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Abstract

Background: Aohan fine wool sheep (AFWS) is a historically bred fine wool sheep, cultivated in China. The wool
has excellent quality and good textile performance. Investigating the molecular mechanisms that regulate wool
growth is important to improve wool quality and yield. Circular RNAs (circRNAs) are widely expressed non-coding
RNAs that can act as competitive endogenous RNAs (ceRNAs) to bind to miRNAs. Although circRNAs have been
studied in many fields, research on their activity in sheep wool follicles is limited. To understand the regulation of
circRNAs in the growth of fine wool in sheep, we used RNA-Seq to identify circRNAs in sheep shoulder skin
samples at three developmental stages: embryonic day 90 (E90d), embryonic day 120 (E120d), and at birth (Birth).

Results: We identified 8753 circRNAs and found that 918 were differentially-expressed. We then analyzed the
classification and characteristic of the circRNAs in sheep shoulder skin. Using Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG), we identified the source genes of circRNAs, which were mainly
enriched in cellular component organization, regulation of primary metabolic processes, tight junctions, and the
cGMP-PKG and AMPK signaling pathways. In addition, we predicted interactions between 17 circRNAs and eight
miRNAs, using miRanda software. Based on the significant pathways, we speculate that circ_0005720, circ_0001754,
circ_0008036, circ_0004032, circ_0005174, circ_0005519, and circ_0007826 might play an important role in
regulating wool follicle growth in AFWS. Seven circRNAs were randomly selected to validate the RNA-Seq results,
using gRT-PCR.

Conclusion: Our results provide more information about circRNAs regulation of wool follicle development in AFWS,
and establish a solid foundation for future research.
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Background

Wool is a source of high-quality textile raw materials de-
rived from animals, that has a significant impact on the
national economy. Improving the production of high-
quality fine wool has become a hot topic in recent years.
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Wool growth is a very complex physiological and bio-
chemical process, influenced by genetics, the environment,
and nutrition. Wool grows from hair follicles (HF), and its
yield and quality are closely related to the development of
wool follicles. These are complex organs of the skin that
are capable of self-regeneration, and their structure plays
a very important role in their periodic growth process.
Mammalian hair follicles are divided into primary hair fol-
licles (PF) and secondary hair follicles (SF). It is the SF that
is producing fine wool. Wool follicle morphogenesis in-
volves the coordination of a series of signaling pathways
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that connect epidermis and dermis. The development of
hair follicles is regulated by various signaling pathways,
such as Wnt, sonic hedgehog (SHH), notch, bone mor-
phogenic protein (BMP), and fibroblast growth factor
(FGF). Various downstream signaling molecules, such as
[B-catenin, Msx1, and Msx2, are involved in hair follicle
morphogenesis [1]. In recent years, many studies have in-
dicated that non-coding RNAs act as important post-
transcriptional regulators of gene expression during hair
follicle development, including microRNAs (miRNAs), cir-
cular RNAs (circRNAs), and long non-coding RNAs
(IncRNAs). LncRNA acts on the Wnt signaling pathway
and affects hair follicle growth and development [2]. Non-
coding RNA has also been shown to regulate wool fine-
ness and growth of SF in cashmere goats [3].

CircRNAs are a novel type of noncoding RNA that
regulate transcriptional and post transcriptional genes ex-
pression [4, 5]. They are typically generated by back-
splicing from exons of protein-coding genes and their 5°
and 3’ ends join together to form a ring. Because of the
absence of 5" and 3’ open ends, they are more stable than
linear RNAs and are resistant to RNase R digestion [6, 7].
CircRNAs are widely distributed in mammalian cells and
endogenously regulate genes expression [8]. They have
specificity for tissue, developmental stage, and cell type [9,
10]. CircRNAs act as miRNA molecule sponge [11], regu-
late gene transcription [12, 13], interact with RNA-
binding proteins [14, 15], and translate proteins [16].

