is the scale factor from real value to measured distance; εij is the potential NLOS error. If the
propagation complies with line-of-sight (LOS) propagation, εij is zero; cij is the system bias of WSN,
which is always a constant value; and ∆ij ∼ N(0, σ2

ij) is the additive white Gaussian noise with
variance σij.

3.2. Model Updating for Measured Distance Error

According to the TOA-based measured distance model of WSN, the potential NLOS error can
be removed for the LOS propagation condition. Meanwhile the additive white Gaussian noise ∆ij
can be decreased by a Kalman filter. Hence the system bias cij and the scale factor f have not been
compensated for based on any filter algorithm. However, both the system bias cij and the scale factor
f are not changed with measuring times and location scene; they will be influenced by the wireless
sensors. According to the above characteristics, the LSR algorithm can be used to correct the system
bias cij and the scale factor f with a large number of measurements.

From Equation (13), we can assume that

d̃i = f di + ci + ∆i for i = 1, 2, ..., N, (14)

where the collection {∆i} is a random sample from a distribution with mean zero and standard
deviation σi, and the other parameters (e.g., f , ci, and σi) are unknown.

Least squares (LS) is a general estimation method introduced by Legendre in the early 1800s [21].
In the simple linear case, the LS estimators of f and ci are obtained by means of minimizing the
following sum of squared deviations of observed from expected responses:

S ( f , c) = ∑N
i=1

(
d̃i − ( f di + ci)

)2
. (15)
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The goal is to estimate values of f and ci that minimize the error. In multivariable calculus we
learn that this requires us to find the values of (f, ci) such that

∂S
∂ f

= 0,
∂S
∂ci

= 0. (16)

Then the unknown parameters can be obtained by the LSR estimators.

3.3. Performance Analysis

In order to evaluate the measured distance error model, the measured characteristic of chips for
detection wireless signal is configured to eliminate the measurement deviations. The accurate distance
values between the mobile and anchor nodes are calculated for the implementation of TOA solution
methods. Note that one of the anchor nodes is attached to a support structure fixedly and the mobile
node moves every 0.6 m; we can read the direct distance between the anchor node and the mobile
node through data acquisition software on a computer. Moreover, the mobile node moves along
a straight line, and the maximum distance of movement is 18.6 m. The WSN experimental platform
for the measured distance is depicted in Figure 2. At every measurement point, we always perform
20 measurements and take an average value.
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The measured distance values between the anchor node and mobile node are plotted in Figure 3.
The measured values of every sampling point are represented by a series of blue dots, then the average
in every measurement point is expressed by a green line. From Figure 3, we observe that all measured
distance values are situated around the corresponding real values, which are expressed as a red line.
Note that in this case, the average error of measured distance is 0.66 m, compared with the actual
values. The polynomial fitting method with quartic polynomial spline curve is applied to smooth
the measured distance value, and the fitted result is expressed as a black line. The curve fitted by
the quartic polynomial spline shows increasing systematic error as the measured distance increases,
in comparison with the actual value. The average error of the fitted results is 0.60 m. As the mobile
node moves away from the anchor node, the measured distance errors show a continuous increase
due to the fact that the wireless signal can suffer from reflection, obstacles, and multipath propagation.

According to the measured distance model described in Section 3.1, the systematic error of
measured distance values can be corrected based on the least squares regression (LSR), then the
measurement error parameters (f, ci) proposed in Section 3.2 can be obtained. The measured distance
values after the LSR correction are shown as Figure 4. After the LSR correction, the measured distance
values between the anchor node and mobile node are located more closely around the real value and
the average error is decreased to 0.18 m. The curve fitted by the quartic polynomial spline nearly
covers the real distance curve. As a consequence, the systematic error of measured distance values can
be estimated by the LSR algorithm.
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4. Fuzzy Adaptive Tightly-Coupled Integrated Model

4.1. Structure of Tightly-Coupled Integration

The SINS/WSN FATCI architecture is shown in Figure 5. Firstly, the position and velocity of SINS
can be calculated through the navigation solution algorithm, which uses the specific force (denoted as
fb

