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Background. Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults. Epithelial-mesenchymal
transition (EMT) is an essential regulator of the UVM’s immune microenvironment. However, the precise role of EMT in UVM
remains to be explored and the development of a related treatment strategy is urgently needed. Methods. Multiomics data and
clinical information for TCGA-UVM were used to identify the EMT subtypes and analyze their regulatory role in the immune
microenvironment in UVM. A machine-learning method based on the identified subtypes was utilized to construct the EMT
feature-based prognostic model. External validation cohorts GSE84976 and GSE22138 were employed to validate the model’s
robustness. Immunotherapy cohort IMvigor210 was used to explore the model’s potential to predict immunotherapy re-
sponsiveness. Results. Two EMT subtypes were identified in UVM. +e role of EMT in shaping the immune microenvironment
and regulating cancer-immunity circle of UVM was analyzed. A robust prognostic model was presented and validated to predict
patient prognosis. +e model also predicted patient’s immune features and immunotherapy responsiveness. Conclusion. +e
EMT-mediated immune features in UVM were illustrated, providing a reliable model to facilitate precise UVM treatment. +is
research may assist in decision-making during clinical UVM therapy.

1. Introduction

As the most common primary intraocular malignancy in
adults, uveal melanoma (UVM) represents 85% of ocular
melanomas [1, 2]. UVM arises frommelanocytes of the uveal
tract. About 85%–90% of UVM cases originate from the
choroid, while the remaining occur in the iris or ciliary body
[3]. Traditional first-line therapy strategy, including radio-
therapy, surgical treatment, and enucleation, has reached
a satisfactory rate of local disease control and long-term
survival [4]. However, due to the high metastatic rate and
high mortality rate secondary to metastasis, traditional

therapy strategies for systemic UVM treatment remain
abundant [5, 6]. Targeting therapy and immunotherapy in
recent years have become the emerging components of
systemic UVM treatment and have resulted in an impressive
therapeutic effect in clinical practice [7–10]. However,
a robust method to help identify the UVM patients and
potentially obtain satisfactory clinical benefits is still lacking.
+e underlying mechanism of the therapy’s nonresponse in
UVM needs to be further explored.

Epithelial-mesenchymal transition (EMT) is a process in
which epithelial cells lose their junctions and polarity and
acquire the characteristics of migratory mesenchymal cells
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[11]. +is phenomenon of cellular plasticity usually takes
place during the embryo development. However, it can also
be observed during cancer progression [11, 12]. A tumor can
obtain a greater migration capability and is more likely to
result in distant metastasis via EMT [13]. EMT can also
contribute to the formation of immune-suppressive mi-
croenvironment and raise the activity of the immune
checkpoints [14]. Furthermore, EMT is correlated with the
activation of tumor drug efflux pumps and antiapoptotic
effects [15]. In these mechanisms, an EMT-active tumor will
have more aggressive clinicopathological features and
a lower responsiveness to traditional antitumor drugs and
can be a potential candidate for immunotherapy [16–19].

+erefore, a robust method to help estimate UVM EMT
activity in order to develop a more appropriate multidisci-
plinary therapy strategy for patients is urgently needed. In this
research study, genomic information for UVM samples de-
rived from +e Cancer Genome Atlas (TCGA) was employed
to comprehensively assess the EMT activity and illustrate the
tumoral microenvironment characteristics. Two UVM sub-
types were identified: EMT inactive and EMTactive.+ese two
subtypes demonstrated a distinct pattern in clinicopathological
features, somatic mutation features, immune microenviron-
ment features, and prognosis. To further facilitate the clinical
application, an EMTfeature-based prognostic model to predict
UVM prognosis and responsiveness for targeting therapy and
immunotherapy was developed using the least absolute
shrinkage and selection operator (LASSO) Cox regression.
Transcriptome and somatic mutation data acquired from
multiple external validation cohorts were employed to com-
prehensively evaluate the prognostic model’s efficiency. +e
results demonstrated that the model has great potential to be
utilized as a decision-making tool to assist doctors in evaluating
tumor aggressiveness and choosing optimal therapy strategy
during a precise UVM treatment.

