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SUMMARY

The formation of tumor immune microenvironment (TIM) is complicated and
poorly understood. Little is known about the effect of a viral infection potentially
inducing an additional immune response in the TIM. Here, we identify Epstein-
Barr virus (EBV) expression in the TIM in colorectal cancer (CRC) tissue through
EBV-encoded RNA in-situ hybridization and RNA sequencing data and investigate
the effects of EBV on TIM composition and clinical outcomes. EBVwas detected in
tumor-infiltrating lymphocytes, but not in cancer cells. EBV positivity was associ-
ated with older age, male sex, and SMAD4mutations. EBV-positive tumors were
characterized by enrichment in chemokine/cytokine signaling pathways and
altered immune cell composition, including plasma and CD4 T cells, as well as can-
cer cells intrinsically enriched pathways related to immune tolerance, leading to
poor prognosis. In conclusion, we identified EBV expression in TIM and suggested
its association with poor prognosis by altering the TIM in CRC.

INTRODUCTION

The formation of the tumor microenvironment (TIM) is affected by various factors. As cancer cells interact

closely with stromal cells and immune cells,1 the signals from cancer cells are known to be one of the major

factors in forming the TIM. T cell depletion in TIM can be induced by WNT/ß-catenin signaling from cancer

cells.2 Microsatellite instability-high (MSI-H) tumors characterized by hypermutation show abundant

immune cell infiltration, which is beneficial for immunotherapy.3 In addition, various signaling caused by

oncogenic mutations, including KRAS and TP53 are known to characterize the TIM.4 However, other

than these cancer cell-related signals, at present, limited information is available on the factors related

to patient characteristics.

Epstein-Barr virus (EBV) infection increases the risk of several malignant tumors, including nasopharyngeal

carcinoma, malignant lymphoma, and gastric cancer.5 However, the effect of the EBV expression in lym-

phocytes at tumor stroma, and ultimately the effect on TIM composition of TIM changes, is little known

in colorectal cancer (CRC). Recently, we identified that EBV was activated in tumor-infiltrating B lympho-

cytes in a subset of hepatocellular carcinoma (HCC) with abundant immune cell infiltrate.2 HCCs with

EBV activation in the TIM have a poor prognosis despite abundant immune cell infiltration in the tumor.

This suggests that some infiltrating immune cells do not attack cancer cells but may be related to the

chemotaxis of immune cells based on the activity of EBV. Specific organs, such as the liver, do not have

direct contact with the external environment, and typically do not have immune cells in their tissues. How-

ever, hollow viscous organs, such as the intestine, have resident immune cells for protection from external

pathogens. However, the effect of EBV expression in TIM on the composition of TIM or the prognosis of

patients with malignant diseases in these hollow viscous organs is not known.

Therefore, we investigated the presence of EBV expression in the CRC microenvironment and the effect of

EBV expression on the immune cell composition of the TIM and its clinical significance in CRC.

RESULTS

EBV expression in tumor-infiltrating lymphocytes in colorectal cancer

First, we evaluated EBV in 87 CRC tissues and identified EBV in TILs in the CRC tissues using EBV-ISH to

detect EBV-encoded RNA, which is the gold standard for detecting latent EBV (Figure 1A). Of the total
iScience 26, 105919, January 20, 2023 ª 2023 The Authors.
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Figure 1. Epstein-Barr virus (EBV) activation in tumor stroma

(A) In situ hybridization (ISH) to Epstein-Barr virus (EBV)-encoded RNA (EBER) for detecting and localizing latent EBV (bar = 500 mm). EBVs were positive for

tumor infiltrating lymphocytes.

(B) EBVs were positive in 38% of cancer tissue.

(C) EBV positivity, specifically in high EBV positivity, was increased with age (Kruskal-Wallis test).