Recently, studies have found that exposure to melatonin
disturbs a key secretion signal in goat hair follicle stem
cells, and consequentially disturbs normal goat hair follicle
development [17]. CircRNA has been shown to participate
and regulate human skin tissue regeneration [18]. It was
also shown that it has tissue-specific and stage-specific ex-
pression in chicken follicle granulosa cells. As such, cir-
cRNAs are useful when investigating the regulatory
mechanisms of follicular growth [19]. Research on the hair
follicle cycle in the Angora rabbit revealed the existence of
a IncRNA/circRNA-miRNA/mRNA network and has
shown that non-coding RNAs (ncRNAs) play an import-
ant role in regulating the HF cycle [20]. In another recent
study, a total of 12,468 circRNAs and 9231 differentially-
expressed circRNAs were identified in the estrus and an-
estrus states of the sheep pituitary system [21]. However,
there are few reports on the involvement of circRNA in
the development of sheep wool follicles.

Aohan fine wool sheep (AFWS) is a sheep breed in
China that produces excellent wool quality, with good
textile process performance. Increased understanding of
the function of genes involved in wool follicle develop-
ment could assist in selective breeding for specific traits
and thus improve wool yield and quality [22]. In a previ-
ous study on wool follicle development in AFWS, we
showed that a small number of SF could already be
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observed at embryonic day 90 (E90d), and a large num-
ber of SF were found at embryonic day 120 (E120d).
Secondary wool follicles had mostly completed develop-
ment by the time of birth (Birth) [23].

To date we have only a very limited understanding of
circRNA expression in AFWS follicles. To study the re-
lationship between circRNA and changes in wool follicle
at different developmental stages in sheep, RNA-Seq was
used to detect the expression profiles of circRNA in skin
tissue from AFWS at E90d, E120d, and Birth. Our re-
sults indicate that circRNA plays an important role in
the formation of sheep wool follicles.

Results

Secondary wool follicle growth process

Hematoxylin and eosin (H&E) staining at E90d showed
primary- and early secondary-stage wool follicles
(Fig. 1a). From observing wool follicles at this stage, it is
clear that PFs occur early, the bulbs are large, the wool
follicles are long and have accessory structures such as
sweat glands, sebaceous glands, and the arrector pili
muscles. Secondary wool follicles at this stage are
smaller and grow nearer to the epidermis than the PFs
(Fig. 1b). At E120d, the SFs are separated from PFs and
arranged in parallel to them (Fig. 1c, d). By birth, some
of the SFs have matured and their wool has passed
through the body surface (Fig. 1e, f).

Sequencing and mapping of the sheep skin tissue
transcriptome

To examine the circRNAs expression profiles in sheep
skin at different developmental stages, we performed
RNA Integrity Number (RIN) tests on nine sheep skin
tissue samples, three from each of the three develop-
mental periods (E90d, E120d, and Birth). The RIN values
of the samples are listed in Additional file 1 (Table S1).
Results show that the RNA quality met the minimum re-
quirements for sequencing. Library was thus constructed
and the samples were sequenced. Raw reads were ac-
quired via Illumina sequencing, which were then proc-
essed to remove rRNA, low-quality sequences, and
junction contamination, among other processing. All
subsequent analyses were based on these processed
clean reads. These reads were mapped to the sheep gen-
ome. The overall assessment of sequencing data is listed
in Additional file 1 (Table S1). A total of 8753 candidate
circRNAs and 3119 source genes were identified (Add-
itional file 2: Table S2), 1648 of which (18.8%) were
expressed at all developmental stages (Fig. 2a). The 30
highest-expressed circRNAs in each group are listed in
Table 1. Based on their location in the genome, the 8753
circRNAs were classified into six types: (1) Classic: when
the formation site of the circRNA was exactly on the
boundaries of exons (83.4%); (2) Alter-exon: when one



Zhao et al. BMC Genomics (2020) 21:187

Page 3 of 14

BREL N

follicle; SF: Secondary wool follicle
A\

Fig. 1 Hematoxylin-Eosin staining of sheep wool follicles at different developmental stages. Tissue morphology of secondary wool follicles at
different stages was determined. Horizontal and longitudinal slices of tissue at E90d (a, b), E120d (c, d), and Birth (e, f) stages. PF: Primary wool

end of the circRNA formation site was on the exon
boundary, and the other end was inside the exon (8.6%);
(3) Intron: when the formation site of the circRNA was
completely in the intron region (1.2%); (4) Overlap-exon:
when the formation site of the circRNA spanned the
exon region (5.5%); (5) Antisense: when the circRNA
was formed by the antisense strand of the gene (0.3%);
(6) Intergenic: when the formation site of circRNA was
completely inside the intergenic region (1.0%) (Fig. 2b).
circRNAs typically comprised of two to four exons (Fig.
2¢). In circRNAs with only one exon, the length of the
exon was found to be significantly longer than that of a
circRNAs comprised of multiple exons (Fig. 2d). The
peak gene density, based on the expression of circRNAs
in all samples, was between 0.3 and 0.4 (Fig. 2e).

