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Abstract

Type 2 immunity plays an important role in host defense against helminths and toxins while 

driving allergic diseases. Despite progress in understanding the biology of type 2 immunity, 

the fundamental mechanisms regulating the type 2 immune module remain unclear. In contrast 

with structural recognition used by pattern recognition receptors, type 2 immunogens are sensed 

through their functional properties. Functional recognition theory has arisen as the paradigm 

for the initiation of type 2 immunity. However, the vast array of structurally unrelated type 2 

immunogens makes it challenging to advance our understanding of type 2 immunity. In this 

article, we review functional recognition theory and organize type 2 immunogens into distinct 

classes based on how they fit into the concept of functional recognition. Lastly, we discuss areas 

of uncertainty in functional recognition theory with the goal of providing a framework to further 

define the logic of type 2 immunity in host protection and immunopathology.

INTRODUCTION

The immune system evolved to protect hosts from pathogens and toxins, as well as promote 

tissue repair (1, 2). To combat the extensive diversity of pathogens and toxins, the adaptive 

immune system developed the capacity to generate lymphocytes with an enormous number 

of clonally diverse Ag receptors (1). Consequently, the adaptive immune system possesses 

the ability to respond to virtually any threat, regardless of the antigenic composition. Beyond 

Ag recognition, adaptive immunity provides host protection only if it couples Ag recognition 

with an effector program that successfully targets the specific pathogen or toxin. To combat 

classes of pathogens and toxins, distinct immune modules have evolved that generate unique 
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effector mechanisms (3). Each immune module possesses lymphocyte effector cells from 

both the innate and adaptive immune systems, which contribute to the response through 

production of specialized cytokines. Type 1 immunity is induced by intracellular pathogens 

and orchestrated by type 1 innate lymphoid cells (ILC1s) and CD4+ Th1 cells, as well 

as CD8+ cytotoxic T cells, which all produce the cytokine IFN-γ. Type 2 immunity is 

induced by helminths, toxins, and allergens, being orchestrated by ILC2s and CD4+ Th2 

cells, which produce the cytokines IL-4, IL-5, IL-9, and IL-13. Type 3 immunity is induced 

by extracellular pathogens and orchestrated by ILC3s and CD4+ Th17 cells, which produce 

the cytokines IL-17 and IL-22. The cytokines from each immune module provide help to 

innate immune cells, as well as structural cells and neurons, to promote a targeted host 

defense response. In addition, the differentiation of specialized CD4+ T follicular helper 

(Tfh) cells provides B cell help and promotes class-switch recombination to specific Ab 

isotypes, thereby dictating the Ab-mediated effector response (4). Notably, although one 

module is generally dominant during an immune response, most immune responses exhibit a 

spectrum of activated modules in vivo.

The innate immune system controls the induction of all adaptive immune modules with 

type 1 and type 3 immune modules using distinct receptors, but a shared structural-based 

approach of sensing (3). Pathogens inducing type 1 and type 3 immunity are recognized 

via pattern recognition receptors (PRRs), which bind evolutionarily conserved pathogen-

associated molecular patterns (PAMPs) (3). PRR sensing of PAMPs by innate immune 

cells leads to an initial innate effector response. In addition, PAMP detection by dendritic 

cells (DCs) at barrier surfaces leads to DC maturation and trafficking to the draining 

lymph nodes with Ag presentation, costimulation, and skewing cytokines instructing a 

specific CD4+ T cell differentiation program (5). For example, the intracellular bacterium 

Listeria monocytogenes possesses multiple PAMPs, including lipoproteins, flagellin, and 

unmethylated CpG sequences, among others, which promote CD4+ Th1 cell differentiation 

(6). Candida albicans possesses distinct PAMPs, such as α-mannan molecules, which are 

structurally recognized by Dectin-2 on DCs, leading to CD4+ Th17 cell differentiation (7, 

8). Consequently, structural recognition theory serves as the conceptional foundation for the 

induction of type 1 and type 3 immunity. Type 1 and type 3 immunogens can be organized 

into classes based on their respective PRR, which provides a clear framework of immune 

sensing.