I ) and angular rate (denoted as ωI). Meanwhile, the measured distances (denoted as ρW) between
the four anchor nodes and the mobile node are obtained by WSN. Moreover, the covariance of ρW
can also be calculated. Secondly, the pseudo-distances (denoted as ρI) between the SINS and four
anchor nodes are calculated based on the positions of anchor nodes and the position of a mobile target
measured by SINS. The difference (∆ρ) between the pseudo-distance (ρI) and measured distance (ρW)
is the observation value of the Kalman filter. Obviously, the differences (∆ρ) of two distances between
the mobile node and four anchor nodes are mutually independent and not relevant. Finally, the fuzzy
inference system (FIS) controls the coefficient (denoted as s) to adjust the observation covariance matrix
of the Kalman filter, according to the statistical covariance of measured distance for WSN. Hence,
the adaptive tightly-coupled integration model can be obtained through the fuzzy adaptive Kalman
filter (FAKF).
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4.2. State-Space Model

According to the WSN measured distance model between the anchor nodes and mobile node,
we assume that the discrete NLOS error transfer equation for the measured distance model is
represented as

εd (k + 1) = εd (k) +∇ε (k), (17)

where the ∇ε (k) is the Gaussian white noise.
Consequently, the state equation of tightly-coupled integrated system is obtained based on

Equations (4) and (17) and is expressed as[
x (k + 1)
εd (k + 1)

]
=︸ ︷︷ ︸

xt(k+1)

[
Fk,k+1 0

0 1

]
︸ ︷︷ ︸

Ft
k,k+1

[
x (k)
εd (k)

]
︸ ︷︷ ︸

xt(k)

+

[
Gk 0
0 1

]
︸ ︷︷ ︸

Gt
k

[
Wk
∇ε (k)

]
︸ ︷︷ ︸

Wt(k)

, (18)

where Wt (k) is the Gaussian white noise with zero mean, and its covariance matrix is Q (k). The mark
t is represented as the tightly-coupled integration.

Because of the SINS/WSN integrated positioning system, the position of the mobile node
measured by SINS is assumed to be (xI , yI , zI). Meanwhile, the position of i-th anchor node is set to
(xi, yi, zi). Mathematically, the pseudo-distance (denoted as ρIi) betwee then i-th anchor node and the
mobile node is expressed as

ρIi = ((xI − xi)
2 + (yI − yi)

2 + (zI − zi)
2)

1/2
. (19)

Then, Equation (19) is used for the first-order Taylor expansion at the point (xI , yI , zI) [22]. Namely,

ρIi ≈ ρ̃Ii = ((xI − xi)
2 + (yI − yi)

2 + (zI − zi)
2)

1/2
+

∂ρIi
∂x

δx +
∂ρIi
∂y

δy +
∂ρIi
∂z

δz, (20)

where ρ̃Ii is the approximate value of ρ̃Ii. Because δx, δy, and δz are very small and close to zero,
we can conclude that ρ̃Ii is equal to ρIi. According to the measured distance model of WSN described
in Equation (13), the distance between i-th anchor node and mobile node measured by WSN is

ρWi = di + εd + υd, (21)

where di is the real distance from mobile node to i-th anchor node; εd is the NLOS error; υd is the
measured noise; and υd = ci + ∆i. Hence, let us define the ∆ρi as

∆ρi = ρIi − ρWi =
∂ρIi
∂x

δx +
∂ρIi
∂y

δy +
∂ρIi
∂z

δz− εd − υd, (22)
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where
∂ρIi
∂x

=
x− xi

ρIi
,

∂ρIi
∂y

=
y− yi

ρIi
,

∂ρIi
∂z

=
z− zi

ρIi
. (23)

The measurement equation of tightly-coupled integrated positioning system can be expressed as

zt (k) = Ht
kxt (k) + Vt (k), (24)

where zt (k) =
[

∆ρ1 ∆ρ2 . . . ∆ρn

]T
,

Vt (k) =
[

υd1 υd2 . . . υdn

]T
,

Ht
k =

 ∂ρI1/∂x ∂ρI1/∂y ∂ρI1/∂z
...

...
...

∂ρIn/∂x ∂ρIn/∂y ∂ρIn/∂z

0n×6

−1
...
−1

.