Identification of differentially-expressed circRNAs
Based on the criterion of differentially-expressed cir-
cRNAs, clustering maps (Fig. 3a) were used to illustrate

their distribution. Significantly differentially-expressed
circRNAs in the figure are in yellow (upregulated ex-
pression) or blue (downregulated expression). The num-
ber of differentially-expressed circRNAs in the three
developmental stages are displayed in Fig. 3b, c. We de-
tected 377 differentially-expressed circRNAs and 314
source genes by comparing Birth and E90d, 467
differentially-expressed circRNAs and 383 source genes
by comparing Birth and E120d, and 507 differentially-
expressed circRNAs and 417 source genes by comparing
E120d and E90d (Additional file 3: Tables S3A, S3B,
S3C).

Among the DEGs (Differentially expressed genes),
circ_0004932 and circ_0004936 were mapped to gene
13,410 (TRPS1). 1t has been reported that Trpsl is in-
volved in the growth and development of hair follicle
cells [24]. Similar to circ_0004932 and circ_0004936,
other circRNAs were also associated with hair follicle
growth. These included circ_0000997 and cir_0000999
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Fig. 2 General characteristics of circRNAs in Aohan fine wool sheep skin. a Venn diagram showing circRNA annotated in sheep shoulder skin
during the three developmental stages. b Classification of 4123 circRNAs screened in this study. Expression pattern of circRNAs at the three
developmental stages. Exon number (c) and length (d), and expression density (e) of the samples

that were mapped to source gene 851 (VAV3), and circ_  Gene ontology and Kyoto encyclopedia of genes and
0001520 and circ_0001524 that were mapped to source = genomes pathway enrichment analyses

gene 3008 (TMEFFI) [25, 26]. We also found that the The function of circRNA is reflected through their
expression level of circ_0006736 at E120d and Birth  source gene. It thus can be further studied by analyzing
stages was significantly higher than E90d. It might there- the Gene Ontology (GO) terms of their source genes.
fore play a role in the growth, development, and matur- Based on statistical analysis of differentially-expressed
ation of SF. Mapping results showed that gene 20,646 circRNAs and their source genes (Additional file 3:
(SMADI) is the source gene of circ_0006736. This gene  Table S3), the top ten terms of candidate genes in each
can control the transformation of early hair follicle comparison group were selected for mapping (Fig. 4a-c).
morphology by controlling the activity of stem cells [27].  Detailed information is listed in Additional file 4 (Tables
The expression levels of circ_0005454 and circ_0005453  S4A, S4B, S4C). The most significantly enriched GO
at E120d were significantly higher than E90d. We have terms were: cellular component organization (GO:
also noted that SFs grew significantly during the period  0016043), regulation of primary metabolic process (GO:
between E90d and E120d. Based on these observations, 0080090), intracellular part (GO: 0044424), intracellular
we speculate that circ_0005454 and circ_0005453 par- organelle (GO: 0043229), membrane-bounded organelle
ticipate in the growth of SF. Expression of circ_0004116  (G0O:0043227), and protein binding (GO: 0005515).

