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1  | INTRODUC TION

Non‐invasive prenatal testing (NIPT) with next‐generation sequenc‐
ing (NGS) on cell‐free foetal DNA (cffDNA) in maternal plasma has 
been widely used for foetal aneuploidy screening because it can re‐
duce unnecessary invasive procedures that may result in miscarriage 
or intrauterine infection.1 Traditional prenatal diagnosis strategies 
have been altered since NIPT is considered as a primary prenatal 
screening method due to the high accuracy.2‐4 Copy number vari‐
ation sequencing (CNV‐seq) with higher resolution has been ap‐
plied to diagnose foetal submicroscopic chromosome abnormalities 
invasively.5,6 Accordingly, non‐invasive detection of foetal CNVs 
was encouraged by the successful application of NGS on cffDNA 
in screening for aneuploidy. Li et al7 and Liu et al8 illustrated that 
NIPT exhibited higher performance in detecting large CNVs, and the 
detection power for smaller CNV sizes decreased when the same 
sequencing depth was used to detect aneuploidy. Yin et al9 and Lo et 
al 10illustrated the variation in detection power among CNVs of the 

same size, but at different sequencing depths and foetal fractions. 
Current researches suggest that the resolution of CNVs detected by 
NIPT can reach 1Mb with present technologies, and the accuracy 
in detecting CNVs > 10 Mb is sufficiently high. The latest large co‐
hort study by Liang et al11 documented that non‐invasive screening 
for CNVs can be adopted as the first‐tier prenatal approach. But the 
controversy on the utility of NIPT for detecting foetal CNVs is still 
remained,12 and more evidences are needed to explore the clinical 
feasibility. In our study, we evaluated the screening effectiveness 
of NIPT to detect CNVs in pregnancies with abnormal ultrasound 
findings, which are common indications for invasive genetic testing.

2  | MATERIAL S AND METHODS

2.1 | Study design

We gathered the pregnancies with ultrasound anomalies and nega‐
tive NIPT results for aneuploidy. Maternal blood samples and foetal 
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chromosomal aberrations in first trimester with high performance for CNVs, and oc‐
casional discordant cases are unavoidable.
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samples such as amniotic fluid or foetal tissues were collected. Non‐
invasive prenatal testing was performed on maternal plasma for 
detecting foetal CNVs, and diagnosing CNVs in foetal samples was 
by CNV sequencing (CNV‐seq). The resolution of CNVs was no less 
than 1 Mb, and the pathogenicities of identified CNVs were evalu‐
ated following American College of Medical Genetics and Genomics 
(ACMG) guidelines. The karyotypes of foetuses and their parents 
were obtained by G‐banding karyotyping. All participants were of‐
fered genetic counselling and gave informed consent. This study was 
approved by the institutional review board of Shengjing Hospital.

2.2 | Detecting foetal CNVs in maternal plasma with 
next‐generation sequencing (NGS)

Five mL of maternal peripheral blood was collected in an EDTA‐
containing Vacutainer tube (Becton Dickenson) and centrifuged at 
1600 g for 10 minutes at 4°C The plasma and white blood cells 
were transferred to microcentrifuge tubes separately, and the 
plasma was centrifuged again at 16 000 g for 10 minutes, then 
stored	 at	 −20°C.	 Plasma	 circulating	 cell‐free	 DNA	 (cfDNA)	 was	
extracted using the Circulating Nucleic Acid kit (Berry Genomics) 
from 700 μL of stored plasma. The concentration of cfDNA 
was quantitated using the Invitrogen Qubit 2.0 (ThermoFisher 
Scientific), with standards of 0.05‐0.7 ng/μL. Next, the cfDNA li‐
brary was constructed using a non‐invasive prenatal test library 
prep kit (Berry Genomics), in which every sample was indexed by 
6 bp indexing oligoes. Then, the cfDNA library was purified using 
the Purification DNA libraries for NGS kit from Berry Genomics. 
DNA libraries were quantitated using the Kapa SYBR fast qPCR 
kit (Kapa Biosystems), and the standard of DNA library concentra‐
tions was greater than 20 pmol/L. The quantitated DNA libraries 

were pooled and loaded into Illumina Nextseq CN500 flow cells 
(Illumina), then were sequenced using the single‐ended 36 bp se‐
quencing protocol. No <10 million unique reads were analysed by 
the software provided by Berry Genomics. The minimum standard 
of foetal fraction was 4%.

