
Analysis of a Splice Array Experiment
Elucidates Roles of Chromatin Elongation
Factor Spt4–5 in Splicing
Yuanyuan Xiao

1[
, Yee H. Yang

2[
, Todd A. Burckin

3
, Lily Shiue

4
, Grant A. Hartzog

3
, Mark R. Segal

1*

1 Department of Epidemiology and Biostatistics, Center for Bioinformatics and Molecular Biostatistics, University of California, San Francisco, California, United States of

America, 2 Department of Medicine, Center for Bioinformatics and Molecular Biostatistics, University of California, San Francisco, California, United States of America, 3

Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California, United States of America, 4 Department of Molecular, Cell and

Developmental Biology, University of California, Santa Cruz, California, United States of America

Splicing is an important process for regulation of gene expression in eukaryotes, and it has important functional links
to other steps of gene expression. Two examples of these linkages include Ceg1, a component of the mRNA capping
enzyme, and the chromatin elongation factors Spt4–5, both of which have recently been shown to play a role in the
normal splicing of several genes in the yeast Saccharomyces cerevisiae. Using a genomic approach to characterize the
roles of Spt4–5 in splicing, we used splicing-sensitive DNA microarrays to identify specific sets of genes that are mis-
spliced in ceg1, spt4, and spt5 mutants. In the context of a complex, nested, experimental design featuring 22 dye-swap
array hybridizations, comprising both biological and technical replicates, we applied five appropriate statistical models
for assessing differential expression between wild-type and the mutants. To refine selection of differential expression
genes, we then used a robust model-synthesizing approach, Differential Expression via Distance Synthesis, to integrate
all five models. The resultant list of differentially expressed genes was then further analyzed with regard to select
attributes: we found that highly transcribed genes with long introns were most sensitive to spt mutations. QPCR
confirmation of differential expression was established for the limited number of genes evaluated. In this paper, we
showcase splicing array technology, as well as powerful, yet general, statistical methodology for assessing differential
expression, in the context of a real, complex experimental design. Our results suggest that the Spt4–Spt5 complex may
help coordinate splicing with transcription under conditions that present kinetic challenges to spliceosome assembly
or function.
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Introduction

Eukaryotic genes are fragmented into exons by intervening
sequences (introns). After a gene is transcribed into pre-
mRNA, the introns are removed from the transcript and the
exons are joined by the spliceosome. This reaction, splicing,
can also be used to create multiple transcripts from a single
gene. For example, a particular exon may be included in one
version of an mRNA, and skipped in another. This process of
alternative splicing is subject to regulation in response to
tissue, developmental, and environmental cues [1]. In
humans, most genes are subject to splicing and more than
half are likely subject to alternative splicing, which is credited
as the most important source for the extraordinary enrich-
ment in complexity of the human proteome relative to the
genome [1]. Accurate splicing is crucial for normal protein
function; aberrant transcripts due to splicing mutations are
known causes for 15% of genetic diseases [1]. Therefore,
elucidation of splicing mechanisms will not only help us
understand the operating mechanisms underneath the func-
tional complexity and diversity of higher eukaryotes, but also
aid in new therapeutic strategies for treatments in splicing-
related genetic disorders.

Although the different steps of gene expression are
typically studied in isolation, it is clear that there are
important functional links between them [2–4]. For example,
the process of capping the 59 end of pre-mRNAs is thought to

influence both transcription and splicing [5,6]. Furthermore,
the rate of transcription elongation appears to influence
splicing and alternative splice site choice [7,8]. In addition, a
number of pre-mRNA processing factors are recruited to
transcripts via interaction with RNA polymerase II [2,3].
Thus, a comprehensive description of mRNA synthesis will
require an understanding between these functional linkages
of steps in gene expression.
Traditionally, gene expression is studied on an individual

gene basis by ad hoc experiments. With the advent of
eukaryotic genomic sequences, a global genomic view of
mRNA production is achievable, and recently, several large-
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scale gene expression profiling experiments utilizing micro-
array technology have provided an unprecedented amount of
information regarding the mechanisms underlying its regu-
lation [4,9–11]. Saccharomyces cerevisiae, a simple yeast that has
been used as a model to study eukaryotic gene expression,
presents a convincing entry point to embark on this task. The
yeast genome is completely sequenced and well annotated,
and the splicing machinery of yeast is well conserved with
that of humans. Among the more than ;5,800 genes in the
yeast genome, only about 250 of them possess introns and
only a handful have multiple introns or are alternatively
spliced [12]. However, these 250 intronic genes give rise to
27% of the transcripts synthesized by the cell, an indication
of the importance of splicing in yeast [13,14].

Clark et al. [15] designed a DNA microarray that allows the
simultaneous analysis of splicing and mRNA levels in yeast.
To discriminate between spliced and unspliced transcripts,
oligonucleotide probes on these arrays were designed to
detect the splice junctions (SJ), introns, and second exons of
intron-containing genes (Figure 1A). SJ are found only in
spliced transcripts, whereas introns exist only in unspliced
transcripts and splicing intermediates. Second exons are
present in both spliced and unspliced transcripts and are
good indicators of total transcript level. To detect these
different classes of transcripts, the arrays are competitively
hybridized with probes derived from control and experi-
mental yeast strains. For several splicing mutants, Clark et al.
compared their whole genome splicing data to traditional
molecular analyses of a small number of transcripts and
found that reliance on only one or two genes as reporters may
lead to misinterpretation of the role of a factor in splicing
[15]. Thus, the whole genome approach provides a more
reliable method for assessing the role of particular factors in
splicing.

Burckin et al. [4] recently used splicing-sensitive DNA
microarrays to analyze 80 different yeast strains carrying
mutations in genes encoding components of the gene
expression machinery. Using clustering and machine learning
techniques, they compared gene expression patterns in these
mutants and discovered functional roles for specific factors at

multiple steps in the gene expression pathway, further
confirming the coordination and coupling of the machineries
along the pathway.
Previously, Hartzog et al. [16] found evidence that the

chromatin elongation factors Spt4 and Spt5 play a role in
RNA processing in S. cerevisiae. Spt4 and Spt5 form a complex
that regulates transcription elongation by RNA polymerase II.
This complex is conserved across eukaryotes and has been
proposed to both facilitate transcription by removing a
nucleosomal barrier to transcript elongation and also
suppress inappropriate transcription by reassembling nucle-
osomes behind transcribing polymerase [16]. The recent
finding that Spt5 interacts physically and genetically with pre-
mRNA capping factors suggests a role for Spt4–Spt5 in
capping [17–20]. Because pre-mRNA capping is thought to
increase the efficiency of splicing, Lindstrom et al. further
analyzed splicing in spt4 and spt5 mutants and found that
several genes were not spliced with normal efficiency [17]. In
the splicing array study described above, Burckin et al. [4]
found extensive but not universal splicing defects in spt4 and
spt5 mutants. Interestingly, they also found that the capping
enzyme appears to play an essential role in splicing. Thus,
their genome-wide analysis of splicing provided particularly
striking examples of linkages between steps in gene expres-
sion. However, the experimental design of that study
precluded identification of specific genes dependent upon
particular factors for their splicing.
Such identification is the purpose of our present study.