was high at all three developmental stages. It therefore To predict the pathways of the significantly enriched
might be active through the entire wool follicle growth  source genes, we performed an enrichment analysis using
process, including that of both PF and SF. In the future, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
we hope to further study the function of RFX7, the pathway analysis (Fig. 4d, Additional file 5: Table S5A, S5B,
source gene of circ_0004116, in AFWS wool follicles  S5C). Six significantly enriched pathways were identified.
development. These were endocytosis, lysine degradation, apoptosis,
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Table 1 The top 30 expressed circRNAs during the three developmental stages of wool follicles

circRNA ID E90d E120d Birth Source Gene

oar_circ_ 0004116 1 1 1 genel 1824
oar_circ_0007074 2 15 2 gene21688
oar_circ_0004478 3 4 5 genel2317
oar_circ_0005665 4 5 4 genel 5784
oar_circ_0002449 5 2 3 gene5355
oar_circ_0000988 6 3 7 gene823
oar_circ_0006745 7 7 9 gene20657
oar_circ_0006895 8 12 24 gene20962
oar_circ_0005236 9 6 15 genel3823
oar_circ_0000584 10 11 10 gene2553
oar_circ_0006529 11 9 17 genel19832
oar_circ_0006098 12 10 11 genel 6874
oar_circ_0004973 13 22 8 genel3488
oar_circ_0005612 14 18 16 genel4199
oar_circ_0006659 15 17 26 gene20411
oar_circ_0000745 16 8 6 gene67
oar_circ_0007371 17 13 12 gene22388
oar_circ_0005870 18 14 25 genel6336
oar_circ_0005692 19 16 20 genel5838
oar_circ_0000805 20 20 14 gene587
oar_circ_0004075 21 29 22 genel1790
oar_circ_0005100 22 19 19 genel3664
oar_circ_0000806 23 25 23 gene587
oar_circ_0004749 24 23 27 genel2991
oar_circ_0005915 25 27 13 genel6538
oar_circ_0007026 26 21 28 gene21585
oar_circ_0007070 27 26 18 gene21688
oar_circ_0000175 28 28 29 genel821
oar_circ_0001881 29 24 21 gene3s567
oar_circ_0007898 30 30 30 gene25089

The 30 highest-expressed circRNAs in each group. Red color indicates a higher expression level of circRNAs and green color indicates lower expression level. The
numbers 1 to 30 in each column represent the expression level of circRNA in descending order

oar Ovis aries reference

human papillomavirus infection, adherence junction, and
tight junction. The six pathways involve 55 enriched source
genes and their corresponding 255 circRNAs (Add-
itional file 6: Table S6A). Among the 55 source genes, seven
are associated with wool follicle growth. There were 35 cir-
cRNAs associated with these seven source genes (Add-
itional file 6: Table S6B). Of these, seven were found to be
significantly differentially-expressed in our study: circ_

0005720 from source gene 15,869 (AKT3), circ_0001754
from source gene 3277 (TGFBRI), circ_0008036 from
source gene 25,354 (SMAD?2), circ_0004032 from source
gene 11,746 (SOS2), circ_0005174 from source gene 13,720
(RB1), circ_0005519 from source gene 15,130 (EZH1), and
circ_0007826 from source gene 24,949 (FGER2). A network
describing the connections between the source genes and
circRNAs was constructed (Fig. 5).
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Fig. 3 Identification of differentially-expressed circRNAs. a Heatmap of differentially-expressed circRNA. Yellow indicates that the circRNA had a
higher expression level, and blue indicates that the circRNA had a lower expression. b Differentially-expressed circRNA statistics, the number of up
and down-regulated circRNAs in each group has been marked on the graph. c Differentially-expressed circRNAs in pairwise comparisons groups

Target miRNAs of differentially expressed circRNAs at the

different developmental stages in sheep

To further understand the functions of circRNAs, the
miRanda software was used to predict the interactions
between the identified circRNAs and miRNAs. A total of
17 circRNAs and eight miRNAs were identified, and the
relationships between them were constructed into a net-
work (Fig. 6, Table 2). For example, circ_0003042 is sig-
nificantly differentially-expressed between Birth and
E120d. This circRNA was predicted to interact with
miR-432. By binding all available miR-432, circ_0003042
prevents miR-432 from exerting its function, effectively
acting as “miRNA sponge.”