(D) EBV positivity was identified more frequently in males (Wilcoxon rank sum test).
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87 CRC samples, 38% showed EBV positivity in TILs; 12 (14%) showed high EBV-positive density (>10 cells/

HPF), and 21 (24%) showed low EBV-positive density (Figure 1B). EBV expression was not detected in cancer

cells in all 87 CRC samples. EBV-positivity was significantly associated with older age at diagnosis

(p = 0.0284, Figure 1C) and male patients (p = 0.0235, Figure 2D).

Clinical significance of EBV positivity in tumor microenvironment

The presence of the EBV viral genome was investigated in RNA-seq data, which indicates EBV gene expres-

sion. In addition, to determine whether EBV detection in RNA-seq data could represent EBV-ISH results in

tissues, we compared results from cancer tissue and corresponding cancer cell organoid RNA-seq data

with EBV-ISH results. We found that EBV-ISH results in cancer tissues significantly correlated with EBV pos-

itivity detected in RNA-seq data (p = 1.19e-05), whereas in cancer organoids composed of only cancer cells,

EBV positivity was not correlated with EBV-ISH (Figure 2A), which indicates that the primary source of EBV

positivity in CRC is TIM. In particular, high-density EBV positivity in EBV-ISH had a good correlation with

RNA-seq results (Figure 2B, left), and these patients tended to have a poor prognosis (Figure 2B, right).

Because we found the correlation in EBV positivity between EBER-ISH and RNA-seq in cancer tissues, we

collected RNA-seq data from the TCGA CRC to overcome the small size of our AMC cohort. The EBV viral

genome was examined from a total of 292 TCGA CRC RNA-seq data generated using the Illumina Hi-Seq

platform (Figure 2C). EBV viral sequence was detected in 53% of the TCGA CRC. The EBV-positivity was

also significantly associated with older age (Figure 2D). In addition, in this large independent cohort,

EBV-positivity was significantly associated with poor prognosis in both overall (p = 0.021) and
2 iScience 26, 105919, January 20, 2023
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Figure 2. Epstein-Barr virus (EBV) detected in RNA-seq

(A) EBV viral genome was not detected in organoids (cancer cells only); however, it was frequently detected in cancer tissue, which was correlated with

detection by EBV-ISH in cancer tissue.

(B) High EBV positivity by EBV-ISH showed high EBV sequence read counts in tissue RNA-seq (Wilcoxon rank sum test), and the patients with high EBV

positivity had a tendency for poor prognosis.

(C) Because EBV from tissue RNA-seq correlated with EBV-ISH, EBV viral reads were detected from a large RNA-seq dataset of colorectal cancer from TCGA.

(D) EBV was detected in half of TCGA colorectal cancer tissues, and positivity was also associated with increased age (Wilcoxon rank sum test).

(E) Survival analysis revealed a significantly poor prognosis in patients with EBV positive (log-rank test).

(F) EBV positivity was an independent prognostic factor after adjustment for stage, age, and sex (Multi-variated Cox regression test).
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progression-free survival (p = 0.031) (Figure 2E). Because EBV-positivity was associated with sex and age of

the patients, these confounding factors and tumor stage were adjusted, and the EBV-positivity was still

significantly associated with poor prognosis (Figure 2F).

Characteristics of EBV-positive tumor immune microenvironment

Tumor-infiltrating immune cells were profiled from RNA-seq normalized gene expression data of TCGA

CRC and compared with EBV-positivity (Figure 3A). When EBV infects, it releases its antigen, consequently

triggering immune response naturally and recruiting a variety of immune cells.6 Total amount of immune

cells between the EBV-positive group and negative group did not differ (Figure 3B); however, the compo-

sition (Figure 3C) and absolute amount (Figure 3D) of immune cells, including plasma cell, CD4 T cell, NK

cell, and myeloid dendritic cell were significantly different between EBV-positive tumor stroma and EBV-

negative tumor stroma in CRC. Among these immune cell types, plasma and CD4 T cells and the age of

the patients were independently associated with EBV-positivity (Figure 3E). In terms of signaling pathways,

it was confirmed that B cell and T cell receptor signaling pathways were enriched in the EBV-positive group

(Figure 3F).