While we also utilize splicing-specific DNA microarrays, we
do so in the context of an experimental design that enables
elicitation of specific intron-containing genes that are mis-
spliced in spt4, spt5, or ceg1 mutants. In addition, we examine
the aberrant splicing patterns caused by several phenotypi-
cally distinct spt5 mutations that had not been previously
examined. Our primary data analytic task is therefore the
determination of the set (possibly empty) of genes that have
altered expression as reported by the SJ and intron probes.
To do this, we assayed each mutant multiple times and then

Figure 1. Splicing Array Probe and RT-PCR Primer Design

(A) Probe design of the splicing array. There are three oligonucleotide
probes for each intron-containing gene: intron (red), splice-junction
(blue), and exon (green). In addition, there are also about 800 probes for
intronless genes (yellow). This figure is modified from Clark et al. [15].
(B) Primer design of RT-PCR. Primers are chosen to flank the intron–
exon2 junction and the second exon or spliced mRNA.
DOI: 10.1371/journal.pcbi.0010039.g001
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Synopsis

Splicing is a key process for the regulation of gene expression in
eukaryotes and is credited as being the main reason for the
extraordinary complexity of the human proteome relative to the
human genome. Accurate splicing is crucial for normal protein
function; aberrant transcripts due to splicing mutations are known
causes for 15% of genetic diseases. Therefore, elucidation of splicing
mechanisms will not only help in understanding the complexity and
diversity of higher organisms, but also potentially aid in new
therapeutic strategies for treatments of splicing-related genetic
disorders. It has been previously shown that splicing has important
links to other steps involved with gene expression. In this study, the
authors pursue a genome-wide approach, using yeast-based,
splicing-sensitive, DNA microarrays in order to further characterize
the roles of select splicing factors. They devise novel statistical and
computational methods that enable identification of specific sets of
genes that are mis-spliced in the chosen splicing factors. Follow-up
investigation of known attributes of the genes so elicited indicates
that these factors may help coordinate splicing and transcription in
situations where additional energy is required to effect splicing.



employed a recently devised statistical framework that
robustly and efficiently identifies genes exhibiting differential
expression (DE) in the mutants.

Many methods have been advanced for this task of
identifying differentially expressed genes. Fold change has
been extensively used to yield lists of genes that have altered
expression beyond a prescribed threshold. Despite its
methodological simplicity and intuitive appeal, fold change
lacks a statistical framework (there is no accommodation of
expression variation) and is biased toward selecting genes at
low expression levels. Another class of frequently used
methods treats the task of comparing expression levels in
different biological states as a univariate testing problem,
employing various corrections for test multiplicity [21]. Kerr
et al. [22] propose using traditional analysis of variance
(ANOVA) techniques, since these readily handle known
sources of variation due to, for example, dye labeling and
sample or array replicates. By removing these effects from the
estimation of the error term, we achieve a reduction in this
term and correspondingly sharper inferences. Wolfinger et al.
[23] extend the ANOVA framework by treating some factors,
for example, dyes and arrays, as random representatives of a
large population (that is, as random effects) resulting in a
mixed model. There are several Bayesian alternatives to the
above approaches [24–27], as well as some intermediary
approaches that yield regularized t statistics [28–30].

Our study employs a complex experiment design, featuring
22 dye-swap array hybridizations comprising both biological
and technical replications (see Results). As elaborated in the
next section, we initially analyzed these data with four
ANOVA mixed models and the semiparametric hierarchical
mixture model (SHMM) of Newton et al. [31]. Instead of
arbitrating between these models and picking a single model
on which to base DE declarations, we exploit the fact that all
five models are estimating the same quantity and employ a
novel synthesizing scheme [32], Differential Expression via
Distance Synthesis (DEDS), to derive a list of differentially
expressed genes in spt mutants. This method compares
favorably with the best individual models, while enjoying
improved robustness properties [32]. Further analysis of such
genes, whose splicing is altered in spt mutants, reveals
common biochemical characteristics and attributes, which
may provide new insights into the mechanisms of RNA
processing and its connections to transcription.

Results

Experimental Design and Data Pre-Processing
In yeast, SPT4 is a non-essential gene encoding a 102-

amino-acid protein, and spt4D (null) mutants display mutant
phenotypes and genetic interactions consistent with an
elongation defect [16]. SPT5 encodes a large protein, and
spt5 mutations typically display mutant phenotypes and
genetic interactions similar to those observed for spt4
mutations, although they are often phenotypically more
severe, consistent with the fact that SPT5 is essential for life
[16]. In this work, we have analyzed an spt4 null mutation, and
three partial loss-of-function mutations in SPT5. Two of
these, spt5–4 and spt5–194, encode versions of Spt5 that are
defective for binding Spt4 (GAH, J. Yamada, and T. Egelhofer,
unpublished data). The third allele, spt5–242, causes a cold-
sensitive growth defect [33], and displays splicing and other

defects at all temperatures (GAH and TB, unpublished data;
[17]). The Spt5–242 protein still binds Spt4, even at the non-
permissive temperature (GAH, J. Yamada, and T. Egelhofer,
unpublished data). In addition, we include analysis of ceg1–
250, a temperature-sensitive mutation that causes rapid
inactivation of the capping enzyme at the non-permissive
temperature [6].
Two independent mRNA samples were prepared from each

mutant, fluorescently labeled, and then hybridized to the
splicing arrays competitively with a probe derived from wild-
type cells. Experiments were performed using a replicated
dye-swap study design (Figure 2A) [34]. Briefly, there were
four arrays (A1–A4) for each mutant versus wild-type
experiment. The first mRNA sample was hybridized to arrays
A1 and A2 (Figure 2B), and the second was hybridized to A3
and A4. In A1 and A3, the mutant mRNA sample was labeled
with Cy5 dye, and the wild-type sample was labeled with Cy3.
The dye assignment was reversed for arrays A2 and A4. In
addition to these 20 mutant arrays (four arrays 3 five
mutants), there were two separate wild-type self-hybrid-
ization experiments, in which the wild-type was labeled with
both Cy5 and Cy3. These self-hybridizations serve as technical
replicates, that is, as controls for variation in labeling and
hybridization.
To provide a global view of splicing defects in the ceg and

spt mutants, we plotted unnormalized log intensity values for
signals from the two channels, mutant against wild-type, in
Figure 3. Points that represent individual array features are
color coded so that exon, SJ, intron, and intronless gene
features can be visually differentiated. Genes lying on the
diagonal have a ratio close to 1, and their expression in the