2.3 | CNV sequencing in foetal gDNA

Genomic DNA (gDNA) was extracted from amniotic fluid or foetal 
tissues using the Genomic DNA extraction kit (QIAGEN); then the 
gDNA was purified using the Purification DNA kit (Zymo Research). 
The concentration of gDNA was quantitated using the Invitrogen 
Qubit 2.0 (ThermoFisher Scientific), with the standard of greater 
than 8 ng/μL. The library was constructed and purified, using the 
same methods which were performed in maternal plasma. Then 
DNA libraries were quantitated using the Kapa SYBR fast qPCR kit 
from Kapa Biosystems, with the standard of greater than 25 nmol/L. 
The quantitated DNA libraries were pooled and loaded into Illumina 
Nextseq CN500 flow cells, then were sequenced using the single‐
ended 36 bp sequencing protocol. No less than 2.5 million unique 
reads were analysed by the software provided by Berry Genomics.

2.4 | Karyotyping

Amniotic fluid cells were cultured if amniocentesis was performed 
at 19‐24 gestational weeks. G‐banding karyotyping was performed 
on cultured amniotic fluid cells and peripheral blood obtained from 
the pregnant women and their partners. Six metaphase cells were 
analysed, and 20 metaphase cells were counted at a resolution of 
350‐500 bands by two examiners who were double‐blinded. The 
karyotyping results were identified and described upon agreement 

F I G U R E  1   The comparative chromosome plots from NIPT (left) and CNV‐seq (right). A, In false positive case SJ023, NIPT detected 
a 32.5 Mb duplication at chr13 q12.11‐q14.3, which was not confirmed by CNV‐seq. B, In false negative case SJ015, CNV‐seq detected 
a 27.66 Mb duplication at chr4 q26‐q31.21, which was missed by NIPT. C, In false negative case SJ028, CNV‐seq detected a 12.29 Mb 
deletion at chr10 p15.3‐p13, which was missed by NIPT
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of the two examiners, with reference to the International System for 
Human Cytogenetic Nomenclature 2016.

3  | RESULTS

In	161	samples	of	maternal	plasma,	NIPT	detected	11	CNVs	≥	1	Mb	
in 9 samples, including two CNVs in each one of two separate sam‐
ples. CNV‐seq was performed on 137 samples of amniotic fluid and 
24	samples	of	foetal	tissues,	then	12	CNVs	≥	1	Mb	in	10	samples,	
including two CNVs in each one of two separate samples were de‐
tected. Foetal karyotypes were obtained in 78 cases, and 7 cases 
were diagnosed as abnormal.

By comparing the CNVs results in Table 1, a false positive case 
(SJ023) and two false negative cases (SJ015 and SJ028) were con‐
firmed (Figure 1). Of the 10 true positive CNVs, the locations were 
coincident, but the sizes were slightly different. When the CNV‐seq 
results were compared with corresponding karyotypes, 2 CNVs 
(SJ047 and SJ022) did not appear to be direct duplication or deletion 
at telomeres in the karyotypes. A 3.4 Mb deletion should not have 
been detected by karyotyping in case SJ103. Through the available 
parental karyotypes, we were able to trace five CNVs from deriva‐
tive chromosomes in 3 cases, and 5 de novo CNVs. As described in 
Table 2, the performance of NIPT for detecting CNVs was calculated 
depending on the standards of CNV‐seq results, achieving the sen‐
sitivity of 83.33%, the specificity of 99.34% and the PPV (positive 
predictive rate) of 90.91%. The sensitivity and specificity for CNVs 
between	1	Mb	and	5	Mb	were	higher	than	those	for	CNVs	≥	5	Mb.	
As shown in Table 1, among the 12 CNVs detected by CNV‐seq, 11 
CNVs were pathogenic, and known CNVs syndromes were involved 
in 3 cases.

4  | DISCUSSION

Cell‐free foetal DNA (cffDNA) can definitely lead to occasional 
discordant NIPT results as the detection target of NIPT. Increasing 
evidences have shown that cffDNA in maternal plasma is derived 
predominantly from placental trophoblastic cells,13 so NIPT reflects 
the genetic information of the placenta, not foetus.14‐16 Confined 
placental mosaicism (CPM) indicates that chromosome aberrations 
only exist in placenta and not in foetus, which is widely accepted 
as a cause of false positive NIPT results.17 Confined placental mo‐
saicism is also reportedly relevant to intrauterine growth restriction 