4.3. FAKF Algorithm

Note that a state-space equation is combined with a system-state model and a measurement
model; the equations of the system model are constructed as follows:{

x (k + 1) = Fk,k+1x (k) + GkW (k)
z (k) = Hkx (k) + V (k)

(25)

Here, it is obvious that the state-space equation is a linear system. The KF is one of the most
common filtering methods for linear systems; equations of KF constitute two groups: time update
equations and measurement update equations [23]. The time update equations are summarized
as follows:

x̂k|k−1 = Fk,k−1x̂k−1|k−1 (26)

Pk|k−1 = Fk,k−1Pk−1|k−1FT
k,k−1 + GkQk−1GT

k , (27)

where Qk−1 is a covariance matrix of process noise and Pk|k−1 is an a posteriori error covariance
matrix (a measure of the estimated accuracy of the state estimate).

The measurement update equations are written as

x̂k|k = x̂k|k−1 + Kk

[
zk −Hkx̂k|k−1

]
(28)

Pk|k = [I−KkHk]Pk|k−1 (29)

Kk = Pk|k−1HT
k

[
HkPk|k−1HT

k + Rk

]
, (30)

where Kk is an optimal Kalman gain and Rk is a covariance of the observation noise V , which is
assumed to be zero mean Gaussian white noise.

According to the well-known Kalman filter algorithm, we can observe that the measurement
covariance error matrix Rk is able to decide the confidence level of measurement in the process of
estimation. For the SINS/WSN tightly-coupled integrated system, the covariance of measured distance
errors between the anchor nodes and the mobile node can influence positioning accuracy by means
of the confidence level of measured distance. The standard deviation of WSN measured distance
value is shown in Figure 6. The standard deviation of measured distance value is calculated based
on measurements, which are performed 20 times at every measurement point, and represented as
a red line. The measured process is the same as that described in Section 3.3. The polynomial fitting
method with a five-degree polynomial spline curve is applied to smooth the standard deviation value,
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and the fitted result is expressed as a green line. The curve fitted by the five-degree polynomial spline
experiences a continuous change as the measured distance increases. As a consequence, the changed
continuous standard deviation is configured to take advantage of the different confidence levels for
different measured distance values.
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Figure 6. Standard deviation of measured distance for WSN.

In order to improve the positioning accuracy for the SINS/WSN tightly-coupled integrated
system, the fuzzy adaptive kalman filter (FAKF) method is built with a fuzzy inference system
(FIS) based on the statistics covariance of WSN measured distance. The FIS is used to control the
measurement covariance error matrix Rk to change the confidence level for the measured distance.
If one of the measured distances performs a lower covariance, the corresponding parameter of Rk
will become smaller to get a higher confidence level for this measurement. FIS is employed to adjust
the measurement covariance error matrix Rk. The input of FIS is the fitted standard deviation of the
measured distance value (denoted as σW,k). The FIS is a single-input and single-output (SISO) structure
and the output of FIS is coefficient Sk. The fuzzy rules of coefficient Sk can be defined as:

If σW,k is EQ, then Sk is EQ;
If σW,k is MO, then Sk is MO;
If σW,k is LE, then Sk is LE.

In Figure 7a,b, the membership functions of σW,k and Sk are the triangles. We choose the gravity
method to calculate the ambiguity resolution, which means that the output value is the gravitational
center of the area that is enclosed by membership function curve. Finally the control rule of FIS can be
calculated through fuzzification, fuzzy inference, and defuzzification. Then the control rule of FIS can
be shown as in Figure 8. Obtained from the FIS operation each time, Sk is put into Equation (31) to
adjust Rk adaptively:

Rk+1 = Sb
k+1Rk, (31)

where coefficient b is used to control the degree of amplification. Note that the change rate of
observation noise matrix is transformed by the value b which is set up artificially. According to the
FAKF filter method of the WSN/SINS tightly-coupled integrated positioning system, we summarize
the developed filtering algorithm in Algorithm 1.
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Algorithm 1. Summary of the SINS/WSN FATCI algorithm.