Figure 2. Graphical Representation of Designs

(A) In this representation, vertices correspond to target mRNA samples
and edges to hybridizations between two samples. By convention, we
place the green-labeled sample at the tail and the red-labeled sample at
the head of the arrow.
(B) Nested design of the experiment. The effect A is nested in S, and S is
in turn nested in V. Note that there are two samples (S) for each mutant,
but only one sample for the wild-type.
DOI: 10.1371/journal.pcbi.0010039.g002
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mutants is therefore largely unaffected. For ceg1–250, shown
in the lower right panel, introns (light blue points) deviate
noticeably from the diagonal toward the ceg1–250 axis. This is
a clear indication of intron accumulation in the ceg1 mutant.
SJ (dark blue points) in ceg1–250, on the other hand, largely
display ratios of less than 1, indicating a decrease in SJ
formation. Taken together, an accumulation of introns and
loss of SJ in ceg1–250 is indicative of a splicing defect.
Compared with ceg1–250, the four spt mutants exhibit fewer
alterations in splicing, with spt5–194most severely affected, in
agreement with its phenotypic characteristics. A control plot
from the wild-type self-hybridization is depicted in the upper
left panel. As expected, no separation is observed in introns
and SJ, and all points conform closely to the diagonal.

Boxplots of normalized ratios of splicing-related probes
stratified by mutants are shown in Figure 4. The general

trend of the SJ probe ratios shows a shift from the horizontal
zero line in the negative direction, signaling a decreased
expression of SJ in the mutants. The ceg1–250 mutant showed
the largest decrease, and spt5–194 was the most severely
affected of the spt mutants. The boxplots of the exon probe
ratios display a similar pattern of change—the expression of
exon probes was also decreased in the mutants. This is
consistent with the idea that the majority of the exon 2 probe
signal for a transcript is derived from mRNA, which is stable
and long-lived in comparison to pre-mRNA. It is of interest to
investigate if the decrease of the SJ probe and exon probe
ratios is correlated. Figure 5 displays the scatterplots between
ratios of these probes. The upper panel shows evident
correlation between SJ and exon ratios. In contrast to the
exons and SJ, ratios of the intron probes do not show any
shift from the horizontal zero line, but spread for the mutants

Figure 3. Scatterplots of the Logarithm Intensities of Splicing-Related Probes

Points are color-coded as indicated.
DOI: 10.1371/journal.pcbi.0010039.g003

PLoS Computational Biology | www.ploscompbiol.org September 2005 | Volume 1 | Issue 4 | e390279

Analysis of a Splice Array Experiment



is nonetheless increased. Furthermore, there is no obvious
correlation between the intron and exon ratios. In both plots,
however, the spread of the cloud of points is mutant
dependent and related to the severity of splicing defects.
From Figure 4, it is clear that several of the mutants tested,
ceg1–250, spt5–194, and spt5–242, cause strong decreases in
exon and SJ signals and, more idiosyncratic, gene-specific
changes in intron signals. Do these changes reflect altered
transcription, splicing, RNA decay, or a mixture of potential
defects? To focus on alterations of splicing efficiency
independent of changes in transcription, we used the intron
accumulation (IA) and SJ indices of Clark et al. [15], which
normalize ratios of intron and SJ signals to the ratios
measured for the second exon. The SJ index is the change
of the SJ probe signal normalized by the change of overall
gene expression level as measured by the related exon probe

signal: SJ¼ log(SpliceJunctionmut/SpliceJunctionwt)/(Exonmut/Exonwt).
Similarly, the IA index is obtained as the normalized change
of the intron probe signals: IA ¼ (Intronmut/Intronwt)/(Exonmut/
Exonwt). Relating changes in the SJ and intron signals to
changes in the second exon takes into account changes in
overall expression level that may occur as a result of
alterations in other steps of gene expression.

DE Models
The experimental design of the splice mutant study

motivated the use of four different mixed ANOVA models
in addition to the SHMM (Table 1). These were separately
applied to the two splicing indices. The four ANOVA models
are distinguished by including wild-type self-hybridizations
or not and allowing gene-specific heterogeneity or not. The
experimental design (Figure 2B)—wherein array effect A is

Figure 4. Boxplots of Normalized Ratios of Splicing-Related Probes Stratified by Mutants

Splice-junction and exon probe ratios show a shift from the horizontal zero line in the negative direction, whereas intron probe ratios are centered at
zero.
DOI: 10.1371/journal.pcbi.0010039.g004
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nested in sample effect S (S/A), and sample effect S is in turn
nested in mutant effect V (V/S), argues for treating model
terms involving S and A as random effects, with the remaining
terms involving genes (G), mutants (V), and gene–mutant
interactions (GV) being fixed effects. The four models thereby
constitute nested, mixed-effect ANOVAs ; see Material and
Methods for fitting details.

To complement the ANOVA approaches described above,
we also employed the SHMM advanced by Newton et al. [31].
This methodology was selected for the following reasons: (i)
the SHMM is non-parametric where there is sufficient
information (lots of genes) and parametric where there is
limited information (observations per gene), and this syn-

thesis makes for an appropriately balanced strategy; and (ii)
as is standard, our ANOVA approaches treat gene (G), mutant
(V), and gene–mutant interactions (GV) as fixed effects. Thus,
there is no information sharing between genes. The SHMM
achieves such sharing and does so in a more principled and
flexible manner than some of the ad hoc approaches
proposed that yield regularized t-statistics [28,30,35]. The
SHMM also has limitations, the foremost of which perhaps is
the adequacy of the parametric assumptions. The extent of
such assumptions has been appreciably relaxed compared to
the preceding fully parametric treatment of Kendziorski et al.
[27]. Importantly, diagnostic tools are provided for assump-
tion checking. Additionally, the present implementation
supports only two group comparisons. Thus, there is some
potential efficiency loss for the nested design employed in the
splice study (Figure 2B). Details on the estimation method-
ology as well as extensive illustration of calibration, diag-
nostic, and performance aspects are provided in Newton et
al. [31].