In contrast with the essential role of PRRs in the induction of type 1 and 3 immunity, the 

type 2 immune module can be regulated by PRRs without absolutely requiring structural 

recognition. Type 2 immunogens can contain PRR ligands that play an important regulatory 

role in the host response. For instance, house dust mites contain the TLR4 ligand LPS, 

and the house dust mite allergen Der p 2 exhibits structural homology with MD-2, the 

LPS-binding component of the TLR4 signaling complex, which can directly promote TLR4 

complex signaling (9, 10). Furthermore, house dust mites contain glycans that can activate 

Dectin-1 and Dectin-2 signaling (11). However, these PRRs can exhibit remarkably variable 

influence over type 2 immunity depending on the context. TLR4 expression in structural 

cells has been reported to promote type 2 immunity to house dust mites, whereas others 

have found that TLR4 is not required (9, 12). Numerous reports have suggested that 

the level of TLR4 signaling dictates the variable responses in vivo, with low-dose LPS 
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promoting type 2 immunity, whereas high-dose LPS inhibits type 2 immunity (13–16). LPS 

activity appears to switch from promoting to inhibiting type 2 immunity depending on the 

production of GM-CSF and TNF-α by monocyte-derived cells (12). Similarly, Dectin-1 

can play distinct roles in type 2 immunity with engagement of Dectin-1 by house dust 

mites promoting DC migration to the draining lymph node and induction of CD4+ Th2 

immunity, whereas Dectin-1 expression in lung epithelial cells inhibits CD4+ Th2 immunity 

(17, 18). Such findings indicate that PRRs can play a regulatory role but are not required 

for the induction of type 2 immunity. In support of such a model, type 2 immunogens 

can induce type 2 immunity in the absence of structural recognition. For instance, the 

papaya-derived allergen papain, which lacks Dectin-1 or Dectin-2 ligands, induces type 

2 immunity in vivo in Tlr2/Tlr4 double-knockout mice and MyD88-deficient mice (19). 

Rather than requiring structural recognition, papain-induced type 2 immunity is completely 

dependent on its cysteine protease activity (19). Notably, there are data suggesting that 

proteases from Aspergillus orzyzae cleave fibrinogen, with the cleavage products activating 

TLR4 to promote allergic immunity (20). Nevertheless, even if PRRs are used, the essential 

mechanisms of sensing type 2 immunogens appear to be distinct from structural recognition 

used by the type 1 and 3 immune modules.

How does the immune system sense the enormous number of structurally distinct type 

2 immunogens? In contrast with structural recognition, the immune system senses type 

2 immunogens through their functional properties, which include the ability to promote 

the release of damage-associated molecular patterns and activate sensory neurons (3, 21, 

22). Functional recognition theory has arisen as the paradigm for the initiation of type 

2 immunity. However, the vast array of structurally unrelated type 2 immunogens and 

numerous experimental models make it challenging to advance our understanding of type 

2 immunity in vivo. In this article, we review functional recognition theory and organize 

type 2 immunogens into distinct classes based on how each class fits into the foundational 

concepts of functional recognition. Lastly, we discuss areas of uncertainty in functional 

recognition theory, including how Ags lacking intrinsic adjuvanticity generate an adaptive 

type 2 immune response, how innate and adaptive arms of the type 2 immune module can be 

differentially activated in vivo, and how functional recognition at barrier sites changes after 

previous type 2 inflammation. Our goal is to provide a framework to help further define the 

logic of type 2 immunity in host protection and immunopathology.

FUNCTIONAL RECOGNITION THEORY IN TYPE 2 IMMUNITY

Type 2 immunity evolved, in part, to provide host protection against parasitic helminths, 

including either mediating parasite expulsion or tolerance to the helminth in peripheral 

tissues (23). For instance, in mice, Nippostrongylus brasiliensis primary expulsion and 

Heligmosomoides polygyrus secondary expulsion require CD4+ Th2 cells (24). In contrast 

with the host protective functions of type 2 immunity in the context of helminth infection, 

inappropriate type 2 immunity to noninfectious Ags drives allergic diseases. However, 

macroscopic helminths and microscopic allergens are very distinct immunogens, raising 

the question as to the shared mechanism(s) inducing type 2 immunity. Although type 2 

immunogens lack conserved structural features, many exhibit the shared property of being 

noxious to the host (22). Even seemingly harmless environmental allergens often exhibit 
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enzymatic activity, which is required for their ability to induce type 2 immunity (19, 25). 

