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a b s t r a c t 

Transfer learning (TL) techniques can enable effective learn- 

ing in data scarce domains by allowing one to re-purpose 

data or scientific knowledge available in relevant source do- 

mains for predictive tasks in a target domain of interest. 

In this Data in Brief article, we present a synthetic dataset 

for binary classification in the context of Bayesian transfer 

learning, which can be used for the design and evaluation 

of TL-based classifiers. For this purpose, we consider numer- 

ous combinations of classification settings, based on which 

we simulate a diverse set of feature-label distributions with 

varying learning complexity. For each set of model param- 

eters, we provide a pair of target and source datasets that 

have been jointly sampled from the underlying feature-label 

distributions in the target and source domains, respectively. 

For both target and source domains, the data in a given 

class and domain are normally distributed, where the dis- 

tributions across domains are related to each other through 

a joint prior. To ensure the consistency of the classification 

complexity across the provided datasets, we have controlled 

the Bayes error such that it is maintained within a range of 

predefined values that mimic realistic classification scenar- 

ios across different relatedness levels. The provided datasets 

may serve as useful resources for designing and benchmark- 
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ing transfer learning schemes for binary classification as well 

as the estimation of classification error. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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pecifications Table 

Subject Applied Machine Learning 

Specific subject area Bayesian transfer learning 

Type of data Binary Matlab files 

Matlab source code 

Shell script 

How data were acquired Matlab simulations 

Data format Binary Matlab files ( ∗ .mat) 

Matlab scripts ( ∗ .m) 

Shell script ( ∗ .sh) 

Parameters for data collection Three feature dimensions ( d ∈ { 2 , 3 , 5 } ) wer e consider ed for the studied 

feature spaces. Four classification complexity levels (Bayes error 

∈ { 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 } ) were considered for each dimension. Six relatedness 

levels ( | α| ∈ { 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 , 0 . 99 } ) were used to model the 

relatedness between source and target domains. 

Description of data collection Source and target datasets have been generated by Matlab simulations. The 

feature-label distributions in source and target domains were assumed to 

be multivariate Gaussian distributions. Both domains were related to each 

other through a joint prior: i.e., Wishart distribution of the precision 

matrices of the underlying Gaussian feature-label distributions. The 

classification complexity has been modeled by the Bayes error that has 

been determined via the true classification error of an optimal quadratic 

discriminant analysis (QDA) classifier. 

Data source location Institution: Texas A&M University 

City/Town/Region: College Station, TX 77843 

Country: USA 

Data accessibility Repository name: Synthetic Data for Design and Evaluation of Binary 

Classifiers in the Context of Bayesian Transfer Learning [1] 

DOI: 10.17632/fn33cknmfx.1 

Direct URL to data: https://data.mendeley.com/datasets/fn33cknmfx/1 

Related research article O. Maddouri, X. Qian, F. J. Alexander, E. R. Dougherty, B.-J. Yoon, Robust 

importance sampling for error estimation in the context of optimal 

Bayesian transfer learning, Patterns 3 (3) (2022) 100428. 

https://doi.org/10.1016/j.patter.2021.100428 . 

alue of the Data 

• The data here provide useful resources for studying binary classification and error estima-

tion problems from a transfer learning perspective. The relatedness across domains has been

mathematically modeled as in [2] through a joint Wishart distribution over the model pa-

rameters. This enables rigorous quantification of the relevance across the source and target

domains. The selective sampling of the model parameters in the source and target domains

based on the classification complexity (Bayes error) makes the comparison of the evaluation

results across different dimensions and relatedness levels possible, as it preserves the sim-

ulation conditions across different experiments. Without these stringent conditions, drawing

statistically meaningful conclusions from empirical analysis would be practically difficult. 