Model Synthesis and Selection of Differentially Expressed
Genes
Models with heteroscedastic errors accommodate gene-

specific variances, but typically, as here, replication is very
limited and so the precision of the estimates is compromised.
Models imposing homoscedastic errors yield precise esti-
mates of the common error variance, and tests based on many
degrees of freedom (df), since they permit combination over
the large number of genes. However, the homoscedasticity
assumption is both strong and difficult to evaluate. Differ-
ences in error df for the different models are presented in
Table 2. Note that there are more than 5,000 df for error
for the homoscedastic models and only about 20 df for the
heteroscedastic models. A comparison of associated p-values
from individual measures is provided in [32].
DEDS is a novel method combining statistics or summaries

that measure the same phenomenon [32]. Rather than trying
to arbitrate between models and pick a single model on which
to base DE declarations, or informally distilling sets of genes
that are differentially expressed under two or more models,
we applied DEDS here as a robust means to refine selection of
DE genes as furnished by the above five individual models.
The simple underlying principle of DEDS is that genes that
are highly ranked (as being differentially expressed) by all five
models are more likely to be truly differentially expressed
than genes that are high only for a single model. Further
details concerning DEDS are provided in [32], while an
algorithm outline is sketched in Materials and Methods.
The task of identifying differentially expressed genes

consists of two components: (i) ranking genes in order of
evidence for DE; and (ii) declaration of a set of DE genes by
thresholding the ranked list. Here, we examine the robustness
of DEDS with respect to both components. A comparison of
ranking of DE genes by DEDS and individual measures, using
an example based on the IA indices of spt5–242, is provided in
Figure 6A. Ranks are logged so that correlations of DE genes
(low ranks) are more clearly displayed. We see a similar level
of concordance between ranks from DEDS and individual
models. The numbers of genes identified as differentially
expressed by DEDS under false discovery rates (FDR) 0.01 and
0.05 for SJ as well as IA indices are listed in Table 3. To
examine the stability of the DE findings, we assessed the

Figure 5. Scatterplots of Normalized Ratios of Splicing-Related Probes

Points are color-coded by their mutant identity. Gray horizontal and
vertical reference lines indicate zero expression ratios.
DOI: 10.1371/journal.pcbi.0010039.g005

Table 1. Summary of the Five Competing DE Models

Model Number Model Description

I Mixed ANOVA: one-sample/homoscedastic errors

II Mixed ANOVA: one-sample/heteroscedastic errors

III Mixed ANOVA: two-sample/homoscedastic errors

IV Mixed ANOVA: two-sample/heteroscedastic errors

V SHMM

DOI: 10.1371/journal.pcbi.0010039.t001

PLoS Computational Biology | www.ploscompbiol.org September 2005 | Volume 1 | Issue 4 | e390281

Analysis of a Splice Array Experiment



impact of scale choice of measures and the interrelated
choice of distance metric. We investigated all combinations of
(raw, logarithm) p-value scales * (Euclidean, city block)
distances. Representative results are shown in Figure 6B.
Genes are ordered according to their DE significance by the
raw/Euclidean combination, so that the black points are
monotone by definition. The dashed gray line marks the 0.05
q-value threshold. The corresponding numbers of declared
DE genes for these four combinations range from 145 to 163,
of which 139 are common to all four combinations. This
demonstrates that, for the splice array experiment, DEDS-
based selections of DE genes are largely insensitive to the
different scales and distance metrics examined. This con-
cordance, evident in Figure 6, pertains to the IA index and
the ceg1–250 mutant. Analogous concordance was observed
for the SJ index and the other mutants.
The observation of greater numbers of genes identified as

differentially expressed based on the IA index data than on
the SJ data (Table 3) reinforced the finding in Clark et al. [15]
that IA indices are a more sensitive indicator for splicing
defects. The splicing defect in the yeast capping enzyme
mutant ceg1–250 is catastrophic, whereas in the spt4 and spt5
mutants fewer genes exhibit a splicing defect. Overall, spt5–
194 is the most severe splicing mutant among all spt mutants,
with spt4D being the least impaired. The complete list of DE
genes is provided in Table S1.

Validation of DE Genes
The identification of genes affected by spt4 and spt5

mutations using statistically robust methodology offers in-
sight into the function of the Spt4–Spt5 complex, as well as

Table 2. Degrees of Freedom for the ANOVA Mixed Models

Source Models

One-Sample

Homoscedastic

One-Sample

Heteroscedastic

Two-Sample

Homoscedastic

Two-Sample

Heteroscedastic

Intercept 1 1 1 1

G 253 253

V 4 4 5 5

GV 1,012 1,265

V/S 5 5 5 5

V/S/A 10 11

GV/S 1,265 1,265

Residuals 2,530 10 2,783 11

Total 5,080 20 5,588 22

DOI: 10.1371/journal.pcbi.0010039.t002

Figure 6. Analysis of DE Gene Ranking and Selection by DEDS

(A) A comparison of ranking of DE genes by DEDS and individual
measures. Plotted are a scatterplot matrix of DE gene rankings by the
five models and DEDS using spt5–242 IA indices. Ranks are logged so
that correlations of DE genes (low ranks) are more clearly displayed.
(B) Sensitivity of DEDS declarations of DE to choice of scale and distance
metric. Genes, ordered according to their DE significance by the raw/
Euclidean combination (so that the black points are monotone by
definition) are plotted against DEDS q-values for all four scale/distance
combinations. The dashed gray line marks the 0.05 q-value threshold.
DOI: 10.1371/journal.pcbi.0010039.g006

Table 3. Number of DE in SJ and IA Indices

Mutant SJ IA

FDR 0.01 FDR 0.05 FDR 0.01 FDR 0.05

spt4D 2 2 14 14

spt5–242 3 3 48 69

spt5–4 1 1 52 72

spt5–194 12 12 88 113

ceg1–250 134 160 151 163

DOI: 10.1371/journal.pcbi.0010039.t003
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the opportunity to better equate changes in IA with bona fide
splicing defects. To validate our findings, we have used
quantitative RT-PCR (QPCR) analysis to quantitatively
examine five intron-containing genes, as well as two unspliced
genes, in all five mutants. We previously performed a
qualitative analysis of three of these genes, U3B, RPS25A,
and RPL26A, and found that they were inefficiently spliced in
spt4 and spt5 mutants [17]. By choosing primers that flank the
intron–exon2 junction, we can specifically detect unspliced
pre-mRNA (Figure 1B). We also picked primers to detect
either the second exon, or spliced mRNA (Figure 1B). As with
the microarrays, we can normalize changes in pre-mRNA
levels to changes in spliced mRNA or total mRNA (that is,
exon2).