(IUGR) and an increased risk of perinatal morbidity and mortality.18 
Coincidentally, the later ultrasound findings in case SJ023 showed 
IUGR, which added evidence to our speculation. Maternal back‐
ground is believed as another contributing factor to affect NIPT 
performance. In this case, maternal interference was excluded by 
maternal DNA sequencing. Placental mosaicism may have led to the 
false negative result in case SJ015, which meant that the chromo‐
somal constitutions of the foetus and placenta were both abnormal. 
The degree of mosaicism could vary greatly in different regions of 
placental tissue. If more cffDNA from the lower level mosaic region 
was released into the maternal plasma, the NIPT result would be 
negative.19 As a biological factor, the mosaicism either in foetus or in 
placenta, is a limitation of NIPT accuracy that cannot be overcome.11 
CPM and placental mosaicism were usually used to explain the dis‐
cordant result of detecting aneuploidy in previous studies, our theo‐
retical speculation was hard to be confirmed due to the unavailable 
placental tissue. Further research will focus on finding the difference 
in the chromosomal constitutions of the foetus, placenta and the dif‐
ferent placental tissue regions.

Low foetal fraction is a common reason for false negative NIPT 
results.20 However, it cannot explain the false negative result in case 
SJ028, where the foetal fraction of 17.77% was higher than the de‐
tection threshold of 4%. We speculated that the false negative result 
may have been associated with the position of the CNVs. In mater‐
nal plasma, the sizes, GC contents and measurement coefficient of 
variances (CVs) of the cffDNA fragments from various chromosome 
locations may vary largely, due to the different degradation rates 
among individuals.21,22 Therefore, the NIPT sequencing data analy‐
sis would be affected correspondingly, especially for CNVs near the 
telomeres and centromeres.8 With current techniques, NIPT cannot 
exhibit high performance in detecting genome‐wide CNVs, but in a 
selected few chromosome aberrations, such as 22q11.2 microdele‐
tion.11 In our study, NIPT showed higher performance in detecting 
smaller sizes CNVs than previous studies,7,8 demonstrating the im‐
proved technology of NIPT was independent with CNVs size.

It was recommended that pregnancies with foetal structural 
anomalies should undergo invasive procedures for diagnosing 
CNVs, rather than non‐invasive screening. However, our study 
showed that the residue risk of chromosome abnormalities was 
still remained in the pregnancies with isolated softmarkers, and 
even a few foetuses with pathogenic CNVs may have normal 
ultrasound findings.23 Copy number variations were also diag‐
nosed in the foetuses with parental derivative chromosomes in 
our study, which may be misdiagnosed by negative NIPT results 

TA B L E  2   The performance of NIPT for CNVs detection

CNVs size TP FP FPR% PPV% Sensitivity% TN FN FNR% NPV% Specificity%

1	Mb		≤	CNVs	<5	Mb 3 0 0 100 100 158 0 0 100 100

CNVs	≥	5	Mb 7 1 0.65 87.5 77.78 152 2 22.22 98.70 99.35

CNVs	≥	1	Mb 10 1 0.66 90.91 83.33 150 2 16.67 98.68 99.34

Abbreviations: CNVs, copy number variations; FN, false negative; FNR, false negative rate; FP, false positive; FPR, false positive rate; NPV, negative 
predictive rate; PPV, positive predictive rate; TN, true negative; TP, true positive.
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for aneuploidy, if the family history was unknown in advance. In 
addition, unlike Down's syndrome, the risk of pathogenic CNVs 
is not closely related to maternal age, and even younger women 
are liable to suffer from microdeletion in foetus.24 If the detection 
range is expanded from aneuploidy to CNVs in first trimester, the 
detection rate of chromosome abnormalities will be higher, and 
the benefit population will be wider, especially for the pregnancies 
without indications for invasive procedures. Basing on the above 
demonstrations, we think that NIPT could be performed on the 
pregnant women with foetal ultrasound abnormalities for CNVs 
detection, and it could be expanded to the pregnant women with 
other high‐risk factors. Moreover, NIPT for CNVs detection in a 
general risk group will need further evaluation in future studies, 
with the improvements of NIPT technology and the accumulation 
of relevant data about the pathogenicities of CNVs.

NIPT can be a better method of screening for chromosomal ab‐
errations in first trimester. When cffDNA is used as the detection 
target, the following intrinsic drawbacks cannot be solved: the dis‐
cordant caused by CPM or placental mosaicism, maternal CNVs in‐
terference, low foetal fraction, various degradation rates of cffDNA 
in maternal plasma and the uncertain accuracy of detecting twins 
or multiple pregnancies. So people have been looking for other new 
targets, and foetal nucleated red blood cells (fNRBCs) have attached 
much attention. Future efforts are made to develop new non‐inva‐
sive prenatal testing methods.
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