Next, to investigate the reason for poor prognosis despite enriched immune cell signaling, we first as-

sessed the presence or absence of T cell exhaustion. As expected, T cell exhaustion was associated with

a high tumor mutation burden (p = 1.32e-07, Figure 3F), but not with EBV positivity (Figure 3H), which

was different from the results in our previous study in HCC.2 We speculated that this might be due to

the characteristics of hollow viscous organs, which have continuous contact with outside pathogens and

contain resident immune cells. However, we identified that the immunodeficiency signaling was relatively

enriched in the EBV-positive group in both data sets (Figure 3I).
iScience 26, 105919, January 20, 2023 3
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Figure 3. Tumor immune microenvironment of colorectal cancer with EBV-positive stroma

(A) Immune cell profiling and quantification using CIBERSORT in primary cancer tissue (TCGA data) and EBV-positivity.

(B) Total immune score between EBV-positive and EBV-negative tumor (Wilcoxon rank sum test).

(C) Different composition of infiltrating immune cell types in EBV-positivity.

(D) Major changes in different immune cell types included an increase in plasma cells, CD4 T cells, and resting NK cells in EBV-positive cancer, whereas

activated NK cells and resting myeloid dendritic cells decreased (Wilcoxon rank sum test).

(E) Immune cell types and clinical factors associated with EBV-positivity using TCGA CRC data (multivariate logistic regression analysis).

(F) Pathway analysis showed enriched T cell and B cell receptor signaling in EBV-positive cancer tissue (GSEA analysis using KEGG database).

(G and H) T cell exhaustion was associated with a high tumor mutation burden; however, it was not associated with EBV-positivity in colorectal cancer

(Wilcoxon rank sum test).

(I) However, tissue with EBV-positivity tended to have immunodeficiency status (GSEA analysis using KEGG database).
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Cancer signaling associated with EBV-positivity

Somatic mutations were compared between the EBV-positive group and the EBV-negative group (Fig-

ure 4A). Among the various somatic mutations, SMAD4mutations tended to be increased in the EBV-pos-

itive group in the combined TCGA and AMC data set (p = 0.016, Figure 4B). In addition, various cancer-

associated oncogenic signaling pathways were enriched in the EBV-positive group, which may contribute

to cancer cell proliferation related to poor prognosis (Figure 4C).

Distinct prognostic effect of EBV-positivity in immune-cold tumor

TCGA CRC was divided into two groups, immune-inflamed (‘‘immune-hot’’) tumors and immune-desert

(‘‘immune-cold’’) tumors based on the median of the total immune score (sum of each immune cell score)

(Figure 5A). First, to validate this classification, the association between TMB and the classification of tumor

based on the total immune score was examined. Consistent with other studies,7,8 immune-hot tumors

showed high TMB (p = 0.0079, Figure 5B). Then, the prognostic effect of EBV positivity in each tumor group

was investigated. Of interest, EBV positivity had no effect on prognosis in immune-hot tumors (Figure 5C),

but was significantly associated with a worse prognosis for progression-free survival (p = 0.045) and overall
4 iScience 26, 105919, January 20, 2023
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Figure 4. Cancer signaling in colorectal cancer with EBV-positivity

(A) Somatic mutation analysis revealed an increased tendency of SMAD4 mutation in colorectal cancer with EBV-positivity (Fisher exact test).

(B) Lollipop plot of SMAD4 mutation.

(C) Cancer pathways, including TNFA signaling, were enriched in colorectal cancer with EBV-positive GSEA analysis using the Cancer Hallmark gene set.
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survival (p = 0.004) in immune-cold tumors (Figure 5D). The significance of the prognostic effect of EBV-

positivity in the immune-cold tumor was maintained even after adjustment for tumor stage, sex, and age

(Figure 5E).