The toxin hypothesis of allergic disease posits that type 2 immunity evolved to combat 

harmful toxins with Ag-specific, adaptive immunity providing protection to future exposures 

(26). In support of the toxin hypothesis, mice treated with low doses of bee or snake venom 

are protected from the effects of secondary challenges with sublethal and lethal doses of 

venom in an IgE and mast cell–dependent manner (27–29). As a result, these findings 

suggest that molecules capable of causing a specific type of tissue “stress” activate the 

type 2 immune module. Furthermore, it is well established that the effector mechanisms 

employed by type 2 immunity promote tissue repair pathways, suggesting that this immune 

module evolved to couple recognition of tissue stress to immune effector mechanisms 

capable of expelling noxious Ags while maintaining tissue integrity and promoting repair 

(2, 30). Damage or stress to tissues promotes the release of a class of molecules termed 

damage-associated molecular patterns (DAMPs), which transmit the signal of tissue injury 

to the innate immune system (31). In murine models, DAMPs such as IL-33, IL-25, and 

thymic stromal lymphopoietin (TSLP) play an important role in the initiation of type 2 

immunity (3, 32). In addition, genome-wide association studies in humans have found that 

polymorphisms in IL-33 and the IL-33 receptor are associated with the development of 

allergic asthma (33, 34). Although there are multiple cellular sources of DAMPs, epithelial 

cells and adventitial stromal cells represent major sites of DAMP production, indicating 

specialized roles of these structural cells in sensing noxious stimuli and tissue stress (35, 

36). Notably, while the above DAMPs play an important role in type 2 immunity, genetic 

deletion of individual DAMPs causes a reduction, but not complete abrogation, of type 2 

immunity (27, 37–41). Even triple-knockout mice lacking the IL-33 receptor, TSLP receptor, 

and the cytokine IL-25 exhibit no defect in initial CD4+ Th2 cell differentiation in the 

lymph node on infection with the helminth N. brasiliensis, although effector CD4+ Th2 cell 

function at barrier sites was significantly impaired (42). As a result, the three conventional 

type 2 DAMPs promote type 2 immunity, but there are additional sensing pathways to 

initiate the type 2 immune module.

Over the last several years, growing evidence supports a central role for sensory neuron-

derived neuropeptides in the regulation of both innate and adaptive type 2 immunity (21, 

22). First, allergens directly activate sensory neurons to induce itch and pain in mice 

(43). Sensory neuron activation promotes avoidance behaviors in the organism, as well 

as plays a central role in initiating type 2 immune responses. Activated sensory neurons 

release neuropeptides that can cross-talk with local immune cells, leading to innate effector 

responses. For example, sensory neurons intertwine with mast cells in peripheral tissues 

with these two cell types forming physical synapses poised for intercellular communication 

(21, 44–49). Release of substance P and vasoactive peptide (VIP) from activated sensory 

neurons directly promotes mast cell degranulation (50–53). This may be sufficient for 

the IgE-independent mast cell protection against primary venom exposure, which requires 

degranulation and release of carboxypeptidase A and other proteases that degrade venom 

components (54). In addition, neuropeptide-induced mast cell degranulation may also 

act to coordinate type 2 inflammatory responses. Primary exposure to house dust mite 

allergen directly activates sensory neurons to promote release of substance P, which 

promotes mast cell degranulation and local inflammatory responses (55). In contrast, models 
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of contact hypersensitivity suggest that the neuropeptide calcitonin gene–related peptide 

inhibits mast cell function, indicating that sensory neurons can tune the responsiveness of 

mast cells (52, 56). Along with mast cells, neuropeptides regulate the function of other 

innate type 2 immune cells. ILC2s express the receptor for the neuropeptide neuromedin 

U, which promotes ILC2 production of IL-5 and IL-13 (57–59). Furthermore, VIP also 

directly promotes ILC2 production of IL-5, although the functional role of VIP in vivo 

remains less clear (60, 61). Similar to mast cells, calcitonin gene–related peptide plays an 

immunomodulatory role in ILC2 activation in response to DAMPs, suggesting that distinct 

neuropeptides can differentially regulate ILC2 effector function (62, 63).