• The provided data are of practical values to any data-driven machine learning approach

that employs transfer learning to solve binary classification problems. More specifically, the

dataset can be used to design novel classifiers in the target domain based on additional data

from the source domain. The large size of the provided dataset (for each configuration, there

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.17632/fn33cknmfx.1
https://data.mendeley.com/datasets/fn33cknmfx/1
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are 10 5 data points per class for each domain) will facilitate the design, validation, and eval-

uation of new algorithms. The wide range of values for the feature space dimensions, Bayes

errors, and relatedness levels will enable a comprehensive performance assessment of new

classification and error estimation methods under diverse classification settings. 

• In many scientific or clinical settings, training data are typically limited in the target domain

(e.g., due to high data acquisition cost), which impedes the design and evaluation of accu-

rate classifiers. Transfer learning can improve the learning outcome in the target domain by

incorporating data from relevant source domain(s). From this perspective, the optimal set-

ting to use the provided data is to consider only a few data points in the target domain to

develop new machine learning methods ( e.g., classifier design [2] , classification error estima-

tion [3] ), and to leverage a relatively larger amount of source data to improve the machine

learning task in the target domain. The substantial part of the remaining target data that are

provided in the dataset should be mainly used to estimate the ground-truth metrics ( i.e., true

classification error) and not as training data. 

• The provided simulation source code can be used to simulate other classification scenarios

for higher feature space dimensions and/or different classification complexity levels. 

• The detailed description of the simulation setup that was used to generate the current

dataset can provide a solid guideline on how the experimental setup should be configured

to study classification problems from a transfer learning perspective. As the transfer learning

aspect involves various factors affecting the classification and error estimation performance,

especially due to the heterogeneity of the data characteristics across domains, it is critical

to maintain uniformity of the experimental conditions across all the simulations to enable

interpretations of the obtained results that are accurate, valid, and statistically meaningful. 

1. Data Description 

As illustrated in Fig. 1 , the main folder Synthetic_Data_Classification_Bayesian_Transfer_

Learning contains three data sub-folders ( d_2, d_3 , and d_5 ) that correspond to dimensions

2, 3, and 5, respectively. The remaining sub-folder generation_source_code contains the Matlab

source code. 

In every data sub-folder ( d_2, d_3 , or d_5 ) there are 24 binary Matlab files with names en-

coded as follows: Data_d_x_Bayes_x.x_n_t_x_n_s_x_alpha_x.x_nu_x.mat , where: 

• d_x : refers to the dimension of the feature space where x takes values 2, 3, or 5. 

• Bayes_x.x : designates the classification complexity level (0.1, 0.2, 0.3, or 0.4). 

• n_t_x : indicates the number of target data points per class 

( i.e.: for 10 5 , this string is set to n_t_100000 ) 
• n_s_x : indicates the number of source data points per class 

( i.e.: for 10 5 , this string is set to n_s_100000 ) 
• alpha_x.x : indicates the relatedness level (0.1, 0.3, 0.5, 0.7, 0.9, or 0.99). 
Fig. 1. Hierarchy of the main data repository. 
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• nu_x : specifies the value of a hyperparameter ν that corresponds to the degrees of freedom

used to model the joint Wishart distribution (in our simulations, we set ν = d + 20 ). 

In every Matlab binary file among the aforementioned files, there are 4 indexed data con-

ainers called cell arrays that also contain, each, two cell containers. These data containers are

escribed as follows: 

• D_s : source dataset of dimension ( 10 5 × d) per class. 

• D_t : target dataset of dimension ( 10 5 × d) per class. 

• param_s : parameter vector of the source domain that specifies the means and the precision

matrices of the multivariate Gaussian distributions that underlie the data classes and has the

following cell parameters: 

1. mu_s : contains a d-dimensional real-valued vector per class. 

2. Lambda_s : contains a ( d × d) positive definite precision matrix per class. 

• param_t : parameter vector of the target domain that specifies the means and the precision

matrices of the multivariate Gaussian distributions that underlie the data classes and has the

following parameters: 

1. mu_t : contains a d-dimensional real-valued vector per class. 