Different TIM of EBV positivity in immune-cold tumor

After obtaining differentially expressed genes (DEGs) between EBV-positive and EBV-negative groups in

immune-cold tumors from the TCGA data set, the functions of these DEGs were investigated using gene

ontology analysis. Genes related to collagen were reasonably enriched in EBV-negative immune-cold

tumors (Figure 6A). However, some immune-related signaling pathways including viral protein interaction

with cytokines and cytokine receptors were enriched in EBV-positive immune-cold tumors compared to

EBV-negative immune-cold tumors (Figure 6B). The enrichedpathways and relatedgene networks in EBV-neg-

ative immune-cold tumors are shown in Figure 6C. As a representative example,COL1A1, which encodes parts

of type I collagen,washighlyexpressed inEBV-negative immune-cold tumors, and thehistologyof correspond-

ing tumor also showed increased fibrosis (Figure 6D). Despite tumor immune type, infiltrating immune

cells were observed histologically in EBV-positive tumors with lowCOL1A1 expression (Figure 6E). In EBV-pos-

itive immune-cold tumor, the various signaling pathways related to tumor immune were also enriched

(Figure 6F), similar to the results in Figure 4C. Of interest, inflammatory cancer-associated fibroblast (iCAF)

signature, which is well known to be associated with poor prognosis in cancer, was significantly increased in

EBV-positive compared to that in the EBV-negative immune-cold tumors (Figure 6G).

Inferred hypothesis for poor prognosis of EBV positivity in immune-cold tumor

To reveal whether EBV positivity in TIMwas related to changes in gene expression in cancer cells, we further

analyzed colorectal cancer organoid genomic data in immune-cold tumors. We identified cancer-intrinsic

gene expressions (organoid data) significantly correlated with the increased EBV-ISH positivity in TIM (can-

cer tissue data). These genes were significantly associated with viral protein interaction with cytokines and

cytokine receptor pathways (Figure 7A). Total immune scores indicating that the total amount of tumor-

infiltrating immune cells did not differ between EBV-positive and EBV-negative immune-cold tumors in

two independent data sets (Figure 7B). Pathway analysis showed that cancer cells intrinsically enriched
iScience 26, 105919, January 20, 2023 5
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Figure 5. Prognostic impact of EBV positivity in immune-cold tumors

(A) Colorectal cancers (TCGA data) were divided into two groups by the median value of the total immune score.

(B) Immunologically hot tumors were associated with high tumor mutation burden (Wilcoxon rank sum test).

(C) No prognostic effect of EBV positivity was observed in immune-hot tumors (log-rank test).

(D and E) However, EBV had a strong prognostic effect in immune-cold tumors (log-rank test) and was also an independent prognostic factor (Multivariated

Cox regression test; data are represented as hazard ratio +/� 95% confidence interval).
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pathways related to immune tolerance, such as the CTLA4 pathway (Figure 7C). Collectively, in the im-

mune-cold tumors, low levels of immune cell infiltration may be mainly related to EBV, and various viral-

related chemokine and cytokine signaling with increased immune tolerance of cancer cells may contribute

their progression (Figure 7D).
DISCUSSION

We have identified EBV expression in TILs of a subset of CRC. EBV was positive at significantly higher

frequencies in males and the elderly. Because EBV is in the latent phase in most populations,9 this might

result from an age-related decline of immune function,10 which can cause the re-activation of the EBV virus.

It is also possible that the TIM changedby the cancer cells created an environment favorable for EBV expres-

sion. Indeed, in this study, the EBV positivity was higher in CRC with SMAD4mutation. Therefore, we think

that the formation of TIM can be complicated by the effect of cancer cells and EBV expression in TIL.

In EBV infection, CD8 T cells, CD4 T cells, and NK cells are one of the main responder immune cells.6 In this

study, increased CD4 T cells in the EBV-positive CRC have been found. However, a lack of difference in CD8

T cellsmay be because of persistent EBV infection6 and themicroenvironment changes caused by cancer cells.