As shown in Table 4, the results of the RT-PCR analysis
generally agreed with the microarray analysis. Strikingly, in
the four spt mutants, genes identified by DEDS showed an
absolute increase in pre-mRNA levels, while in the ceg1
mutant none of the pre-mRNAs showed an absolute increase
as compared to wild-type. After normalizing the pre-mRNA
signals to the spliced mRNA or second exon signals to
account for potential changes in transcription or transcript
stability, ceg1 also showed a splicing defect as predicted by
DEDS. Furthermore, the performance of DEDS was superior
to the four ANOVA models and equivalent to the SHMM in
terms of numbers of false positives and negatives over all five
mutants (Table S2).

Description and Analysis of DE Genes
There are likely multiple molecular mechanisms by which

different genes were differentially expressed in the mutants
discussed here. To account for some of these mechanisms, we
subdivided the lists of DE genes with a q � 0.05 (controlling
FDR) before further analysis. First, we reasoned that positive
and negative changes in IA likely occurred via different
molecular mechanisms. Therefore, for each of the five
mutants examined, the DE genes were divided into lists of

genes with either positive or negative fold change (here, fold
change refers to the IA index). Second, because ribosomal
protein genes represent a large fraction of all spliced genes in
yeast [36], and because they are subject to a common mode of
regulation [37], we further subdivided our lists of DE genes
into sublists of ribosomal (RP) and non-RP genes (Table 5).
Finally, we focused upon the IA index, as it is more sensitive
to alterations in splicing [15].
For the spt5 and ceg1 mutants, a large majority of the DE

genes encoded RP proteins, whereas only ;40% of all intron-
containing genes encode RP proteins (Table 5 and [36]).
Furthermore, a number of translation and rRNA processing
factors are among the non-RP genes found in our analysis,
and it is possible that these genes are regulated by the same
strategies as the RPs. Interestingly, for those DE genes with a
negative fold change—that is, those that were apparently
spliced more efficiently—we found no RP genes. This suggests

Table 4. QPCR Validation DE Microarray Data

Gene QPCR Target Fold Change

spt4D spt5–4 spt5–242 spt5–194 ceg1–250

YGR027C (RPS25A) Pre-mRNA 1.3 2.33 �0.77 2.17 �0.7

Spliced mRNA �1.07 �1.07 �2.23 �1.17 �4.17

Pre-/spliced mRNA 2.37 a 3.40 a 1.47 3. 33 a 3.47 a

YLR344W (RPL26A) Pre-mRNA �0.63 1.47 �1.07 2.57 �0.37

Spliced mRNA �0.53 �0.63 �3.37 �3.60 �4.53

Pre-/spliced mRNA �0.10 b 2.10 a 2.30 6.17 a 4.17 a

YOL127W (RPL25) Pre-mRNA �0.73 0.73 1.37 0.5 �2.47

Exon2 �0.53 �0.63 �2.1 �2 �4.93

Pre-mRNA/exon2 �0.20 b 1.37 a 3.47 a 2.50 a 2.47 a

YDR064W (RPS13) Pre-mRNA �2.13 �1.53 �0.93 �1.7 �1.43

Exon2 �0.97 �0.93 �2.3 �1.23 �3.83

Pre-mRNA/exon2 �1.17 �0.60 b 1.37 �0.47 b 2.40 a

SNR17B (U3B) Pre-mRNA �0.23 1.00 4.00 0.30 �0.23

Exon2 1.60 1.97 �0.03 1.93 0.83

Pre-mRNA/exon2 �1.83 �0.97 b 4.03 a �1.63 �1.07

Fold change corresponds to the log-ratio of pre-/spliced mRNA. Numbers in bold text highlight concordance between the QPRC and microarray (DEDS) analysis.
a Genes identified as DE using DEDS.
b Genes identified as non-DE using DEDS and whose QPCR fold changes are within the (�1, 1) thresholds.

DOI: 10.1371/journal.pcbi.0010039.t004

Table 5. Distribution of DE Genes

Mutant Gene Class Number of DE

Genes with Positive

Fold Change in IA

Number of DE

Genes with Negative

Fold Change in IA

spt4D RP 6 0

Non-RP 5 3

spt5–242 RP 44 0

Non-RP 17 5

spt5–4 RP 52 0

Non-RP 10 8

spt5–194 RP 72 0

Non-RP 13 24

ceg1–250 RP 89 0

Non-RP 52 17

Fold change corresponds to the IA index value, which is the normalized change of intron probe signals. RP,

ribosomal genes; non-RP, non-ribosomal genes.

DOI: 10.1371/journal.pcbi.0010039.t005
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that the genes with a negative or positive fold change in the
IA index have distinct dependencies upon Spt4–Spt5 and
Ceg1.

We next asked if the genes identified in this analysis shared
any particular attributes. It has previously been noted that
introns in yeast display a bimodal distribution of sizes and
positions within genes [36]. RP protein genes have large
introns that occur relatively early in a pre-mRNA, whereas
non-RP genes typically have smaller introns that occur
somewhat later in the mRNA. Furthermore, RP genes are
highly transcribed, whereas non-RP genes tend to be less
highly transcribed [14]. We therefore compared the tran-
scription rates and size and positions of introns within the DE
genes that displayed a positive fold change (Table 6). In the
ceg1 mutant, the set of DE genes had no unusual properties
other than the non-RP DE genes being transcribed somewhat
more frequently than the average non-RP gene. In the spt
mutants, intron position of the DE genes was not significantly
different from the average for RP and non-RP genes (Table 6).
In contrast, in the spt5–4 and spt5–194 mutants, the non-RP
DE genes shared attributes of RP genes: they tended to have
longer introns and be more highly expressed than the typical
non-RP gene. The non-RP DE genes in the spt4D and spt5–242
mutants represent an intermediate case; their introns are not
significantly longer than those of the typical non-RP intron-
containing genes, but they are more highly transcribed.

The DE genes with a negative fold change appear to
represent a distinct class of genes. First, they encoded only
non-RPs. Second, they resembled the typical non-RP intron-
containing genes in that they had short introns; however, they
were expressed at even lower levels than the typical non-RPs

(Table 7), contrary to the DE genes with positive fold changes.
Again, this is consistent with the idea that these genes were
differentially expressed for reasons distinct from those
leading to DE of genes with a positive fold change.