2. Materials and Methods

2.1. Data Acquisition and Processing. TCGA-UVM patient
clinical information, RNA-seq data, and gene mutation data
were acquired from TCGA database (https://portal.gdc.cancer.
gov) and processed using R packages “TCGAbiolinks” and
“maftools” [20–22]. Transcriptome data and clinical follow-up
information of GSE84976 and GSE22138 cohorts were ac-
quired from the National Center for Biotechnology In-
formation (NCBI) Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/gds). Immunotherapy cohort
data were acquired from published literature and obtained by
the R package “IMvigor210CoreBiologies” [23]. All clinical
data utilized in this research are publicly available. +us, local
ethical approval was not required.

2.2. EMT Signature Analysis and Identification of the UVM
Subtype. To identify the EMT inactive subtype and EMT
active subtype in UVM and to conduct further analysis, 18
EMTsignatures were acquired from three published sources
[24–26]. EMT signature interaction was analyzed based on
the Pathway Commons (https://www.pathwaycommons.

org/) database and visualized using Cytoscape software.
+e EMTsignature’s coexpression status was analyzed using
the Pearson correlation and visualized with R package
“ggcorrplot”. +e EMT signature’s protein-protein in-
teraction (PPI) network was constructed using Cytoscape
software to visualize the landscape of the EMT signature-
related protein interaction. K-means clustering based on
these EMT signatures was used to identify the EMT inactive
and active subtypes with R package “pheatmap.” To further
validate the robustness of the subtype identification, EMT
subtype activity was estimated using Gene Set Variation
Analysis (GSVA) according to the EMT signatures [27].

2.3. Analysis of the Subtypes’ Immune Characteristics. To
quantify the samples’ immune cell infiltration levels, CIBER-
SORT based on the CIBERSORT tool (https://cibersort.
stanford.edu/) was utilized. Samples’ immune score, stromal
score, and ESTIMATE score were calculated in R package
“ESTIMATE” to evaluate the samples’ immune activity [28].
+e process consisted of seven steps during anticancer immune
response. +e steps include the release of cancer cell antigens
(Step 1), cancer antigen presentation (Step 2), priming and
activation (Step 3), trafficking of immune cells to tumors (Step
4), infiltration of immune cells into tumors (Step 5), recog-
nition of cancer cells by T cells (Step 6), and killing of cancer
cells (Step 7). +e cancer-immunitycircle-related pathway was
acquired from the published literature. Detailed pathway in-
formation is presented in Table S1. +e pathway activity was
evaluated using GSVA in R package “GSVA” [27].

2.4. Acquisition and Analysis of DEGs between the EMT In-
active Subtype and the EMT Active Subtype. Subtypes of
differentially expressed genes (DEGs) were acquired using
the threshold of |logFC|> 1 and adj − P< 0.01 with R
package “limma.” To investigate the DEG-mediated bi-
ological function, enrichment analysis was conducted based
on the Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) database [29, 30]. +e enriched
terms were visualized, and clustering was analyzed using
Metascape (https://metascape.org/).

2.5. Construction of EMT Feature-Based Prognostic Model.
To construct the EMT feature-based prognostic model,
patient outcome-related genes were first identified among all
DEGs. Univariate Cox regression was employed to analyze
the gene impact on patient outcomes. +e result with
P< 0.001 was selected. Next, the selected genes were ana-
lyzed using LASSO Cox regression to further screen the
candidate genes for model construction and to calculate the
coefficient of the selected genes. Finally, the EMT feature-
based prognostic model (EMT score) was developed based
on the selected genes and their coefficients. All analyses were
conducted by the R package “glmnet.”

2.6. Statistical Analysis. +e K–M survival analysis com-
bined with a log-rank test was used to analyze the differences
in patient prognosis between the two groups. TimeROC
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analysis was performed to evaluate the prediction accuracy
of the EMT score. +e Wilcoxon rank sum test was used to
compare the continuous variables between the two groups.
+e differences in sample distribution in the two groups
were analyzed with a chi-square test. If not specifically
mentioned, P< 0.05 was considered statistically significant.