2. Lambda_t : contains a ( d × d) positive definite precision matrix per class. 

The Matlab source code directory generation_source_code 1 is structured as illustrated in

ig. 2 . For each dimension ( d ∈ { 2 , 3 , 5 } ), we include a list of sub-folders Bayes_x.x that cor-

espond to different classification complexity levels that have been used in the evaluation ex-

eriments. Under each Bayes_x.x folder, we dedicate a sub-folder alpha_x.x for each relatedness

evel. 

Fig. 3 shows the content of each relatedness level directory. Under each relatedness level

older, there is a main script file named simulate_Data.m that includes the simulation settings

elevant to the parameter values as specified by the architecture of the parent directories. The

emaining files ( generate_Data.m, setup_parameters.m, test_error_QDA.m , and train_QDA.m ) 2

re shared across all the experiments and are duplicated in the different folders for distributed

xecution purposes. 

. Experimental Design Materials and Methods 

.1. Bayesian transfer learning framework for binary classification 

To model the synthetic data we consider a binary classification problem in the context of

upervised transfer learning where there are two classes in each domain. Let D s and D t be

wo labeled datasets from the source and target domains with sizes N s and N t , respectively.

et D 

y 
s = 

{
x 

y 
s, 1 

, x 
y 
s, 2 

, · · · , x 
y 
s,n s 

}
, y ∈ { 0 , 1 } , where n 

y 
s = 10 5 denotes the size of source data in class

 . Likewise, let D 

y 
t = 

{
x 

y 
t, 1 

, x 
y 
t, 2 

, · · · , x 
y 
t,n t 

}
, y ∈ { 0 , 1 } , wher e n 

y 
t = 10 5 denotes the size of target

ata in class y . With the assumption of disjoint datasets across classes, we have D s = D 

0 
s ∪ D 

1
s 

nd D t = D 

0 
t ∪ D 

1 
t with N s = n 0 s + n 1 s = 2 × 10 5 and N t = n 0 t + n 1 t = 2 × 10 5 . 

We consider a d-dimensional homogeneous transfer learning scenario where D s and D t are

ormally distributed and separately sampled from the source and target domains, respectively:

x 
y 
z ∼ N 

(
μy 

z , 
(
�y 

z 

)−1 
)
, y ∈ { 0 , 1 } , (1)
1 The submit_jobs.sh file is optional and is dedicated to submitting all the simulation scenarios as parallel jobs on 

igh performance computing resources. 
2 The text_progress_bar.m file is optional and is used to show the progress when the heuristic search for the model 

arameters is ongoing. 
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Fig. 2. Structure of the Matlab source code repository. 

Fig. 3. Matlab script files. 
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here z ∈ { s, t } , μy 
z is a ( d × 1 ) mean vector in domain z for class y , �y 

z is a ( d × d ) matrix that

enotes the precision matrix (inverse of covariance) in domain z for label y , and N ( ·, ·) denotes

he multivariate normal distribution. An augmented feature vector x y = 

[
x 

y 
t 

x 
y 
s 

]
is a joint sample

oint from two related source and target domains given by 

x y ∼ N 

(
μy , 

(
�y 

)−1 
)
, y ∈ { 0 , 1 } , (2)

ith 

μy = 

[
μy 

t 

μy 
s 

]
, �y = 

[
�y 

t �y 
ts 

�y 
ts 

T 
�y 

s 

]
, (3)

here X T denotes the transpose of matrix X . Using a Gaussian-Wishart distribution as the joint

rior for mean and precision matrices, the joint model factorizes as 

p 
(
μy 

s , μ
y 
t , �

y 
s , �

y 
t 

)
= p 

(
μy 

s , μ
y 
t | �y 

s , �
y 
t 

)
p 
(
�y 

s , �
y 
t 

)
. (4)

or conditionally independent mean vectors given the covariances, the joint prior in (4) further

xpands to 

p 
(
μy 

s , μ
y 
t , �

y 
s , �

y 
t 

)
= p 

(
μy 

s | �y 
s 

)
p 
(
μy 

t | �y 
t 

)
p 
(
�y 

s , �
y 
t 

)
. (5)