Discussion

In this paper, we showcased splicing array technology and
developed methodologies for its analysis in the context of a
real, complex experimental design. We applied four ANOVA
mixed models and a SHMM, and used DEDS [32] to derive a
list of DE genes. The DEDS algorithm synthesizes statistics or
methods that estimate the same quantity of interest. The
underlying principle behind DEDS is that genes that are
highly ranked by different methods are more likely to be truly
differentially expressed than genes that rank highly on a
single measure. In our previous work, we have evaluated
DEDS on diverse datasets, featuring both one-channel
Affymetrix oligonucleotide arrays and two-channel spotted
arrays [32]. Using a set of spike-in (Affymetrix) datasets,
where differentially expressed genes are known, we demon-
strated that DEDS compares favorably with the best individ-
ual statistics while enjoying robustness properties lacked by
the individual statistics [32].
Previous to this and other microarray studies, only four

genes had been identified and confirmed for splicing defects
in spt4 and spt5 mutants using traditional molecular
techniques [17]. Recently, Burckin et al. have used splicing-
sensitive DNA microarrays to compare patterns of splicing
defects across a diverse set of mutations affecting gene
expression [4], but this and the previous study lacked a
statistical or quantitative framework for rigorous determi-
nation of specific genes that were differentially expressed.
Here, we have used splicing-sensitive DNA microarrays
combined with DEDS to analyze all known intron-containing
genes in the yeast genome and to specifically identify those
genes whose proper splicing is dependent upon SPT4, SPT5,
or CEG1. Despite the differences in experimental goals and
designs, the findings of these two studies are nonetheless
consistent. In Burckin et al. [4], the analyses using hierarchical
clustering and support vector machines showed that the
overall impact of the loss of Ceg1 function in vivo is nearly
identical to that of bona fide splicing factors, which is in line
with the large number of DE genes we found whose splicing is
abnormal in ceg1–250 (see Table 3). Also in our previous
study, spt4D and spt5–194 mutants displayed a lesser splicing

Table 6. Properties of DE Genes with a Positive Fold Change (Average)

Mutant RP Non-RP

Intron Length Start mRNA/h Intron Length Start mRNA/h

All introns 405 (68) 48 (13) 94.52 (34.40) 156 (31) 128 (34) 8.27 (4.37)

spt4D 342 (30) 19 (13) 70.52 (12.75) 253 (42) 160 (36) 48.20 (30.24)

spt5–242 410 (67) 31 (8) 102.04 (34.40) 196 (59) 154 (53) 22.92 (11.56)

spt5–4 400 (52) 52 (13) 92.48 (33.95) 396 (79) 281 (103) 42.51 (27.05)

spt5–194 412 (64) 35 (13) 94.11 (34.69) 324 (257) 226 (60) 30.68 (17.12)

ceg1–250 408 (72) 51 (15) 96.24 (38.47) 164 (40) 134 (31) 12.02 (8.00)

Start is the nucleotide position in ORF where intron begins; mRNA/h is the number of times a gene is transcribed per hour (as determined in [44]). Numbers in parentheses are associated median absolute deviations. Numbers in bold, italic text

are significantly different from the corresponding value for all introns at the p , 0.05 level.

DOI: 10.1371/journal.pcbi.0010039.t006

Table 7. Properties of DE Genes with a Negative Fold Change
(Average)

Mutant Number of DE Genes Intron Length Start mRNA/h

spt4D 3 105 (14) 615 (415) 0.80 (0.14)

spt5–4 8 107 (4) 44 (33) 1.55 (0.82)

spt5–242 5 106 (15) 327 (22) 1.10 (0.44)

spt5–194 24 133 (27) 170 (34) 1.75 (0.88)

ceg1–250 17 161 (19) 169 (33) 4.77 (1.04)

Numbers in bold, italic text are significantly different from the corresponding value for all non-RP introns at the

p , 0.05 level. Numbers in parentheses are associated median absolute deviations.

DOI: 10.1371/journal.pcbi.0010039.t007
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defect than the ceg1–250 mutant, which is again consistent
with our current findings. Comparison of the lists of DE genes
for the five mutants examined here revealed that most of the
genes that were differentially expressed in the spt mutants
were also differentially expressed in the ceg1 mutant (Figure 7
and Table S1). The spt5–242 mutant differed from the other
spt5 mutants in that it did not preferentially affect the
splicing of non-RP genes with long introns. We do not
understand the mechanistic basis for this observation,
although it is consistent with our previous observations that
this spt5 mutation is phenotypically distinct from other spt5
alleles and therefore may cause a distinct biochemical defect
[33,38]. Our data further suggest that Spt49s contribution to
splicing is modest, as only a handful of genes were differ-
entially expressed in the spt4 mutant. This is consistent with
the observation that, in contrast to SPT5, SPT4 is not essential
for life. Furthermore, this observation suggests that the
defects caused by the spt5–4 and spt5–194 mutations extend
beyond the Spt4 binding defect we have observed for the
Spt5–4 and Spt5–194 proteins. Since there is currently no
evidence that Spt4 functions independently of Spt5 [39],
these observations suggest that Spt4 assists in, but is not
essential for, the functions of Spt4–Spt5 in splicing.

The smaller number of DE genes in the spt mutants
compared to ceg1–250 may indicate a lesser effect on splicing
rather than an effect on a distinct subset of intron-containing
genes. It is interesting to note, however, that highly tran-
scribed genes with long introns—that is, RP genes and a
subset of non-RP genes with long introns—were most
sensitive to the spt mutations. These data suggest that the
Spt4–Spt5 complex may play a particular role in coordinating
splicing with transcription under conditions that present
kinetic challenges to the spliceosome or its assembly, that is,
when splice sites are widely separated, increasing the
separation in time and space between the synthesis of the
59 and 39 splice sites, or when a gene is highly transcribed,
creating the need for rapid and repeated assembly of
spliceosomes over one site on a gene. In addition, these data
are consistent with recent evidence demonstrating an effect
of RNA polymerase II elongation rates on alternative splicing
in higher eukaryotes [40]. In contrast, the non-RP genes
spliced more efficiently in the spt mutants tend to be

transcribed less frequently than the average non-RP gene
(Table 7). Thus, as is the case for transcription, the Spt4–Spt5
complex may have both positive and negative effects on
splicing [16]. Furthermore, this is consistent with previous
observations that altered transcription elongation may lead
to increased splicing, presumably due to increased oppor-
tunities for recognition of suboptimal splice sites [7,8].
Whether the effects we have measured here are due to
altered elongation rates, or they indicate a more direct role of
Spt4–Spt5 in splicing is currently under investigation.

Materials and Methods

Sample preparation and array hybridization. All yeast strains
(Table 8) used were isogenic to S288C and Galþ [41]. Yeast were
grown overnight in rich medium (YPD) at 30 8C to early log phase
(. 1 3 107 cells/ml), spun down, and resuspended in pre-warmed
39 8C media, and allowed to grow at 39 8C for 45 min after shift to
restrictive temperature. Cells were collected by centrifugation at
room temperature for 4 min, washed once with sterile water, flash
frozen in liquid nitrogen, and stored at �80 8C. Total RNA was
isolated by a hot phenol method [42] and quantitated by UV
absorbance. Fluorescently labeled probe preparation, hybridization,
and data acquisition were performed as previously described [15]
using 15 lg of total RNA/sample. For each mutant, RNA was prepared
from two independently grown cultures. Each RNA sample was used
to probe two arrays, and was labeled with Cy3 for the first array and
Cy5 for the second.