We confirmed that EBV expression in TILs in CRC reshapes the TIM and is associated with poor prognosis,

as in our previous study using HCC.2 This similar finding strongly suggests that EBV expression in TIM af-

fects the behavior of tumors. In HCC, EBV positivity in TIM showed severe immune cell infiltration,2 how-

ever, in CRC, no significant difference in the total amount of immune cell infiltration was found. In HCC,

the EBV-ISH testing showed EBV positivity in less than 5% of HCCs,2 but in CRC, it was positive in approx-

imately 30%. These differences are probably because of the characteristics of the primary organ between

solid and hollow viscous organs.

However, despite relatively increased immunogenic signals, including viral protein interaction with cyto-

kines and cytokine receptors in tumors with EBV expression in TIM, the association with poor prognosis

suggests that the qualitative characteristics of immune cells in TIM are important for clinical prognosis.

This context may also indicate that EBV expression in TIM may affect the immunotherapy response.

In this study, the mechanism of EBV reshaping the TIM was not revealed because of the unavailability of a

suitable animal model. We were not able to suggest a mechanism based on a specific causal relationship;
6 iScience 26, 105919, January 20, 2023
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Figure 6. Tumor immune microenvironment according to EBV positivity in immune-cold CRC

(A and B) Differentially expressed genes and pathways between EBV positive and EBV negative immune-cold tumor.

(C) Fibrosis-related gene signatures were enriched in EBV-positive immune-cold tumor.

(D and E) For example, higher COL1A1 gene expression was present in EBV-negative immune-cold tumors (Wilcoxon rank sum test). Hematoxylin-eosin

stained image showed increased collagen (fibrosis) deposition in EBV-negative immune-cold tumors with the highest COL1A1 expression, whereas

scattered immune cell infiltrations were present in EBV-positive immune-cold tumor with the lowest COL1A expression.

(F) Inflammatory pathway signatures, including viral protein interaction with cytokines and cytokine receptors, were enriched in EBV-positive immune-cold

tumors compared to those of EBV-negative immune-cold tumors.

(G) Relative iCAF signature adjusted by myCAF signature was elevated in EBV-positive immune-cold tumor (Wilcoxon rank sum test).
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however, using two independent datasets of the TCGA and AMC cohorts, we were able to conclude that

the characteristics of the TIM were different in patients with EBV-positive colorectal cancer compared to

those in the EBV-negative group. As the inflammatory pathways mainly related to viral infection (viral pro-

tein interaction cytokine and cytokine receptor pathway) were significantly enriched, we speculate that

different types of immune cells may be mobilized according to these signals, and the composition of

TIM may change accordingly.

We did not show direct evidence for the causal relationship between TIM EBV-positivity and cancer cell

progression. Therefore, it will be important to reproduce the tumor progression using animal models

with EBV-positive TMI. However, the technology for creating animal models related to EBV is mainly

focused on creating models for EBV-associated lymphoproliferative disease or host immune response to

EBV infection.11,12 Therefore, generating an animal model for cancer cells with EBV-positive tumor stroma

will be valuable to understand the mechanism of the causal relationship.

It is well known that EBV infection in the epithelial cells or immune cells gives rise to carcinoma or hema-

tologic malignancies. However, besides the direct development of tumors by EBV, little is known about

EBV being expressed in lymphocytes of the TIM, changing the composition of the TIM and cancer cell-

intrinsic signature, and thus affecting the behavior of the tumor. Therefore, this study confirmed that
iScience 26, 105919, January 20, 2023 7
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Figure 7. Inference for poor prognosis of EBV-positivity in immune-cold tumor

(A) Cancer cell intrinsic gene expressions associated with increased EBV-ISH positivity in TIM using cancer cell organoids and matched cancer tissue (FDR

from Pearson correlation test).

(B) No significant differences in total immune score between EBV-positive and EBV-negative in both TCGA and AMC cohorts were found (Wilcoxon rank sum

test).