3. Results

3.1. Identification of the EMT Inactive Subtype and the EMT
ActiveSubtype inUVM. A total of 18 EMTregulators acquired
form published literature were analyzed in this study. Detailed
interaction patterns and coexpression states of the EMT reg-
ulators are represented in Figure S1. Given the critical role of
EMT in UVM, EMT inactive subtype and EMTactive subtype
were identified according to the EMT regulators based on the
K-means clustering analysis.+e expression level of most EMT
regulators was significantly higher in the EMT active subtype
(Figure 1(a)). Somatic mutation landscape analysis of the two
UVM subtypes was also performed. GNA Q had the highest
mutation frequency in the EMT inactive subtype (Figure 1(b)).
GNA11 was the most frequent mutation gene in the EMT
active subtype (Figure 1(c)). +e samples’ EMT activity was
estimated to further validate the accuracy of subtype identi-
fication. Sample EMT scores were significantly higher in the
EMTactive subtype, which confirmed the EMTactive subtype’s
high-EMT activity (Figure 1(d), P � 1.5e − 08). +e
Kaplan–Meier survival analysis demonstrated that the EMT
active subtype had a significantly worse prognosis (Figure 1(e),
P � 8.4e − 05).

3.2. Characterization of Immune Microenvironment in the
Two Subtypes. To further investigate the two subtypes’ mi-
croenvironment patterns, the immune cells’ infiltration levels
of the two subtypes was calculated (Figure 2(a)). In the EMT
inactive subtypes, “T cells CD4 memory resting,” “B cells
naive,” and “monocytes” had significantly higher infiltration
levels (Figure 2(b)). +e infiltration levels of “macrophages
M1,” “Tcells CD4memory activated,” and “Tcells CD8” were
upregulated in the active EMT subtype (Figure 2(c)). +e
results implied that the EMTactive subtypemay have a higher
proinflammatory immune response activity.

To elucidate the two subtypes’ immune heterogeneity in
detail, the two subtypes’ immunity-circle-related pathway
activities were compared. +e EMT active subtype had
a significantly higher activity of Step 1 (release of cancer cell
antigens), Step 4 (trafficking of immune cells to tumors),
Step 5 (infiltration of immune cells into tumors), Step 6
(recognition of cancer cells by T cells), and Step 7 (killing of
cancer cells) (Figure 2(d)). It is worth noting that in the
“trafficking of immune cells to tumors” process, the active
EMTsubtype’s activity of CD4 and CD8 Tcell recruiting was
significantly higher, which is consistent with the results of
the immune infiltration analysis (Figure 2(d)).

3.3. Construction and Validation of the EMT Feature-Based
Prognostic Model. An EMT feature-based prognostic model
(EMT score) was constructed using a machine-learning-

based method. First, the DEGs between the EMT inactive
and active subtypes were acquired. A total of 317 genes were
identified (Figure S2A). Enrichment analysis of the DEGs
also indicated that the two subtypes had a distinct immune
microenvironment pattern (Figures S2B and S2C). Next,
univariate Cox regression was employed to identify the
patient outcome-related genes. A total of 117 genes were
identified and submitted for the subsequent analysis
(Table S2). Finally, LASSO Cox regression was used to
identify the most robust prognostic genes among them and
to calculate the coefficients of the selected genes (Figures 3(a)
and 3(b)). +e EMT feature-based gene prognostic model
was described as follows:

EMT score � 
a

Coefficient Genea( 

∗Expression level Genea( .

(1)

Selected genes and their coefficients are presented in
Figure 3(c).

To validate the robustness of the EMT score, patient
outcomes in the high- and low-EMT score groups were
compared. Results indicated that patients in the high-EMT
score group had a significantly poorer prognosis (Figur-
es 3(d), 3(e), P � 6.6e − 09, and Figure 3(f ), AUC� 0.958).
+en, the correlation between the EMT score and clinical
pathology characteristics was analyzed. +e high-EMTscore
sample was more likely to be in the advanced-stage cancer
(Figures S3A–S3C). +e external validation cohorts
GSE84976 and GSE22138 were also included to further test
the EMT score’s accuracy. According to the results, the
model had a great prognostic value in the two validation
cohorts. A high-EMT score predicted poor prognosis in
UVM patients (Figures 4(a), 4(b), P � 3.9e − 04, Figure 4(c),
AUC� 0.847, Figure 4(d), Figure 4(e), P< 0.0001, and
Figure 4(f ), AUC� 0.75). +en, in order to explore the EMT
score’s potential in reflecting the tumor’s immune features,
the immune score of the high- and low-EMT score groups
was calculated in the two external validation cohorts. +e
high-EMT score group had a significantly higher immune
score, stromal score, and ESTIMATE score in the two co-
horts, which indicated that the high-EMT score group had
a significantly higher immune activity (Figures 4(g) and
4(h)).