Validation of circRNAs expression by qRT-PCR

To validate the expression levels of differentially-
expressed circRNAs, we randomly selected seven highly
expressed circRNAs and detected their expression levels
by qRT-PCR (Additional file 7: Table S7). These results
were consistent with the trends observed in the RNA-
Seq data. The correlation results for all circRNAs were
r> 0.8, indicating that the RNA-Seq is reliable (Fig. 7a-
g). As can be seen in Fig. 7h, the circRNAs we selected
could resist RNase R digestion, while the linear RNA in
the sample (GAPDH) could not. After RNase R diges-
tion, expression of the seven circRNAs did not signifi-
cantly decrease. On the contrary, most of them actually
increased. We speculated that circRNAs were relatively
enriched, and the efficiency during reverse transcription
has relatively improved. The relative expression levels
quantified by qRT-PCR have therefore also increased.
RNase R digestion basically increased the purity of

circRNAs. The results show that circRNAs can resist the
digestion of RNase R, while linear RNAs cannot.

Discussion

In this study, we investigated the expression of circRNAs
in sheep skin wool follicles at different developmental
stages. Using RNA-Seq technology, we obtained 8753
circRNAs at the three developmental stages in sheep. Of
the identified differentially-expressed circRNA and
source genes, respectively, 377 and 314 were detected by
comparing Birth and E90d, 467 and 383 were detected
by comparing Birth and E120d, and 507 and 417 were
detected by comparing E120d and E90d. In a study on
the three hair follicle cycle stages of Angora rabbit, per-
formed using RNA sequencing, 247 differentially-
expressed circRNAs (128 upregulated and 119 downreg-
ulated) were found. It was suggested that several cir-
cRNAs, including novel ones such as circ_0004876, circ_
0005177, and circ_0026326, might play a role during
hair follicle cycle [20]. Many mammalian species have
similar hair follicle growth patterns, and a number of
them have been studied, including goat [28], rat [29],
and human [30]. The main purpose of analyzing sheep
wool follicle circRNAs was to reveal factors that might
play a role in wool growth, thereby elucidating the
underlying molecular mechanisms.

To further investigate potential circRNAs mechanisms
of action, we applied GO and KEGG analyses. In GO an-
notation, the number of DEGs between any two stages
exhibiting significant differences, reflecting a cumulative
effect on phase traits. It was found that source genes of
the differentially-expressed circRNAs function primarily
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in biological processes. These included terms under Cel-
lular Component: cellular component organization (GO:
0016043), regulation of cellular processes (GO:
0050794), cellular macromolecule metabolic processes
(GO: 0044260), intracellular organelle (GO: 0043229)
and organelle part (GO: 0044422); and Molecular Func-
tion: binding (GO: 0005488), ion binding (GO:
0043167), and heterocyclic compound binding (GO:
1901363). These findings indicate that the different
source genes of circRNAs at the three developmental
stages play a significant role in of wool follicle cells’ for-
mation, playing functions related to GO terms such as
regulatory of metabolic processes. Some hair follicle-
related GO terms were also enriched in our study, in-
cluding regulation of hair cycle (GO: 0042634), skin de-
velopment (GO: 0043588), hair follicle development
(GO: 0001942), regulation of epidermis development
(GO: 0045682) and hair cycle process (GO: 0022405).

Some of them were reported to participate in the growth
of hair follicle, and might be important research targets
[20]. It was found that circRNAs expression profiles usu-
ally follow those of their source gene [31, 32]. Our study
suggests that the identified circRNAs might be associ-
ated with these GO terms, however further validation is
required.

The KEGG is a pathway database for systematic ana-
lysis of gene function. The results we obtained suggest
that multiple signaling pathways form a complex regula-
tory network during wool follicle development. It was
reported that human papillomavirus infection [33], ad-
herence junction [34], and tight junction [35] signaling
pathways participate in the growth and development of
hair follicles. In our study, seven circRNAs (circ_
0005720, circ_0001754, circ_0008036, circ_0004032,
circ_0005174, circ_0005519, and circ_0007826) were
identified based on the significant KEGG pathways. The
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Table 2 Prediction of targeting relationship between circRNA

and miRNA

circRNA 1D miRNA Name
oar-circ_0002552 oar-miR-27a
oar-circ_0005874 oar-miR-27a
oar-circ_0005112 oar-432-5p

oar-circ_0005113
oar-circ_0005367
oar-circ_0006525
oar-circ_0002663
oar-circ_0003475
oar-circ_0003476
oar-circ_0003042
oar-circ_0003043
oar-circ_0007183
oar-circ_0007185
oar-circ_0007199
oar-circ_0007200
oar-circ_0001220
oar-circ_0000173