In addition to the innate effector response, neuropeptides also play a role in initiating 

the adaptive immune response to type 2 immunogens through their effects on DCs. A 

specialized population of IRF4- and KLF4-dependent, type 2 conventional DCs (cDC2s) 

is required for CD4+ Th2 cell differentiation (64–66). Unlike CD4+ Th1- and CD4+ Th17-

skewing DCs, CD4+ Th2-skewing cDC2s do not appear to respond directly to allergens. In 

the skin, sensory neuron-derived substance P stimulates CD4+ Th2-skewing cDC2s via the 

receptor MRGPRA1, promoting migration to the draining lymph node and the induction 

of CD4+ Th2 cell differentiation (43). Notably, substance P alone is insufficient for CD4+ 

Th2 cell differentiation, suggesting that additional signals, such as DAMPs, collaborate with 

substance P to promote CD4+ Th2 cell differentiation (43). In summary, although type 2 

immunogens lack shared structural features, they are recognized functionally via release of 

DAMPs and the activation of sensory neurons (Fig. 1). However, it remains unclear how the 

immune system integrates signals from DAMPs and neuropeptides: do they simply act to 

amplify a generic activation signal, or do they activate and instruct specific type 2 immune 

outcomes? This second possibility is supported by observations from type 1 responses, 

where DAMP release leads to ILC2 activation to promote tissue repair without inducing 

an adaptive type 2 response (67–69). Such observations suggest the existence of a DAMP/

neuropeptide code for the induction of specific type 2 immune responses.

Although the cellular sensors of type 2 immunogens are becoming clearer, whether 

these cellular pathways apply to all type 2 immunogens in vivo remains a mystery. For 

instance, while the enzymatic activity of protease allergens may imbue them with inherent 

adjuvanticity, many food allergens are seemingly inert and characterized mainly by their 

stability to heat and acid degradation. Modeling food allergy in vivo often relies on the 

use of exogenous adjuvants like cholera toxin (CT), but is this relevant to food allergy 

in humans? In addition, during type 1 or type 3 immune responses to pathogens, type 

2 immunity can be activated to promote tissue repair or host defense. How are type 2 

immunogens sensed and regulated during a dominant type 1 or 3 immune response? Lastly, 

although functional recognition is generally studied in the naive state in mice, there is 

growing evidence that induction of type 2 immunity at a barrier site induces tissue-resident 

memory that durably changes local functional recognition. How does functional recognition 

at a barrier site change after previous type 2 inflammation? One challenge to addressing 

these areas of uncertainty is the significant breadth of type 2 immunogens and murine 

models available for mechanistic studies. To further define such biology, we will review the 

unique features of different classes of type 2 immunogens and place them in the conceptual 

framework of functional recognition.
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CLASSES OF TYPE 2 IMMUNOGENS

Allergenic proteins from plants, animals, and fungi are marked by significant structural 

heterogeneity that makes any classification scheme imprecise. However, by classifying 

allergens by function, which provides enzymatically active allergens with their inherent 

adjuvanticity, instead of structural or phylogenetic relatedness, certain major themes 

become apparent (Table I) (70, 71). The first theme is the enrichment of enzymatically 

active proteins as allergens, specifically those that are active against proteins (proteases) 

and carbohydrates (carbohydrate-active enzymes [CAZymes]). Protease allergens include 

cysteine, serine, and aspartic proteases, as well as metalloproteases. These allergenic 

proteases display a variety of targeted peptide sequences and are enriched in dust mite, 

cockroach, and fungi, although they can also be detected in some food plants (kiwi, papaya, 

pineapple, and muskmelon) and environmental pollens (ragweed, timothy grass, Bermuda 

grass). The enzymatic activity of cysteine and serine protease allergens has been clearly 

shown to act as an allergic adjuvant (19, 72, 73). How proteases exert this adjuvant activity 

is not entirely clear, but allergic proteases have been shown to degrade tight junction proteins 

and activate protease-activated receptors, indicating possible routes for indirect and direct 

adjuvant effects (74, 75). Finally, cysteine protease allergens have been shown to cleave 

CD25, leading to the hypothesis that it could target CD25hi regulatory T cells (76). However, 

the relevance of this in vitro finding remains unclear in the setting of in vivo data supporting 

a role for cysteine protease allergens in the indirect activation of CD25hi ILC2s and mast cell 

production of IL-2, which promotes regulatory T cell function in vivo (77, 78). Clearly, there 

remains much to be determined about how protease allergens drive allergic inflammation.