3.4. Exploration of a Potential  erapy Strategy Targeting the
High-EMT Score Tumor. To further explore the potential
therapy strategy targeting EMT active UVM, the UVM
sample EMT scores were calculated according to the
model and divided into high- and low-EMT score groups.
According to the immune infiltration analysis, the high-
EMT score group had a significantly higher infiltration
level of “macrophages M1,” “T cells CD4 memory acti-
vated,” “T cells CD8,” “T cells follicular helper,” and
“T cells gamma delta,” which indicated the high-EMT
score’s potential in reflecting a proinflammatory im-
mune response (Figure 5(a)). On the contrary, a low-EMT
score predicted the resting-like immune response pattern
(Figure 5(b)). To further explore the EMTscore’s potential
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Figure 1: Continued.
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in elucidating the immune characteristics of the UVM’s
immunity circle, the correlation between the EMT score
and the activity of the cancer-immunitycircle-related
pathway was analyzed. +e EMT score was able to re-
flect the activity of the immune cell-recruiting and cancer
cell-killing process rather than the cancer-immunity
circle’s initial process (Figure 5(c)).

To validate the model’s efficiency in predicting immu-
notherapy responsiveness, the immunotherapy cohort
Imvigor210 was employed for subsequent analysis. In the

high-EMT score group, samples had a significantly higher
tumor mutation burden, which inferred the high-EMTscore
group’s potentially high immunotherapy response rate
(Figure 5(d)). To validate our hypothesis, the immuno-
therapy response rate of the high-EMT score group was
compared to that of the low-EMT score group. +e high-
EMTscore group had a relatively higher frequency of PR and
CR (Figure 5(e)). +ese results demonstrated that the EMT
score had great potential in predicting cancer immuno-
therapy responsiveness.
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Figure 1: Identification of UVM’s EMT inactive subtype and EMT active subtype. (a) Landscape of UVM EMT subtypes and clinico-
pathological features. (b) EMT inactive subtype’s somatic mutation features. (c) EMT active subtype’s somatic mutation features.
(d) Comparison of two subtypes’ EMTactivity. (e) Comparison of two subtypes’ patient prognosis. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001.
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4. Discussion

UVM is a malignancy with a relatively low incidence rate but
poor prognosis [4]. Although surgery and radiotherapy are
effective treatment strategies for primary tumors, therapy
options are limited once UVM becomes metastatic [31, 32].
Recent research has demonstrated that EMT plays an es-
sential role in promoting UVM metastasis and contributing
to the disease’s poor prognosis [33–35]. However, systematic
analysis to illustrate EMT-mediated tumor heterogeneity in
UVM is still lacking. Robust biomarkers based on EMT
features to reflect UVM’s aggressiveness are also limited.
+erefore, in this study, we integrated multiomics data to
develop an EMT feature-based prognostic model and sys-
tematically analyzed the EMT-mediated immune micro-
environment in UVM. First, EMT inactive and active
subtypes were identified in UVM according to the EMT
signatures acquired from multiple published sources. So-
matic mutation in a GNA family gene, such as GNA11 and
GNAQ, which encodes guanine nucleotide-binding protein
Gα subunits of the Gαq family, is the driver of UVM ini-
tiation [36, 37]. GNAQ had the highest mutation frequency
in the EMT inactive subtype, while GNA11 had the highest
mutation frequency in the EMTactive subtype. +ese results
implied the potentially different therapy targets for EMT
inactive and active UVM. +en, DEGs between the two
subtypes were acquired and patient outcome-related genes
were obtained using univariate Cox regression. Next, the
EMTfeature-based gene prognostic model was trained using

patient outcome-related genes. Finally, the model’s effi-
ciency in predicting patient outcomes and therapy re-
sponsiveness was verified.+is researchmay assist doctors in
evaluating patient prognosis and choosing suitable therapy
strategies in clinical practice.