oar-miR-329b-5p
oar-miR-329b-5p
oar-miR-329b-5p
oar-miR-370-3p
oar-miR-410-5p
oar-miR-410-5p
oar-miR-432
oar-miR-432
oar-miR-539-5p
oar-miR-539-5p
oar-miR-539-5p
oar-miR-539-5p
oar-miR-654-3p
oar-miR-665-3p

oar Ovis aries reference

Page 9 of 14

source genes of these circRNAs (AKT3, TGFBRI,
SMAD?2, SOS2, RB1, EZH1, and FGFR2) were reported
to participate in the growth process of hair follicles [36—
43]. Comparison between our results and those of previ-
ous studies suggests that the selected circRNAs might
play an important role in the signaling pathways during
different stages of SF development in AFWS. However,
further research is required to identify the exact related
mechanisms.

Although some signaling pathways, such as the Hedge-
hog [44], MAPK [45], FoxO [46], TGE-p [47], NE-xB [48],
TNF [49], and Wnt [50] were found not to be significant in
our study, the source genes of these were previously re-
ported to regulate the development of skin and hair [51].
Wnt, Hedgehog and NF-kB/Edar pathways were found to
be indispensable in the process of hair follicle growth [52].
Edar signaling pathway is involved in controlling the devel-
opment and circulation of HFs. The interaction between
ectodysplasin receptor (EDAR) and bone morphogenetic
protein (BMP) signaling and transcription is at the core of
the PF model [53, 54]. Studies have shown that Wnt/p-ca-
tenin signaling is important for NF-«B activation, and that
Edar can directly target Wnt. The Wnt/B-catenin and
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EDA/Edar/NF-«B signaling pathways play an important
role in the initiation and maintenance of PF placodes [55].
Research on the relationship between these signaling path-
ways is still incomplete, and what is known about the mo-
lecular mechanisms involved in HF development has been
derived primarily from studies conducted in mice and
humans [56, 57].

Recent studies have found that some circRNAs have
multiple binding sites for miRNAs (such as CDR1as and
miR-7, SRY and miR-138) [9, 58]. As circRNAs are unable
to directly regulate their target genes, they function as
“miRNA sponge.” It has been reported that circRNAs par-
ticipate in many biological processes by acting as miRNA
sponges, thereby removing the inhibitory effects of miR-
NAs on their target genes [58]. In recent years, miRNAs
have been studied from a variety of aspects related to HF
growth and cell cycle [59, 60]. A study has shown that cir-
cRNAs can regulate gene expression through a circRNA-
miRNA-mRNA pathway [31]. Another pioneering study
has demonstrated that miRNAs are differentially-
expressed between fat-tailed and short-tailed sheep breeds
[61]. However, there remains lack of research on circRNA
in sheep SF at different developmental stages. A circRNA-
miRNA network, which contains 17 circRNAs and eight
miRNAs, was constructed based on the results of the
KEGG pathway analysis. This network can help us better
understand the characteristics of sheep SF at the different
developmental stages. In a study on proliferation of thy-
roid carcinoma, miR-370-3p was reported to act as a tar-
get of circRNA_NEKG6 via the Wnt signaling pathway [62].
In another study, miR-432 was reported to be associated
with formation of curly hair of Chinese tan sheep [63]. It
was also shown that miR-27a regulates the cell cycle by
inhibiting the TGF-B/smad pathway [64, 65]. The related
circRNAs identified in our study might play an important
regulatory role in the growth and development of wool
follicles in AFWS. We intend to verify this further in fu-
ture experiments. Our study detected a large number of
circRNAs in the skin of AFWS. These results provide a
solid theoretical foundation for investigating the associ-
ation between circRNAs and sheep (secondary) wool fol-
licle development. Furthermore, candidate circRNAs
chosen for our future wool follicle regulation research in-
clude circ_0005720, circ_0001754, circ_0008036, circ_
0004032, circ_0005174, circ_0005519, and circ_0007826.