1: Initialize state vector x̂0 and covariance matrix P0
2: for k = 1, 2, 3, . . . do
3: Obtain ẑ and σ̂ from WSN measurement
4: if ẑ 6= zk−1 then
5: Evaluate ẑ and get the number of measurement
6: zk = ẑ, σW,k = σ̂
7: Calculate Sk from FIS based on the σ̂
8: Update the measurement covariance error matrix

Rk+1 = Sb
k+1Rk

9: Compute Kalman gain matrix
Kk = Pk|k−1HT

k

[
HkPk|k−1HT

k + Rk

]
10: Update measurement equations using (28) and (29)
11: Predict state equations using (26) and (27)
12: end if
13: end for
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5. Experiments

In this section, the performance of proposed tightly-coupled integrated positioning system
was evaluated. Firstly, the experimental platform for the SINS/WSN integrated positioning system
was built using MEMS-based IMU and WSN with chirp spread spectrum (CSS) technology.
The MEMS-based IMU have the advantages of small size, data stabilization, and low cost compared
with other IMUs for mobile target localization in the enclosed environment. CSS signal of WSN can be
used for the localization in indoor facilities and coal mine with some advantages, such as high temporal
resolution, anti-multipath capability, high data rate, low power, and so on. Furthermore, some tests for
the SINS/WSN experimental platform can be implemented based on the loosely-coupled integration
and tightly-coupled integration, as well as the FATCI models.

5.1. Experimental Setup

In order to implement the experiments, an electric vehicle has been used as the mobile target.
The initial parameters of the positioning system were given as:

(1) The WSN consisted of four anchor nodes and a mobile node. The mobile node was placed on
the mobile vehicle and the anchor nodes were deployed along the corridor. A long and narrow
location area held four anchor nodes. Time synchronization for TOA approach among the anchor
nodes can be accomplished through the Ethernet cable connection. The power was supplied for
the anchor nodes through the twisted pair and the mobile node was operated from batteries.
The sampling period of WSN was 0.1 s.

(2) The chosen SINS is a six-degrees-of-freedom (6DoF) Inertial Measurement Unit providing accurate
monitoring of angular rate and linear acceleration in any orientation. The IMU incorporates
advanced MEMS rate gyro technology resulting in exceptional reliability and performance,
with in-run bias stability of <3◦/h. Typical applications include platform stabilization, dynamic
testing, and avionics. The acceleration resolution is less than 1/2000 of the absolute value of the
gravitational acceleration. The RS232 serial communication was used only for data transmission
between IMU and computer. The baud rate was 115,200 bit/s, and the sampling period was 0.01 s.
The power was supplied for the SINS through a storage battery in the electric vehicle.

(3) The IMU was installed on the mobile vehicle and the inertial data was transported with two Bluetooth
models. One Bluetooth model was connected to the IMU with RS232 ribbon cable, the other
was connected to the computer by a wired USB–serial connection (Bluetooth 1.1 and USB 2.0).
The maximum received distance between two Bluetooth models is up to 60 m in ideal conditions
(free space). The wireless signal was broadcasted by the mobile node in real time and received by
the anchor nodes. The distance values between the mobile node and anchor nodes were firstly
collected by anchor nodes and then forwarded to the switch, which was connected to a computer
via an Ethernet cable. Additionally, the inertial data of IMU and the distance value of WSN were
used to calculate the fusion center, which was a computer. As a consequence, the position and
attitude of the mobile vehicle were obtained by means of the integration algorithm. Figure 9
shows an experimental diagram of an integrated positioning system with SINS/WSN.

The starting point of a mobile vehicle was set as (0, 0) m. The trajectory of the mobile vehicle is
shown as the red line in Figure 9. The experiment lasted 60 s.
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5.2. LSR Correction Model for WSN Measured Distance

Note that the distance measurement accuracy of WSN was able to influence the positioning
accuracy for the SINS/WSN integrated system. According to the error correction model for measured
distance that is proposed in Section 3.2, the LSR correction model for WSN can be used to evaluate
positioning performance based on the WSN-only experimental platform.

Anchor nodes received the wireless signal from the mobile node that was installed on the mobile
vehicle. The TOA-based measured distance value can be calculated by a programmable control unit
in the anchor node. Using the LSR correction model for the measured distance, the measurement
error of anchor nodes was corrected and the positioning results of WSN are presented in Figure 10.
Red circles represented the positioning result of uncorrected WSN, which applied to the original
measured distance readings. Meanwhile, the positioning result corrected by the LSR correction model
was represented as blue crosses. There are a large number of red circles defecting from the general
trajectory in Figure 10. Furthermore, the red circles deviated from the black line more seriously than
the blue crosses near the point (−10, −1) m. The position errors of WSN with the uncorrected model
and LSR correction model are plotted in Figure 11. From this figure, it is obvious that the position
errors with uncorrected WSN were composed of the systematic error and stochastic error, where the
systematic error changed over time. However, the position error of WSN updated by the LSR has little
systematic error. The maximum position error and its variance with uncorrected WSN were 1.26 m and
0.2618, respectively. On the contrary, the maximum position error and its variance with LSR correction
algorithm were 0.55 m and 0.0261, respectively. Note that, in this case, the positioning accuracy of
WSN with LSR correction model is much higher than that with uncorrected WSN, after we took into
account the position error and its variance. This explains why the LSR correction model can decrease
the positioning error of WSN.
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5.3. Loosely-Coupled Integration Result