+e eye is considered an immune-privileged organ with
partial or even completely suppressed immune responses
[38]. While the concentration of antitumor immune cells in
the microenvironment is correlated with a better outcome in
most cancer types, the immune infiltration in UVM can
direct to poor prognosis [39]. Emerging studies have em-
phasized the strong interaction between EMT and tumor
immune microenvironment [40]. Here, we analyzed the
immune microenvironment characteristics of EMT inactive
and active subtypes.+e results demonstrated that EMTmay
result in the high infiltration and high activity of proin-
flammatory immune cells. EMTplays a crucial role in tumor
microenvironment progression. For example, EMT tran-
scriptional factors, including Snail, Zeb1, and Twist1, can
attract cancer-related immune cells and shape tumor mi-
croenvironment into a protumor subtype [41, 42]. In turn,
the modulated microenvironment can promote cancer EMT
[43, 44]. +us, therapy strategies that can interfere with this
positive feedback system may introduce clinical benefits to
the EMT active UVM subtype. When comparing the two
groups’ antitumor immune process activities, we found that
the EMT active subtype’s active anticancer-immune-related
pathways were concentrated on the immune cells recruiting
the related process and “infiltration of T cells into tumors,”
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Figure 2: Comparison of immune characteristics of the UVM’s EMT inactive subtype and EMT active subtype. (a) Subtypes’ immune
infiltration level was calculated using CIBERSHOT. (b, c) Comparison of two subtypes’ immune infiltration levels. (d) Comparison of two
subtypes’ cancer immunity-related pathway activities.

Journal of Oncology 7



−2−6

Co
effi

cie
nt

s
0.0

0.5
−0

.5
61436

−5 −4 −3
Log Lambda

37 26

(a)

M
ea

n−
Sq

ua
re

d 
Er

ro
r

Log (l)
−2−3−4−5−6

60 53 50 45 36 31 26 16 14 15 69 5 1

0.
15

0.
40

0.
20

0.
25

0.
30

0.
35

(b)

3.50

KCTD17
AMN
DOCK10
ARC
PTGER4
TRPV2
S100A4
LHFPL3
CA12
POMC
MANEAL
CAMSAP3
LMCD1
MLIP

−0.65
0.74

0.0060
0.17

0.025
−0.018

0.011
0.28
0.12

0.0060
−0.48
0.28

−1.37
−0.27

0.5 1 1.5 2 2.5 3

Genes Hazard Ratio Coefficients

(c)

Figure 3: Continued.

8 Journal of Oncology



Su
rv

ia
l T

im
e

Ri
sk

 S
co

re

5

−10

0

−5

2000

0

1000

KCTD17
AMN

DOCK10
ARC

PTGER4
TRPV2
S100A4

LHFPL3
CA12

POMC
MANEAL

CAMSAP3
LMCD1

MLIP

Low Risk

High Risk

Alive

Dead

Low Risk

High Risk

0.0

2.5

5.0

Expression

TCGA-UVM

(d)

TCGA-UVM

Low risk

Su
rv

ia
l p

ro
ba

bi
lit

y

P = 6.6e-09
HR=0.03

1.00

0.00

0.25

0.50

0.75

25000 500 1000 1500 2000
Time

High risk

(e)

TCGA-UVM

1.00.0 0.2 0.4 0.6 0.8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

FP 

AUC = 0.958

TP

(f )

Figure 3: Construction of the EMT score using a machine-learning-based method. (a, b) Gene prognostic model was constructed using
LASSOCox regression. (c) Regression coefficients of model component genes. (d) EMTscore component genes’ expression status in TCGA-
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“recognition of cancer cells by Tcells,” and “killing of cancer
cells” pathway. +ese EMT-mediated immune features may
be the potential underlying mechanism for EMT-mediated
UVM’s poor prognosis. +is EMT-mediated immune
characteristic also suggested that a therapy targeting these
immune processes may be suitable for the EMTactive UVM.