Conclusion

Our study is the first to elucidate changes in wool folli-
cles in sheep’s fetal development. RNA-Seq analysis
identified 918 differentially-expressed circRNAs. Using
miRanda to predict relationships between circRNAs and
miRNAs, we identified 17 pairs of circRNA-miRNA. Of
the identified miRNAs, miR-370-3p, miR-432, and miR-
27a were reported to be associated with hair growth.
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The KEGG analysis of the differentially expressed genes
identified six significantly enriched pathways. These in-
clude of 55 source genes. Seven of these genes, corre-
sponding to 35 circRNAs, are involved in regulation of
wool follicle growth. Seven of these 35 circRNAs were
found to be differentially-expressed. These findings
might provide clues that would assist future research on
the molecular mechanisms of wool growth.

Methods
Sample preparation
The AFWS used in this study were raised in the AFWS
Stud Farm of Inner Mongolia Autonomous Region and
fed according to the farm’s feeding plan. Twelve healthy
AFWS ewes of similar age (3-5years old), body weight
(55-60 kg), and body size were selected. Estrus of the 12
ewes was synchronized, and artificial insemination was
performed during September. The ewes and lambs were
anesthetized with sodium pentobarbital at a dose of 25
mg/kg by intravenous injection. After samples collection,
the ewes and born lambs were released, whereas the fe-
tuses from E90d and E120d were placed, still under
anesthesia, inside a closed chamber, which was filled
with 20% carbon dioxide per minute. When gas concen-
tration had reached 80%, the fetuses died. The anesthesia
procedure was performed following published protocols
[66, 67].

The 2-cm-diameter skin tissue samples (about 0.5-1.0
g per fetus/lamb) were collected from the shoulder area
at the three developmental stages (E90d, E120d, and
Birth), three individuals for each stage, nine in total. The
collected samples were placed into clean RNAase-free
Eppendorf tubes and stored under liquid nitrogen, pend-
ing total RNA extraction. Skin samples were also fixed
in 4% formaldehyde, and paraffin sections were prepared
and stained with H&E for histological observations.

RNA isolation and quality assessment

To extract total RNA from the nine samples, TRIzol re-
agent (Life Technologies, CA, USA) was used. RNase-free
DNase (Tiangen, Beijing, China) was used to remove
DNA contamination from the extracted RNA. RNA deg-
radation and contamination were monitored by 1% agar-
ose gel electrophoresis and RNA purity was measured at
an OD260/280, using a NanoDrop ND-2000 instrument
(Thermo Fisher Scientific, MA, USA). We also assessed
RNA integrity by testing the RIN of the samples.

CircRNA sequencing

High-throughput whole transcriptome sequencing and
subsequent bioinformatics analyses were performed by
Annoroad Technologies (Beijing, China) as follows: A
total of 3 ug RNA per sample were used for circRNA
sample preparation. The Ribo-Zero™ Gold Kit was used
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to remove rRNA from the samples, and different index
tags were selected to build the library according to the
specifications of NEB Next Ultra Directional RNA Li-
brary Prep Kit for Illumina (NEB, Ispawich, USA). The
specific steps of library construction were as follows:
Ribosomal RNA was removed using a kit, RNase R was
added to remove linear RNA. Fragmentation Buffer was
added to the reaction system to fragment the RNA, and
then this fragmented RNA was used as a template for
first strand cDNA synthesis, using random primers
(Random Hexamers). Second strand cDNA was synthe-
sized by adding buffer, INTPs, RNase H, and DNA Poly-
merase 1. After purification by QiaQuick PCR kit and
elution with EB buffer, the following steps were per-
formed: repair ending, adenine addition, sequencing
linker addition, and target size fragments’ recovery (ap-
proximately 350 bp) by agarose gel electrophoresis. Ura-
cil N-glycosylase (UNG) was then added to digest the
DNA strand prior to PCR amplification. Finally, agarose
gel electrophoresis was used to recover the DNA frag-
ments of the target size. The constructed library was se-
quenced using Illumina X Ten and PE150 sequencing
strategy.