Combined with the positioning result of WSN with LSR correction model, the loosely-coupled
integrated model was built based on the position and attitude of SINS. The loosely-coupled integrated
model has been described in Section 2. In order to analyze the positioning performance of the
loosely-coupled integrated model with SINS/WSN system, the fusion result of loosely-coupled
integrated model is depicted in Figure 12, combined with the positions using SINS-only and WSN-only.
The positioning result of WSN with the LSR correction model was represented as a series of blue
crosses. The result of pure SINS, expressed as a red line, already experienced drifted position error
after the mobile target started to move. The position error of SINS became seriously divergent as
time went by; however, the position result of WSN experienced stochastic error but not drifted error.
The positioning result of the loosely-coupled integration model is expressed as a green line and can
track the real trajectory effectively with small position error. The position error of the SINS/WSN
loosely-coupled integrated model is shown in Figure 13. Obviously, the positioning accuracy of the
loosely-coupled integrated positioning system was better than that of the SINS and WSN.
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5.4. FATCI Model with WSN Short-Term Failure

Note that the SINS/WSN loosely-coupled integrated positioning system has the better tracking
accuracy, compared with the single operation of SINS and WSN. However, the loosely-coupled
integrated model that observed the final position of WSN will lead to the failure of the integrated
model when the WSN cannot calculate the position of a mobile target. Because of the failure or
sheltered barrier for the anchor node, the number of anchor nodes that can receive the wireless signal
was less than four on a two-dimensional plane. In order to evaluate the positioning performance with
loosely-coupled integration and tightly-coupled integration, as well as the FATCI algorithms for WSN
short-term failure, we interrupted the measured distance value of second anchor node in the process
of motion. The failure time of the second anchor node was set from 18 s to 23 s, as well as from 40 s to
45 s. Then the final position of WSN cannot be obtained during these two time segments except for
the measured distance values from other anchor nodes. The traditional tightly-coupled positioning
model cannot adjust the measurement covariance error matrix based on the measuring accuracy of
every anchor node.
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The positioning performance of the SINS/WSN integrated system with different integrated
methods including loosely-coupled, tightly-coupled, and FATCI is shown in Figure 14. From this
figure, we can see that the positioning result with the loosely-coupled method has expressed the large
divergence at the failure time of WSN, shown as a green line. Nevertheless, that of the loosely-coupled
method can track the real trajectory besides the failure time. The positioning results of tightly-coupled
and FATCI methods can follow the real trajectory effectively without the drifted error. The position
errors of SINS/WSN integrated system with different integrated methods are shown in Figure 15.
The maximum position error with loosely-coupled integration model was situated at 1.49 m, because of
the drifted position error. The maximum position errors with tightly-coupled integration and FATCI
model were 0.25 m and 0.15 m, respectively. Due to the fact that the FATIC model applied both
FIS and statistic covariance of measured distance value to adjust the measurement covariance error
matrix Rk of the Kalman filter, the influence from different noises of measured distance would be
weakened and the confidence level for every measurement would be changed based on the measured
accuracy. The FATCI method reduces the position error by about 40% compared with the traditional
tightly-coupled integration method.
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5.5. FATCI Model with WSN Normal Condition

With the aim of analyzing the positioning performance of the FATCI model more effectively,
we have operated the SINS/WSN experimental platform with WSN normal condition. In order to
illustrate the experimental performance of integrated positioning system more effectively, the duration
time of the experiment has been increased to 127 s. The mobile target moved along with the pre-set
trajectory for two loops. In the course of the experiment, the influence of WSN from reflection and
the multipath of the wireless signal were considered adequate. Meanwhile, every anchor node can
receive the wireless signal broadcasted by the mobile node in the whole process of motion. So the
loosely-coupled integration model can be achieved all the time. The performance of SINS/WSN
integrated positioning system with loosely-coupled, tightly-coupled, and FATCI models is shown
in Figure 16. The positioning results with loosely-coupled, tightly-coupled, and FATCI models are
represented by a green dashed line, a red line, and a broken blue line, respectively. It is obvious that
all the positioning results with different integration methods can track the real trajectory, which is
represented by a black line. Note that the positioning trajectory of loosely-coupled and tightly-coupled
methods produced larger position error at some corners away from the real trajectory.
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Figure 16. Positioning performance with different integrated methods based on WSN normal conditions.