(C) Enriched pathways in cancer tissue and cancer cell from immune-cold CRC with EBV-positive stroma compared to those from immune-cold CRC with

EBV-negative stroma (GSEA analysis).

(D) EBV activity induced viral-associated immune response and released various cytokines, which also affected cancer cell-intrinsic signatures, including the

upregulated CTLA4 pathway and may contribute to cancer progression.

ll
OPEN ACCESS

iScience
Article
EBV expression in tumor-infiltrating lymphocytes according to the characteristics of patients, such as age,

affects the TIM as well as cancer cells.

Limitations of the study

We showed that the composition of TIM was different according to the EBV positivity using two indepen-

dent datasets of TCGA and AMC cohorts as the inflammatory pathways mainly related to viral infection

were significantly enriched. We also showed the relationship between EBV expression and poor prognosis

in CRC by increased chemokine/cytokine signaling pathways and cancer cells intrinsically enriched path-

ways related to immune tolerance. However, a direct evidence and mechanism based on a specific causal

relationship between TIM EBV-positivity and cancer cell progression was not clarified owing to the unavail-

ability of a suitable animal model that can artificially regulate EBV expression in B cells in the TIM of CRC.

Therefore, generating an animal model for cancer cells with EBV-positive tumor stroma will be valuable in a

future study.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Colorectal cancer tissues Asan Medical Center N/A

Deposited data

Colorectal cancer bulk tissue RNA-seq Cho et al.4 GSE171680

Colorectal cancer organoid RNA-seq Cho et al.4 GSE171681

Oligonucleotides

EBER1 and EBER2 Ventana Cat# 800–2842

Software and algorithms

CIBERSORT Newman et al.13 https://cibersortx.stanford.edu/

Gene Set Enrichment Analysis (GSEA v4.0.2) Subramanian et al.14 https://www.gsea-msigdb.org/gsea/index.jsp

Gene Set Variation Analysis (GSVA v1.38.2) Hänzelmann et al.17 https://bioconductor.org/packages/release/

bioc/html/GSVA.html

ClusterProfiler (v4.4.4) Wu et al.16 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

Maftools (v2.6.5) Mayakonda et al.22 https://www.bioconductor.org/packages/

devel/bioc/vignettes/maftools/inst/doc/

maftools.html

VirusSeq Chen et al.23 https://odin.mdacc.tmc.edu/�xsu1/

VirusSeq.html

R N/A https://cran.r-project.org/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Chang Ohk Sung (co.sung@amc.seoul.kr)
Materials availability

This study did not generate new unique reagents.

Data and code availability

d RNA-seq data have been deposited at Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)

and are publicly available. Accession numbers are listed in the key resources table(GEO: GSE171680 and

GEO: GSE171681).

d This paper dose not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical samples and data

A total of 87 patients (51 males and 36 females) with CRC were included, who were part of the same cohort

from our previous study for CRC organoid model construction.4 The mean age at diagnosis was 62.5 years

(range from 28 to 94 years). The detailed clinical information for this cohort has been published previously.4

Briefly, The normalized gene expression profiles from RNA sequencing (RNA-seq) for CRC organoid and
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matched primary cancer tissue, which has been deposited at Gene Expression Omnibus (GEO; https://

www.ncbi.nlm.nih.gov/geo; accession no. GSE171682) from our previous study,4 were also used for this

study. Raw RNA-seq data (fastq file) and MAF (mutation annotation file) data from targeted DNA

sequencing for both cancer organoids and primary cancer tissues of the 87 patients with CRC were ob-

tained from our previous study.4 This study was approved by the Ethics Committee of AsanMedical Center,

Seoul, Korea (IRB no. 2020–0214).

METHOD DETAILS

EBV-encoded RNA-in situ hybridization

EBV-encoded RNA-in situ hybridization (EBER-ISH) was performed using a Bench Mark XT autostainer

(Ventana Medical Systems, Tucson, AZ, USA) with a Ventana ISH iVIEW Blue Detection Kit (Catalog no.