Sequencing analysis of circRNA

Sheep genome oar_v4.0 was selected as reference genome
for comparison with the RNA-Seq data. Reads were
mapped to the reference genome using the BWA-MEM
method, which is fast and efficient in aligning reads, and al-
lows mapping fragment reads to genomes as well. The raw
reads generated by Illumina sequencing were processed to
create clean reads by several processes, including de-
junction contamination and removal of rRNA. For map-
ping, the BWA-MEM algorithm was first used for sequence
splitting and alignment. The resulting Sam files were
scanned in search of PCC (paid Chinese clipping) and PEM
(paid end mapping) sites, as well as GT-AG splicing signals.
Finally, sequences with junction sites were re-aligned with
dynamic programming algorithm to ensure the reliability of
circRNA identification. CIRI [68], an efficient and rapid tool
for circRNA recognition, was also used. All subsequent ana-
lyses were based on the clean reads. The process of analyz-
ing the circRNAs sequencing information in this study was
divided into seven parts: (1) sequencing data quality control,
(2) data alignment analysis, (3) circRNAs identification and
classification, (4) circRNAs characteristics analysis, (5) cir-
cRNAs differential analysis, (6) differentially-expressed cir-
cRNAs source genes functions, and (7) miRNA molecular
sponge analysis.

Identification of differentially-expressed circRNAs

We used SRPBM as a normalization method to quantify
the expression of circRNA. The DEseq2 [69] software was
used to analyze the differentially-expressed circRNAs. The
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three fetuses/lambs at each stage were used as biological
replicates. Differentially-expressed circRNAs were de-
tected by comparing one stage with another. CircRNAs
with P <0.05 and absolute fold-change values of > 1.5 in
any of the pairwise comparisons were considered to be
significantly differentially-expressed. Upregulated and
downregulated circRNA numbers were eventually ob-
tained. The calculation formula of SRPBM is: SRPBM

= SR*—NIOQ, where SR is the number of spliced reads, and N
is the total number of mapped reads in the sample.

Gene ontology and Kyoto encyclopedia of genes and
genomes pathway enrichment analyses

Gene Ontology and KEGG pathway analyses were used
to annotate the source genes of differentially-expressed
circRNAs. The Blast2GO method [70] was used for GO
functional analysis, while KOBAS software was used to
test the statistical enrichment of differential gene expres-
sion in the KEGG pathway analysis [71]. Enrichment
was considered significant in the GO term and KEGG
pathway analyses when P < 0.05.

Prediction of miRNAs targeted by circRNA

To explore the functions of circRNAs, predict the target-
ing relationship, and thus predict which of the circRNAs
function as miRNAs sponges, we used miRanda V.3.3a
(http://www.microrna.org/microrna/home.do) [72]. In
view of known reports and extractability of the se-
quences, we selected only CLASSIC and ANTISENSE
circRNA types for the prediction of the miRNA targeting
relationship.

Experimental validation of circRNAs

Quantitative real-time PCR (qRT-PCR) was used to val-
idate circRNAs expression. We randomly selected seven
circRNAs for validation. The expression levels of the se-
lected circRNAs were normalized against the expression
of a housekeeping gene, GAPDH. Primers were designed
and synthesized by Sangon Biotech Co., Ltd. (Shanghai,
China). Total RNA was converted into cDNA using ran-
dom hexamers with Transcriptor First Strand cDNA
Synthesis Kit (Roche, Australia). The qRT-PCR analysis
was carried out in triplicate with iTaq™Universal SYBR@
Green Supermix (Bio-Rad, CA, USA) on a Bio-Rad
CEX96 instrument (Bio-Rad, CA, USA). The total 20 puL
reaction mixture contained 10pL 2 xiTaq™Universal
SYBR® Green Supermix, 1 uL cDNA, 8 uL. ddH,O, and
0.5 uL. each of forward and reverse primers. The follow-
ing program was used: 95°C for 10 min; 45 cycles of
95°C for 10's, 60 °C for 10s, and 72 °C for 10s; 72 °C for
6 min. The 272" method was used to analyze the rela-
tive expression levels of the selected circRNAs.
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To determine the resistance of the selected seven cir-
cRNAs to RNase R digestion, total RNA and RNase R
(Geneseed Biotech, Guangzhou, China) were mixed to-
gether. The mix was incubated at 37°C for 15min,
cDNA was then synthesized, and expression level of cir-
cRNAs was finally detected by qRT-PCR.
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