The position errors for the SINS/WSN integrated system were calculated with different methods
and plotted in Figure 17. From this figure, the positioning system based on the FATCI model can track
the real trajectory with smaller position error. On the contrary, the loosely-coupled and tightly-coupled
models have produced some serious errors in the process of motion. We can observe that the position
error with the FATCI model was less than that with loosely-coupled and tightly-coupled models
because the FATCI model can adjust the measurement covariance error matrix Rk of the Kalman filter
based on the accuracy of distance measured in WSN. The results for input σW,k and output Sk of the
FIS are shown in Figure 18. The parameter Sk of every anchor node changed along with the covariance
σW,k of measured distances, according to the control algorithm of FIS. Meanwhile, the change rules for
the parameter Sk of every anchor node were not the same but depended on the measured distance from
the mobile node to every anchor node. The measurement covariance error matrix Rk of the Kalman
filter and a confidence level of measurements can be adjusted adaptively. As a result, the positioning
accuracy of the FATCI model increased.

The maximum position errors with the loosely-coupled, tightly-coupled, and FATCI models were
0.3748 m, 0.2344 m, and 0.1488 m, respectively. Note that, in this case, the accuracy of the positioning
system with the FATCI model obviously surpassed that with loosely-coupled and tightly-coupled
integration models, with 60.3% and 36.5% improvements, respectively. Table 1 shows a performance
comparison for different integration models based on the SINS/WSN integrated positioning system.
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Figure 17. Position error with different integrated methods based on WSN normal conditions.
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Figure 18. Input and output result of FIS, (a) first anchor node; (b) second anchor node; (c) third anchor
node; (d) fourth anchor node.

Table 1. Performance comparison for different integration models.

Item Loosely-Coupled Tightly-Coupled FATCI

Position error range (m) x −0.2324~0.2499 −0.1224~0.1870 −0.0986~0.1756
y −0.1816~0.3396 −0.0980~0.0873 −0.0641~0.0384

Variance
x 0.0077 0.0049 0.0017
y 0.0052 0.0011 0.0002

Maximum (m) 0.3748 0.2344 0.1488

Average (m) 0.0956 0.0682 0.0384

6. Conclusions

This paper has proposed a FATCI positioning system using SINS/WSN, aimed at rectifying the
low stability of a loosely-coupled model and the low accuracy of the traditional tightly-coupled model.
The main contribution of the paper is summarized as follows: Firstly, the measured distance correction
model of LSR was built based on a series of WSN tests for range measurement. The systematic
error of measured distance has been corrected and the positioning accuracy of pure WSN increased.
Secondly, the tightly-coupled integration model of SINS/WSN was established with the corrected
measured distance between every anchor node and the mobile node. Then the stability of the integrated
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positioning system was enhanced for the WSN short-term failure. Finally, the FIS was utilized to adjust
the confidence level of the Kalman filter for WSN range measurement. As a consequence, the FATCI
model for SINS/WSN was finished.

We have evaluated the performance of the proposed FATCI model using a mobile target in
an indoor environment. The experimental results have shown that the loosely-coupled integrated
positioning system can track the real trajectory and overcome the disadvantages of SINS-only and
WSN-only. However, the loosely-coupled integration model produced drifted error for WSN short-term
failure compared with the traditional tightly-coupled and proposed FATCI models. For the normal
WSN, the maximum position errors with the loosely-coupled, traditional tightly-coupled, and FATCI
models were 0.3748 m, 0.2344 m, and 0.1488 m, respectively. The accuracy of the positioning system
with the FATCI model obviously surpasses that of the loosely-coupled and traditional tightly-coupled
integration models, with 60.3% and 36.5% improvements, respectively.
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