he block diagonal precision matrices �y 
z for z ∈ { t, s } are obtained after sampling �y from a

redefined joint Wishart distribution as defined in [2] such that �y ∼ W 2 d ( M 

y , νy ) , where νy is

 hyperparameter for the degrees of freedom that satisfies νy ≥ 2 d and M 

y is a ( 2 d × 2 d ) posi-

ive definite scale matrix of the form M 

y = 

(
M 

y 
t M 

y 
ts 

M 

y 
ts 

T 
M 

y 
s 

)
. M 

y 
t and M 

y 
s are also positive definite

cale matrices and M ts denotes the off-diagonal component that models the interaction between

ource and target domains. Given �y 
z , and assuming normally distributed mean vectors we get

μy 
z ∼ N 

(
m 

y 
z , 

(
κy 

z �y 
z 

)−1 
)
, z ∈ { s, t } and y ∈ { 0 , 1 } , (6)

here m 

y 
z is the ( d × 1 ) mean vector of the mean parameter μy 

z and κy 
z is a positive scalar

yperparameter. 

.2. Synthetic datasets 

In order to generate the synthetic data, we consider feature space dimensions 2, 3, and 5. In

he simulated datasets, we set up the data distributions as follows: 

ν = νy = d + 20 , κt = κy 
t = 100 , κs = κy 

s = 100 , m 

0 
t = 0 d , m 

1 
t = ϑ × 1 d , m 

0 
s = m 

0 
t + 10 × 1 d ,

 

1 
s = m 

1 
t + 10 × 1 d , where ϑ is an adjustable scalar used to control the Bayes error in the target

omain, and 0 d and 1 d are d × 1 all-zero and all-one vectors, respectively. 

For the scale matrices of Wishart distributions we set M 

y 
t = k t I d , M 

y 
s = k s I d , and M 

y 
ts = k ts I d

here I d is the identity matrix of rank d. 

To ensure that the joint scale matrix M 

y = 

(
M 

y 
t M 

y 
ts 

M 

y 
ts 

T 
M 

y 
s 

)
is positive definite ∀ y ∈ { 0 , 1 } , we

et k ts = α
√ 

k t k s with k t > 0 , k s > 0 , and | α| < 1 . As in [2] , the value of | α| controls the amount

f relatedness between the source and target domains. 

To fully control the level of relatedness by adjusting only | α| and without involving other

onfounding factors, we set k t = k s = 1 such that M 

y 
ts = α I d . In this setting, the correlation be-

ween the features across source and target domains are governed by | α| , where small values

f | α| correspond to poor relatedness between source and target domains while larger values

mply stronger relatedness. 
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Fig. 4. Flow chart illustrating the simulation set-up for generating the synthetic datasets in this paper. 
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To sample from the joint prior, we first sample from a non-singular Wishart distribution

 2 d ( M 

y , ν) to get a block partitioned sample of the form �y = 

(
�y 

t �y 
ts 

�y 
ts 

T 
�y 

s 

)
, from which we

extract 
(
�y 

t , �
y 
s 

)
. Afterwards, we sample μy 

z ∼ N 

(
m 

y 
z , 

(
κy 

z �
y 
z 

)−1 
)

for z ∈ { s, t } and y ∈ { 0 , 1 } . 
As illustrated in Fig. 4 , we use in our simulations two types of datasets. Training datasets

that contain samples from both domains and testing datasets that contain only samples from

the target domain. While the training datasets are saved and stored in our data repository, the

testing datasets are only aimed for simulation purposes to specify a desired level of classifica-

tion complexity. In all the simulations we consider testing datasets of 10 4 data points per class

and we assume equal prior probabilities for the classes. We note that for normally distributed

data, the optimal classifier for the the feature-label distributions, called also Bayes classifier, is a

quadratic classifier that can be determined through quadratic discriminant analysis (QDA). This

Bayes classifier is defined as: �QDA ( x ) = x T Ax + b 

T x + c, where 

A = − 1 
2 

(
�1 

t − �0 
t 

)
, b = �1 

t μ
1 
t − �0 

t μ
0 
t , 

c = − 1 
2 

(
μ1 

t 

T 
�1 

t μ
1 
t − μ0 

t 

T 
�0 

t μ
0 
t 

)
− 1 

2 ln 

( | �0 
t | | �1 
t | 

)
. 