UVM has a high metastatic rate, and clinical outcomes
for metastatic UVM are unsatisfactory [45]. While the
nonmetastatic UVM has a relatively good prognosis, once
distant UVM metastases have occurred, the clinical treat-
ment strategy will be limited [2]. +us, apart from the
traditional pathological detection methods, a supplementary
method to assess the UVM’s clinical pathology features is
important. It was found that the tumor EMT score was
significantly higher in advanced UVM (T4, M1, and stage
IV). +e EMT score also had great efficiency in evaluating
UVM prognosis and immune activity. +erefore, the EMT
score may be developed as a novel biomarker to predict
UVM prognosis, metastasis status, and immune features.

+e cancer-immunity cycle reflects the immune re-
sponse of the inherent and adaptive immune systems to
UVM. +e goal of cancer immunotherapy is to initiate or
reinitiate a self-sustaining cycle of cancer immunity to help
the immune system conduct the cytotoxic tumor-killing
process [46]. Every step of the cancer-immunity circle
plays an essential role in immunotherapy response. Cancer
immunotherapy strategies need to be developed based on the
features of the cancer-immunity circle. For example,

a cancer vaccine would be suitable for Step 1 (release of
cancer antigens) dysfunction cancer subtype [47]. +e ac-
tivities of the cancer-immunitycycle-related pathways reflect
the comprehensive immunomodulatory interactions in
UVM tumor microenvironment.+e present study explored
the EMT score’s potential in predicting the activity of the
pathways. According to the results, the EMT score was able
to reflect the activity of the immune cell recruiting process
and tumor cytotoxic killing-related processes, while the
correlation between the EMT score and activity of tumor
antigen-based immune cell activation-related processes was
not observed. A novel therapy strategy targeting these
immunity-related pathways might introduce clinical benefits
to UVM patients with high-EMT scores.

Cancer immunotherapy, which targets the tumor im-
mune escape mechanisms and activates the body’s immune
system to recognize and attack cancer cells, has become the
emerging strategy for comprehensive cancer treatments in
clinical practice [48–51]. Immunotherapy has brought
revolutionary progress to clinical tumor treatment. +e
application of immune checkpoint blockade in malignan-
cies, including melanoma, urothelial bladder cancer, head
and neck squamous cell carcinoma, and classical Hodgkin’s
lymphoma, has brought significant clinical benefits to pa-
tients [52–55]. However, the nonignorable non-
responsiveness rate and the related side effects in the clinical
practice have been the major obstacles for its imple-
mentation [56]. In the present research, the EMT score
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Figure 5: Exploration of EMT score’s potential in predicting immunotherapy responsiveness. (a, b) Comparison of immune infiltration
level between high- and low-EMT score groups. (c) Correlation analysis between EMT score and activity of the cancer immune-related
pathway. (d) Comparison of tumor mutation burden in high- and low-EMT score groups. (e) Comparison of immunotherapy re-
sponsiveness rate in high- and low-EMT score groups. PD, progressive disease; SD, stable disease; PR, partial response; CR, complete
response.
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provides a method to identify the potential candidates for
UVM immunotherapy. +e results indicated that patients
with high-EMT scores may have the potentially high re-
sponsiveness rate for immunotherapy.

+e present study had some limitations. First, the en-
rolled UVM and immunotherapy cohorts were limited.
More clinical information and transcriptome data should be
utilized to validate the EMT score efficiency. Second, al-
though the EMT-mediated immune microenvironment al-
teration was analyzed, the detailed underlying immune
regulatory network remains to be further elucidated. +ird,
the EMTscore’s robustness should be further tested based on
clinical trials. Related research would be important for the
EMTscore’s clinical application. +ese shortcomings will be
alleviated with the development of large data pools and
further research.

5. Conclusions

In summary, we developed an EMT score to predict UVM
patient prognosis, immune microenvironment characteris-
tics, and immunotherapy responsiveness in a machine-
learning-based method. +e EMT score robustness was
validated by two external validation cohorts. +e EMTscore
predicted the UVM patient outcomes and immune activity
in the training and validation cohorts. +e immunotherapy
cohort-based analysis revealed the EMT score’s potential in
the preliminary identification of immunotherapy candi-
dates. +is research may facilitate precise treatment in
a further clinic-integrated oncology therapy of UVM.
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