800–092) and INFORM EBER probe (Catalog no. 800–2842, Ventana) in one representative whole slide

section for each formalin-fixed & paraffin-embedded (FFPE) CRC tissue sample. The density of EBV-posi-

tive tumor infiltrating lymphocytes (TILs) was measured as the highest number of EBV-positive TILs per high

power field (EBV/HPF) under the microscope by two pathologists (HJP & COS).

RNA-seq data analysis

The normalized gene expression profiles of the 87 CRC organoids and matched primary cancer tissues

downloaded from GEO (accession no. GSE171682) were used for immune cell profiling and pathway ana-

lyses. From the RNA expression data of primary cancer tissue, profiling of tumor-infiltrating immune cells

was performed using CIBERSORT with LM22 (22 immune cell types) gene signatures.13 The sum of the

scores for the 22 immune cell types in each sample was used as the total immune score.2 Gene Set Enrich-

ment Analysis (GSEA v4.0.2)14 was used to identify cancer signaling pathways based on gene expression

profiles in the primary cancer tissues or cancer cell organoids. GSEA plot was generated using the

GSEAplot R package.15 Gene ontology enrichment analysis and network analysis were performed using

the ClusterProfiler v.4.0 R package.16 Gene Set Variation Analysis (GSVA)17 was used to score the activation

of pathway gene sets for every sample. GSVA was also used to calculate the CD8 T cell exhaustion score

using known genes (LAG3, PDCD1, HAVCR2, and TIGIT) for CD8 T cell exhaustion.18 Myofibroblastic can-

cer-associated fibroblast (myCAF) and inflammatory CAF (iCAF) scores were calculated using myCAF and

iCAF signature gene set,19,20 respectively, using GSVA.

TCGA data

Raw RNA sequencing data (fastq file) for CRC were downloaded from dbGAP (approval No. #7043) in

March 2022. For somatic mutation, TCGA MC3 MAF v3 (mc3.v0.2.8.PpUBLICmaf)21 mutation profile data

were downloaded. Upper-quartile normalized gene expression data, including 20,502 gene expression

levels from the RNA-seq for CRC, were downloaded from Broad GDAC Firehose ((https://gdac.

broadinstitute.org/). The gene expression level was further transformed by log2(expression value +1).

The corresponding clinical data were obtained from the TCGA cBioPortal (https://www.cbioportal.org/).

Mutationdata analysis

MAF format data, including somatic mutation profiles from the TCGA and AMC cohorts, were used to iden-

tify different somatic mutations between EBV-positive and EBV-negative tumors. Visualization of somatic

mutations was performed using Maftools R package.22

Detection of EBV in RAN-seq data

VirusSeq23 was used for EBV read discovery from paired-end RNA-seq fastq files. After aligning reads

against human genome reference (version hg19), the unmapped non-human sequences generated by sub-

tracting the human sequences re-aligned against all known viral sequences, including EBV genome from

VirusSeq source site (https://odin.mdacc.tmc.edu/�xsu1/VirusSeq.html). EBV reference genome included

Humanherpesvirus4completewildtypeg_AJ507799, strainAG876_DQ279927, and strainGD1_AY961628).

Estimation of tumor mutation burden (TMB)

All SNV and InDel types, including synonymous and non-synonymous mutations in all exon regions and

splice sites, were used to calculate TMB.24,25 This method was applied to the TCGA mutation profile

from the whole exome sequencing of CRC.
12 iScience 26, 105919, January 20, 2023
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Statistics

Wilcoxon rank-sum test or Kruskal-Wallis test was performed to compare the differences in continuous vari-

ables. Correlation analysis was performed using Spearman’s correlation analysis. Fisher’s exact test was

used to evaluate the differences between categorical variables. Log-rank test was performed to evaluate

survival differences between groups. Multivariate Cox proportional hazards regression and logistic regres-

sion analyses were also performed. All statistical analyses were performed using R version 4.2.0.
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