CAZymes include the well-described chitinase family (found in dust mite, cockroach, and 

food plants), as well as lysozymes from chicken egg and milks, and the pectin lyases found 

mainly in pollens (ragweed, mugwort, juniper) (79). CAZymes can be exogenous, as in 

the form of allergens, or endogenous. It is well described that worm or fungal chitins can 

induce the expression of mammalian chitinase enzymes leading to type 2 inflammation (80). 

Finally, CAZymes are also found in venom allergens, which are enriched in hyaluronidases 

that can act as type 2 adjuvants (81). In addition to these major classes are those enzymes 

involved in metabolic pathways, specifically the enolase and arginine kinase allergens, as 

well as those with detoxification roles (82). Although little is known about how these 

allergens might be recognized, the enrichment of enzymes in allergens across plant, animal, 

and fungal kingdoms underscores the potential role for their functional activity in driving 

their allergenicity.

Enzymes easily lend themselves to functional grouping, but many other immunodominant 

allergens, even if lacking in enzymatic activity, have functional activities that may be 

related to their allergenicity. Many food allergens are characterized by their stability to heat 

(cooking) and acid (digestion), but these same allergenic proteins also share in common 

the ability to bind bioactive lipids and small molecule ligands (83). The ubiquitous ligand 

binding proteins such as albumins and globulins, found in both plant food and environmental 

animal allergens (e.g., cat and dog), do not have enzymatic activity but can exert major 

physiological effects through the binding and release of bioactive small molecules and 

xenobiotics. Lipid transfer proteins from plants and lipocalins from animals get their name 
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from their ability to bind bioactive lipid mediators and hormones (84). Furthermore, there 

is evidence that the ubiquitous PR-10 family of allergenic proteins in both pollens and 

plant foods bind phytohormones and flavonoids in a shared hydrophobic cavity (85). These 

findings raise the possibility that otherwise “inert” proteins may exert a functional effect on 

the host by either binding host-derived bioactive small molecules or, alternatively, that they 

may carry small molecular adjuvants that exert functional effects on the host.

The last major class of functional allergens includes those that may impact the structural 

or membrane integrity of eukaryotic cells. This group includes the actin-binding profilins, 

which integrate membrane signaling with cytoskeletal dynamics and can even activate 

PI3K/Akt signaling pathways when encountered extracellularly (86). It also includes the 

plasma membrane toxins in allergenic venoms such as bee venom phospholipase A2 

(bvPLA2) (Api m 1) and the pore-forming toxin melittin (Api m 4). In addition, given their 

described role in membrane targeting and disruption, we consider the defensin subset of 

allergens seen in both food plants and pollens to be another member of this group (87). Each 

of these groups has the ability to directly cause toxicity to membrane integrity, signaling 

pathways, and cytoskeletal structure, but some members may act to amplify another group’s 

functions. For example, the pore-forming toxin melittin has been shown to increase the 

toxicity of bvPLA2 by facilitating its entry into membranes (88).

If allergens can be classified based on their functional principles, then certain predictions 

can be made. First, allergens that share functional activity, and not structural features or 

phylogenetic origin, will lead to similar DAMP release, neuropeptide release, and immune 

outcomes. There are data supporting this between the cysteine proteases (e.g., Der p 1 

and papain), but data are mixed concerning families within the same functional class (e.g., 

cysteine versus serine proteases) (43, 55). The second prediction is that secreted products, 

such as bacterial toxins, that come from these functional classes may promote a type 2 

immune pathway. This has recently been illustrated for the LasB metalloprotease toxin from 

Pseudomonas aeruginosa (89). The third prediction is that these broad classes of allergens 

would be sensed by shared pathways that detect alterations in host homeostasis or damage. 