Data normalization and pre-processing. To effectively and properly
normalize the data, we used non-linear loess normalization [43] based
on the subset of intronless genes. After normalization, for each array
the four replicates of each SJ, intron, and exon probes were
summarized using averages. This was followed by the calculation of
SJ and IA indices.

ANOVA mixed models. We applied four different ANOVA mixed
models corresponding to all combinations of wild-type versus wild-
type (in/out) by gene-specific variance heterogeneity (yes/no). DE is
examined by the two-sample t test, when including the two wild-type
versus wild-type samples, whereas a one-sample t test is applied when
excluding these two samples. Not allowing for gene-specific variance
imposes the assumption that all genes exhibit a similar degree of
variability, so they can be jointly analyzed using a common estimate
of error variance [22]. Conversely, allowing different variances for
different genes [23] mandates fitting gene by gene.

Model specifics. Model I—one-sample/homoscedastic errors: Let
Ygvsa be the splicing related index, SJ or IA, from gene g (g¼ 1, 2,. . .,
254 for SJ and 1, 2,. . ., 263 for IA), mutant v (v ¼ 1, 2,. . ., 5), sample
s (s ¼ 1,2), and array a (a ¼ 1,2; corresponding to the dye-swap pair).
The first model can be represented as

Ygvsa ¼ lþ Gg þ Vv þ ðGVÞgv þ ðV=SÞvs þ ðV=S=AÞvsa
þ ðGV=SÞgvs þ egvsa:

ð1Þ

Effects (V/S)s, (V/S/A)a, (GV/S)gvs, and egvsa are assumed to be
normally distributed normal variables with zero means and variance
components r2

V=S, r2
V=S=A, r

2
GV=S, and r2, respectively. The derivation

of the variance components is shown in Table 9. The remaining
effects in the model are fixed effects. The parameter of interest in this
model is lgv¼ lþGgþVvþGVgv, which measures the mean of the SJ/

Table 8. Yeast Strains

Strain Genotype Source

FY120 Mat a his4–912d lys2–128d leu2D 1 ura3–52 F. Winston

GHY92 Mat a his4–912d lys2–128d leu2D 1 ura3–52 spt5–242 Hartzog lab

GHY379 Mat a his4–912d lys2–128d leu2D 1 spt5–194 Hartzog lab

GHY524 Mat a his4–912d lys2–128d leu2D 1 spt4D 2::HIS3 Hartzog lab

FY1668 Mat a his4–912d lys2–128d spt5–4 F. Winston

OY163 Mat a his3 lys2–128d ura3 ceg1–250 Hartzog lab

DOI: 10.1371/journal.pcbi.0010039.t008

Figure 7. Venn Diagram of DE Genes from Different Mutants

(A) compares DE genes among the three spt5 mutants (spt5–194, spt5–4,
and spt5–242). Statistical test shows that the common 43 genes are
highly significant, with a p-value , 0.001. In (B), spt5 refers to the 43
common genes among all spt5 mutants. The overlaps between spt5 and
ceg1–250 (40, p , 0.001), spt5, and spt4 (8, p, 0.001), spt4, spt5, and
ceg1–250 (7, p, 0.001) are all significant.
DOI: 10.1371/journal.pcbi.0010039.g007
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IA indices of gene g in mutant v. The following null hypothesis
therefore defines the absence of DE in mutant v and gene g :

H0 : lgv ¼ 0: ð2Þ

The variance of the treatment mean l̂gv can be computed by the
following equation:

dVar l̂gv

� �
¼ 1

nS
r̂
2
V=S þ

1
nS

r̂
2
GV=S þ

1
nAnS

r̂
2
V=S=A þ

1
nSnA

r̂
2
; ð3Þ

where nS ¼ 2 and nA¼ 2.
Model II—one-sample/heteroscedastic errors: Model II is different

from Model I by assuming that each gene has its own error
distribution, so the model is fitted gene by gene. It can be represented
by the following equation:

Ygvsa ¼ lg þ Vv þ ðV=SÞvs þ egvsa: ð4Þ

The parameter of interest in this model is lgv ¼ lg þ Vv, which
measures the mean of the SJ/IA indices of gene g in mutant v. The
following null hypothesis defines the absence of DE in mutant v and
gene g:

H0 : lgv ¼ 0: ð5Þ

The variance of the treatment mean l̂gv can be computed by the
following equation:

dVarðl̂gvÞ ¼
1
nS

r̂
2
V=S þ

1
nSnA

r̂
2 ¼ 1

2
r̂
2
V=S þ

1
4

r̂
2
: ð6Þ

Model III—two-sample/homoscedastic errors: Model III differs
from Model I by including the indices derived from the two wild-type
self-hybridizations. Because of this inclusion, the study design is
rendered unbalanced. To be more specific, the arrays in the two wild-
type self-hybridizations came from the same sample, whereas the
samples of four slides related to a mutant were from two distinct
samples (see Figure 2B). The model can be represented by the
following equation:

Ygvsa ¼ lþ Gg þ Vv þ ðGVÞgv þ ðV=SÞvs þ ðV=S=AÞvsa
þ ðGV=SÞgvs þ egvsa:

ð7Þ

The parameter of interest in this model is lgv¼ lþGgþVvþGVgv,
which measures the mean of the SJ/IA indices of gene g in mutant v.
The following null hypothesis defines the absence of DE in mutant vm
and gene g compared to the wild-type:

H0 : Dgvm ¼ lgvm � lgvw ¼ 0: ð8Þ

The variance of the treatment mean l̂gv can be computed by the
following equation: dVarðl̂gvÞ ¼ 1

nS
r̂
2
V=S þ 1

nS
r̂
2
GV=S þ 1

nAnS
r̂
2
V=S=A þ 1

nSnA
r̂
2
;

where nS ¼ 2 for mutants and nS¼ 1 for the wild-type.
Model IV—two-sample/heteroscedastic errors: Model IV differs

from Model II by including the indices derived from the two wild-
type self-hybridizations. The model can be represented by the
following equation:

Ygvsa ¼ lg þ Vv þ ðV=SÞs þ egvsa: ð9Þ

The parameter of interest in this model is lgv ¼ lg þ Vv, which
measures the mean of the SJ/IA indices of gene g in mutant v. The
following null hypothesis defines the absence of DE in mutant vm and
gene g compared to the wild-type:

H0 : Dgvm ¼ lgvm� lgvw ¼ 0: ð10Þ

The variance of the treatment mean l̂gv can be computed by the
following equation: dVarðl̂gvÞ ¼ 1

nS
r̂
2
V=S þ 1

nSnA
r̂
2 ¼ 1

2 r̂
2
V=S þ 1

4 r̂
2
; where

nS¼ 2 for mutants and nS¼ 1 for the wild-type.
SHMM model. Implementation of the SHMM model uses the R

package EBarrays, available from ftp://ftp.biostat.wisc.edu/pub/
newton/Arrays/tr1074/Rcode/. The output posterior probabilities for
(directional) DE from the package have dual utilities: (i) ranking
(genes), and (ii) calibration (providing FDR). We utilized the former
for DEDS synthesis.