(7) 

Its true error is called Bayes error. 

To draw data for a specific Bayes error, we start by drawing a joint sample 
(
�y 

t , �
y 
s 

)
for

each class y ∈ { 0 , 1 } . Next, we iterate over the values of the hyperparameter ϑ to control m t ( ϑ )
through a dichotomic search to get a desired value τ of the Bayes error. This is achieved by
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d  
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i

2

2

 

fi  

p  

ext, 
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d

 

d  

y  

c  

τ  

a  

p  (
 

t

rawing a sample μy 
t ∼ N 

(
m t ( ϑ ) , 

(
κy 

t �
y 
t 

)−1 
)

and then generating a test set based on the joint

ample 
(
μy 

t , �
y 
t 

)
. Using this test set, we determine the true error of the optimal QDA derived

rom 

(
μy 

t , �
y 
t 

)
. If the desired Bayes error (true error of the designed QDA) is attained then the

teration stops, otherwise we update ϑ and reiterate. 

.3. Matlab script files 

.3.1. simulate_Data.m: 

This is the main simulation file that generates and saves the data into binary Matlab

les ( ∗.mat ). First, the constants and the model hyperparameters are set. In this exam-

le we show configurations for d = 2 , Bayes_error = 0.1 , and a relatedness level | α| = 0 . 1 .

N

e draw from the joint model an initial sample for the model parameters in the source and

arget domains to initiate the heuristic search for the model parameters that correspond to the

esired Bayes_error . 

Afterwards, we loop over different realizations of model parameters until we obtain the

esired Bayes_error . To do so, we start with the joint sample 
(
�y 

t , �
y 
s 

)
for each class

 ∈ { 0 , 1 } . Next, we iterate over the values of the hyperparameter ϑ, referred to in the source

ode by mean_shift , to control m t ( ϑ ) through a dichotomic search to get a desired value

( complexity_Bayes_error in the code) of the Bayes error. This is achieved by drawing

 sample μy 
t ∼ N 

(
m t ( ϑ ) , 

(
κy 

t �
y 
t 

)−1 
)

and then generating a test set based on the joint sam-

le 
(
μy 

t , �
y 
t 

)
. Using this test set, we determine the true error of the optimal QDA derived from

μy 
t , �

y 
t 

)
(lines 16 and 19). If the desired Bayes error (true error of the designed QDA) is attained

hen the iteration stops, otherwise we update the mean_shift variable and reiterate. 
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Once a realization of model parameters satisfies the desired Bayes_error , target and source

datasets are generated and stored into binary Matlab files. 
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2

 

s  

a

.3.2. setup_parameters.m: 

This function takes as input the model hyperparameters that change their values across the

imulated datasets, and uses the shared values of the remaining hyperparameters to fully char-

cterize the feature-label distributions in source and target domains. 
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2.3.3. generate_Data.m: 

As indicated by its name, this function takes as input a specified set of model parameters of

source and target domains and generates synthetic training and testing datasets. 
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2

 

d  

b

2

 

a  

c  

t

E

 

f

.4. train_QDA.m: 

This function permits to identify the Bayes classifier in the target domain. It implements the

efinition of a QDA classifier designed based on a predefined set of model parameters for a

inary classification problem when the two classes are a-priori equally likely. 

.5. test_error_QDA.m: 

This function allows to approximate the true classification error of a QDA classifier based on

 given test set. In our simulations, this function is called to determine the Bayes_error that

orresponds to the true classification error of a QDA classifier that has been designed based on

he true model parameters in the target domain. 
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