However, these fundamental pathways may be different between the protease allergens and 

other classes. DAMPs consist of one such shared pathway for the functional detection of 

protease allergens and the membrane toxin bvPLA2 (27, 77). In this case, the allergen’s 

activity, and therefore adjuvanticity, is relayed through a host-derived molecule in response 

to cellular damage. But how does the DAMP system detect “inert” proteins or their small 

molecule ligands? Could mammals have a conserved pathway to detect altered self through 

sacrificial decoy proteins? If such a pathway existed in mammals, it could provide the 

detection mechanism driving allergic responses to naturally occurring small molecules, as 

well as xenobiotics like penicillin.

AREAS OF UNCERTAINTY IN FUNCTIONAL RECOGNITION

As outlined earlier, many type 2 immunogens exhibit intrinsic adjuvanticity, offering 

a mechanism that couples induction of adaptive immunity with antigenic recognition. 

However, it remains less clear how Ags without intrinsic adjuvanticity, such as many 

food allergens, induce type 2 immunity (22). In such circumstances, the Ag is sensed 
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in association with some noxious stimulus that may not be defined. The latter substance 

may not be a protein and consequently serves as an adjuvant without being an Ag. Given 

that food Ags promote oral tolerance, murine models of food allergy aiming to induce 

sensitization via the oral route require addition of an adjuvant such as CT or staphylococcal 

enterotoxin B (90). Although CT has been shown to induce IL-33 release in the gut, it 

remains unclear whether oral adjuvants used in murine models are truly recapitulating the 

biology of type 2 immunity to food Ags that occurs in humans (91). Specifically, growing 

evidence suggests that early-life allergen exposure through the skin induces Ag-specific type 

2 immunity, whereas early oral ingestion promotes immune tolerance (92). For example, 

a number of genetic mutations that disrupt skin barrier function are associated with atopic 

dermatitis, which is associated with an increased risk for allergic sensitization to foods 

(93–95). In addition, among children with high-risk atopic disease, early oral introduction of 

peanut significantly decreases the frequency of the development of peanut allergy (96). Even 

in the absence of skin barrier dys-function, the skin has distinct features of type 2 immunity 

from other barrier sites. In the murine skin, basal IL-13 from dermal ILC2 promotes the 

differentiation of CD4+ Th2-skewing cDC2s in a STAT6- and KLF4-dependent manner (97). 

In the absence of IL-13 signaling, dermal cDC2s were unchanged in number but exhibited a 

reduced CD4+ Th2-skewing phenotype, as well as reduced ability to promote CD4+ Th2 cell 

differentiation, whereas CD4+ Th17 cell differentiation was increased (97). Such an IL-13–

dependent mechanism for promoting CD4+ Th2-skewing cDC2s did not exist in the lungs or 

small intestine (97). In support of these findings, human cDC2s from the skin also exhibit an 

IL-4 and IL-13 signaling gene signature, which was absent in cDC2s from the blood, spleen, 

or lungs (97). As a result, the threshold of functional recognition and initiation of adaptive 

type 2 immunity may be distinct in the skin compared with other barrier tissues. Ags without 

intrinsic adjuvanticity may be more likely to be sensed in association with another noxious 

stimulus and trigger adaptive type 2 immunity in the skin, particularly in the context of 

barrier disruption, rather than other barrier sites such as the gut. Consequently, defining 

the unique features of functional recognition in the skin may yield new insight into the 

mechanisms whereby Ags without intrinsic adjuvanticity induce adaptive type 2 immunity.