DEDS procedures. Fit the five DE models, and assume the resulting
p values for gene i and model j are pij (i¼ 1, 2, . . ., n, j¼ 1, 2, . . ., 5) in
data matrix P.

Locate the most extreme point E as a vector of zeros of length five.
Calculate distance di of all genes to E and order d(1)� d(2)� . . .� d(n).

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð pi1 � E1Þ2 þ ð pi2 � E2Þ2 þ . . .þ ð pi5 � E5Þ2

q
ð11Þ

Generate B sets of reference distribution by:
Center the columns of P at mean 0.
Compute the singular value decomposition P ¼ UDVT.
Calculate P* ¼ PV.
Create Z* by drawing uniform distribution over the range of the

columns of P*.
Back transform Z* by Z ¼ Z*VT to obtain the reference data Z.
For each reference dataset b, di values are calculated and ordered

in the way of

dðbÞð1Þ � dðbÞð2Þ � . . . � dðbÞðnÞ: ð12Þ

For a typical gene i, compute the median number of falsely called
genes by computing the median number of values among each of the
B sets of dðbÞðiÞ that are smaller than d(i); and the q-value (controlling
FDR) of gene i is computed as the median of the number of falsely
called genes divided by the number of genes called significant.
Illustration of determination of the extreme point E when using
statistics (instead of p-values), in known null and non-null situations,
is provided in Figure S1.

Analysis of DE genes. Gene annotations were obtained from the
Ares lab intron database (http://www.cse.ucsc.edu/research/compbio/
yeast_introns.html), and transcription frequency data was obtained
from the Young lab (http://web.wi.mit.edu/young/expression/
transcriptome.html).

The collection of all intron-containing genes was divided into sets
of RP and non-RP genes, and averages and standard deviations were
calculated for their transcription frequencies, intron lengths, and
intron start sites. Several genes were omitted from these analyses
because there was no good data concerning their transcription
frequency or intron position or size. In addition, Mtr2, which has
multiple, overlapping introns, was considered to have a single intron
for this analysis (see Table S1). To determine if the properties of DE
genes in a mutant were significantly different from those of all RP or
non-RP intron-containing genes, we used a non-parametric resam-
pling method. Briefly, a referent null distribution was generated by
first taking 10,000 random samples of size N from the sets of all
intron-containing RP or non-RP genes (N is the number of DE RP or
non-RP genes for a particular mutant), and then calculating the
averages of each sample. The p-value was derived as the percentage
within the referent distribution that is more extreme than the
observed property.

QPCR analysis. cDNA synthesis for QPCR was performed as
described for fluorescently labeled target synthesis, except that equal
concentrations of all four deoxyribonucleotides and no Cy dyes were
used. Reactions lacking reverse transcriptase were performed to
control for genomic DNA contamination. Amplifications were
conducted in a Bio-Rad iCycler using iQ SYBR Green Supermix
(Bio-Rad, Hercules, California, United States) and 200 lM primer
according to the manufacturer’s instructions, using the oligonucleo-
tide primers found in Table S3. Representative transcripts were
assayed in triplicate. To compare the QPCR with array values, we
normalized QPCR values to the OSH3 mRNA. OSH3 was chosen as a
suitable reference gene, since the array data indicated that its
expression was unchanged in the five mutants used in the comparison.

Supporting Information

Table S1. A Complete List of Differentially Expressed Genes for the
Five Mutants in SJ and IA Indices

Found at DOI: 10.1371/journal.pcbi.0010039.st001 (346 KB XLS).

Table 9. Derivation of Variance Components for Model I

Component Estimate Results

SJ IA

r2 MSE 0.186 0.28

r2
GV=S (MSGV/S � r̂2)/nA (nA ¼ 2) 0 0.036

r2
V=S=A MSV/S/A � r̂2)/nG (nG ¼ 254 for SJ and 263 for IA) 0.056 0.054

r2
V=S (MSV/S � r̂2 � nGr̂2

V=S=A)/nGnA 0.013 0.042

DOI: 10.1371/journal.pcbi.0010039.t009
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Table S2. Comparison of the Five Models and DEDS in Terms of
Numbers of False Positives/Negatives in the QPCR Tested Five
Genes

Found at DOI: 10.1371/journal.pcbi.0010039.st002 (23 KB DOC).

Table S3. Oligo Sequences Used in the QPCR Validation of the
Microarray Analysis

Found at DOI: 10.1371/journal.pcbi.0010039.st003 (14 KB XLS)

Figure S1. Illustration of DEDS Extreme Point Determination

Application of DEDS in (a) the Affymetrix spike-in data ([45]); (b) the
Affymetrix spike-in data with the top 100 DE genes removed to
generate a dataset with only null genes. This dataset consists of 12,626
probe sets, 14 of which are spiked in at varying concentrations, and
the rest are null. DEDS was applied synthesizing t statistics, fold
change, and SAM (Significance Analysis for Microarrays) measures.
The diagonal and upper triangle display Q-Q plots and scatterplots of
the respective measures, while the lower triangle gives corresponding
correlation coefficients. Red spots are differentially expressed by
DEDS. E of (t statistic, fold change and SAM) was found to be (171.9,
7.2, 82.34) in panel (a) and at (7.5, 0.5, 3.1) in panel (b).

Found at DOI: 10.1371/journal.pcbi.0010039.sg001 (39 KB DOC).

Accession Numbers

The Saccharomyces Genome Database (SGD; http://www.
yeastgenome.org/) accession numbers for the genes and gene
products discussed in this paper are ceg1 (S000003098), RPL26A
(S000004336), RPS25A (S000003259), SNR17B (U3B) (S000007441),
Spt4 (S000003295), Spt5 (S000004470), U3B (S000007441), YDR064W
(RPS13) (S000002471), YGR027C (RPS25A) (S000003259), YLR344W
(RPL26A) (S000004336), and YOL127W (RPL25) (S000005487).
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