Another area of uncertainty involves defining how innate type 2 immunity can be activated 

during type 1 or type 3 immunity to promote tissue repair without inducing an Ag-specific 

type 2 response. One hypothesis is that DAMP production promotes ILC2 activation, but 

the concomitant presence of PAMPs inhibits the induction of an adaptive type 2 response 

(2). Such a mechanism would allow the host to use the tissue reparative functions of innate 

type 2 immunity without engaging an adaptive type 2 response that may be inappropriate 

to combat a pathogen that is eliminated by type 1 or type 3 immunity. In support of such 

a model, high-dose LPS exposure, as would occur during an infection with an endotoxin-

producing bacteria, is capable of inhibiting an adaptive type 2 immune response (12–16, 

98). However, one challenge to the high-dose PAMP-inhibition model in adaptive type 2 

immunity is that toxin-producing bacteria such as Staphylococcus aureus induce Ag-specific 

IgE, demonstrating that adaptive type 2 immunity can be activated even in the presence of 

high levels of PAMPs (99). Notably, Staphylococcus aureus induces a specialized subset 

of CD4+ Tfh cells that produce IL-13 (99). Tfh13 cells represent a unique population 

of CD4+ Tfh cells that are induced by allergens, but not helminths (100, 101). Tfh13 
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cells coexpress the canonical CD4+ Tfh and CD4+ Th2 cell transcription factors Bcl6 

and Gata3, respectively, and are required for the instruction of high-affinity IgE, which 

causes anaphylaxis in the context of allergic disease (100, 101). The observation that both 

allergens and toxins, but not helminths, induce Tfh13 cell differentiation is intriguing. The 

fact that all of these type 2 immunogens induce DAMP release suggests that some other 

sensing mechanism dictates the differentiation of Tfh13 cells. Given that allergens directly 

activate sensory neurons and sensory neuron–derived neuropeptides play an important role 

in inducing adaptive type 2 immunity, it is possible that neuropeptides play an important 

role in engaging an Ag-specific type 2 immune response even in the presence of high levels 

of PAMPs. Could the presence of DAMPs and either activating or regulatory neuropeptides 

dictate engagement of adaptive type 2 immunity (21)? Defining how the immune system 

integrates signals from PAMPs, DAMPs, and neuropeptides to regulate type 2 immunity 

represents an area of central importance to the field.

Most models of functional recognition focus on the naive state. However, prior type 2 

immunity leads to long-term changes in functional recognition and the capacity to induce 

type 2 inflammation. For instance, ILC2s can be “trained” by previous inflammation 

to acquire memory-like properties (102, 103). On activation, ILC2s proliferate in situ 

and produce type 2 cytokines to induce inflammation (104). While the ILC2 population 

subsequently contracts, the number of memory-like ILC2s remains greater than the naive 

state (102, 105). In addition, ILC2 can acquire cell-intrinsic, memory-like properties, 

including an enhanced responsiveness to DAMPs via epigenetic changes that are responsible 

for a poised effector program (102, 105). ATAC-seq analysis has shown that trained ILC2s 

possess alterations in accessibility of Bach2 and AP1 motifs, which play an important role 

in the memory-like program that allows activation to previous subthreshold stimulation 

(105). Furthermore, induction of adaptive type 2 immunity in a particular barrier tissue 

produces long-term, tissue-resident memory. After allergic inflammation within the lungs, 

memory CD4+ Th2 cells establish residency and promote recurrent allergic inflammation 

in an allergen-specific manner (106–109). Tissue-resident memory CD4+ Th2 cells are 

transcriptionally distinct from their circulating counterparts and durably persist in the lung 

parenchyma without the need for replenishment from circulating memory CD4+ Th2 cells 

(108). Beyond canonical CD4+ Th2 cells, a distinct subset of CD4+ Th2 cells that acquire 

the capacity to express IL-9 (Th9 cells) are well described in human allergic diseases (110–

112). IL-9 promotes type 2 immunity via activation of mast cells, enhancing eosinophil 

recruitment, activating macrophages, and promoting mucous metaplasia (113–115). Notably, 

IL-9 is predominantly expressed in highly differentiated CD4+ Th2 cells, indicating that 

chronic stimulation is necessary for induction of the Th9 program (110). In murine models 

of allergic lung inflammation, short-term allergen exposure protocols do not seem to induce 

a significant Th9 cell subset, whereas chronic allergen treatments yield a distinct subset 

of Th9 cells (109, 116). After chronic allergen exposure, IL-9 is predominantly derived 

from a population of tissue-resident memory CD4+ T cells that exhibit a distinct chromatin 

and transcriptional signature from CD4+ Th2 cells (109). Tissue-resident memory Th9 cells 

produced IL-9 in an allergen-specific manner, which is enhanced by IL-33 (109). Beyond 

CD4+ Th2 and Th9 cells, the induction of IgE significantly enhances the ability of mast 

cells to respond in an Ag-specific manner (117). Furthermore, both type 2 cytokines and 
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IgE can regulate the function of nociceptive neurons that participate in type 2 immunity. For 

example, nociceptive neurons express IL-4Rα and the high-affinity IgE receptor FceR1 and 

can directly respond to IL-4 and IgE (118, 119). Specifically, TRPV1+ sensory neurons 

respond to IgE-allergen immune complexes by releasing substance P, which, in turn, 

amplifies CD4+ Th2 cell production of IL-5 and IL-13 (118, 120–122). Consequently, the 

induction of Ag-specific type 2 immunity allows sensory neurons to broaden their sensing 

function to include Ag-specific recognition to regulate type 2 immunity. Along with changes 

in the responsiveness of cells involved in type 2 immunity, there are clearly changes in the 

niches supporting these cellular networks. For example, ILC2s and CD4+ Th2 cells persist in 

adventitial stromal niches that line the outermost regions of large vessels, ducts, and airways, 

which include specialized stromal cells that produce IL-33 and TSLP (123–126). In models 

of early-life skin inflammation, a population of CD4+ Th2 cells persists into adulthood via 

interactions with expanded fascial fibroblasts (127). Establishment of the microanatomical 

niche of CD4+ Th2 cells and CD4+ Th2-interacting fascial fibroblasts in the skin results 

in altered reparative responses to tissue injury (127). In sum, after type 2 immunity, ILC2s 

can acquire enhanced sensitivity to DAMPs; tissue-resident memory CD4+ Th2 and Th9 

cells, as well as IgE, provide the barrier tissue with the capacity to broaden the mode 

of immunosurveillance from functional recognition to include Ag-specific recognition; and 

there are changes to the supporting microanatomical niches within tissues. Defining the 

cellular networks and niches that support type 2 immune cells in barrier tissues and how 

these niches durably change in response to various type 2 immunogens represents a critically 

important area in type 2 immunity.

Although the topics outlined earlier cannot be exhaustive, we believe such areas represent 

important gaps in our working model of functional recognition and type 2 immunity. 

Notably, it is clear that the rules of functional recognition exhibit shared and immunogen-, 

tissue-, and context-specific features. To help advance our understanding of type 2 immunity 

in vivo, we need clearer delineation as to whether particular pathways or mechanisms are 

specific to a model/context or represent a fundamental feature of functional recognition. 

Delineating both shared and context-specific mechanisms regulating type 2 immunity will be 

critical to advancing our insight of type 2 immunity in vivo.

CONCLUSIONS

Functional recognition theory serves as the conceptual foundation for understanding type 

2 immune recognition. Although there have been many advancements in delineating the 

biology of type 2 immunity, several important areas of uncertainty remain. The dizzying 

array of stimuli and models remain a challenge for the field, impairing our ability to define 

the logic of type 2 immunity in vivo. Further defining the rules regulating shared and 

context-specific type 2 immunity will be critical to develop novel approaches to target the 

type 2 immune module to promote host protection and prevent or limit immune-mediated 

disease states.
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FIGURE 1. Functional recognition in the initiation of type 2 immunity at barrier surfaces.
Structurally unrelated type 2 immunogens, including those with undefined activities 

(question marks), are sensed at barrier surfaces by their shared ability to induce production 

of DAMPs and neuropeptides. DAMPs derived from epithelial cells and adventitial stromal 

cells, as well as other cell types, activate innate immune effectors such as mast cells 

and ILC2s. Neuropeptides such as neuromedin U promote the activation of ILC2s. The 

neuropeptide substance P enhances mast cell activation via MRGPRB2 and CD4+ Th2-

skewing cDC2 trafficking via MRGPRA1, the latter promoting the differentiation of CD4+ 

Th2 and Tfh2 cells. Created with BioRender.com.
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Table I.

Functional classes of allergens

Allergens can be divided into distinct groups based on their functional properties. Example allergens for each group and class are listed based on 
their source: plant, animal, fungal, and venom. World Health Organization/International Union of Immunological Societies nomenclature is used 
throughout the table.
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