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Abstract: The RNA interference (RNAi) pathway is a potent antiviral defense mechanism in plants
and invertebrates, in response to which viruses evolved suppressors of RNAi. In mammals, the first
line of defense is mediated by the type I interferon system (IFN); however, the degree to which
RNAi contributes to antiviral defense is still not completely understood. Recent work suggests that
antiviral RNAi is active in undifferentiated stem cells and that antiviral RNAi can be uncovered in
differentiated cells in which the IFN system is inactive or in infections with viruses lacking putative
viral suppressors of RNAi. In this review, we describe the mechanism of RNAi and its antiviral
functions in insects and mammals. We draw parallels and highlight differences between (antiviral)
RNAi in these classes of animals and discuss open questions for future research.

Keywords: small interfering RNA; RNA interference; RNA virus; antiviral defense; innate immunity;
interferon; stem cells

1. Introduction

RNA interference (RNAi) or RNA silencing was first described in the model organism Caenorhabditis
elegans [1] and following this ground-breaking discovery, studies in the field of small, noncoding
RNAs have advanced tremendously. RNAi acts, with variations, in all eukaryotes ranging from
unicellular organisms to complex species from the plant and animal kingdoms [2]. The key concept of
all RNA silencing pathways is the association of single-stranded small RNAs of 20–30 nucleotides
(nt) to a protein of the Argonaute superfamily [3,4]. In animals, three classes of small RNAs exist:
small interfering RNAs (siRNAs), microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) [2,5].
These RNAs guide Argonaute proteins onto target RNAs via Watson-Crick base pairing, usually
resulting in gene silencing [6]. Whereas all three pathways adhere to the general concept of RNA
silencing pathways, they differ in the mechanism for small RNA biogenesis and effector functions.
For example, biogenesis of siRNAs and miRNAs depends on processing of double-stranded RNA
(dsRNA) precursors into small RNAs by RNase-III Dicer enzymes [6], whereas piRNA biogenesis is
Dicer independent.

Early on, it was recognized that RNAi could be a mechanism for antiviral defense, and, in fact,
siRNAs were first detected in virus-infected plants [7–9]. It is now well established that RNAi is
a major defense mechanism against parasitic nucleic acids in diverse organisms, including fungi,
plants, and invertebrates [10–12]. Thus, recognition and processing of viral dsRNA into viral siRNAs
(vsiRNAs) initiates a potent antiviral RNAi response that restricts virus accumulation. However,
even though the mechanism of RNAi is evolutionarily conserved in mammals, the degree to which it
contributes to antiviral defense has been a matter of debate. Positive and negative-sense RNA viruses
were recently proposed to be a substrate for the RNAi pathway in several mammalian cell culture
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and animal models [13–15], yet conflicting evidence has also emerged in several studies that failed
to detect vsiRNAs [16–19]. In vertebrates, RNAi coincides with the dsRNA-activated protein-based
interferon response and recent findings suggest that mammalian RNAi is inhibited by the interferon
response, suggestive of competition between both pathways [20,21].

In this review, we will discuss recent work on the antiviral function of RNAi in mammals, focusing
on negative and positive-sense RNA viruses (excluding retroviruses). We will first describe the
principal concepts of RNAi in insects and mammals (for a review on RNA silencing in plants, see [10])
and briefly discuss interferon-based antiviral immunity in mammals. Finally, we will discuss the
antiviral activity of RNAi in insects and different mammalian experimental systems. Special attention
will be given to stem cells, which seem to have specific characteristics, both in the interferon response
and antiviral RNAi. To avoid ambiguity, we will only consider “classical” antiviral RNAi, in which viral
dsRNA is processed into viral siRNAs to limit virus infection; we will not consider miRNA-dependent
effects on virus replication.

2. The Mechanism of RNAi

Although RNA silencing pathways adhere to the same general concepts, paralogs of Dicer and
Argonaute genes have emerged via duplications during eukaryotic evolution. This, along with the
recruitment of different accessory proteins and co-factors, has led to functional diversification or
specialization in different organisms [22]. For example, insects such as the fruit fly Drosophila melanogaster
encode two Dicer genes, of which Dicer-1 mediates miRNA biogenesis, whereas Dicer-2 is responsible
for siRNA biogenesis [6]. In contrast, mammals only encode a single Dicer that generates both miRNAs
and siRNAs. Likewise, Argonaute-2 is responsible for siRNA-mediated target RNA cleavage in insects,
whereas Argonaute-1 mediates miRNA-dependent gene silencing. Mammals, in contrast, encode four
Argonaute genes, all of which engage in microRNA-guided gene silencing, and only Argonaute-2 is
capable of cleaving target RNAs (also referred to as slicing) to mediate siRNA-dependent RNAi.

Below, we will discuss the siRNA and miRNA pathways of insects and mammals in more detail.
Although the piRNA pathway has been suggested to mediate antiviral defense, especially in vector
mosquitoes [23], piRNAs have not been studied in the context of viral infection in mammals and will
not be discussed.

2.1. The siRNA Pathway in Insects

The “classical” RNAi mechanism, uncovered by Fire and Mello [1], is triggered by the presence
of double-stranded RNA (dsRNA) in the cytoplasm. This initiates a series of processing steps that
eventually results in the production of siRNAs that associate with an Argonaute protein (Figure 1).
In insects, the RNase-III enzyme Dicer-2 recognizes cytoplasmic dsRNA and cleaves it into 21 nt siRNA
duplexes with characteristic two-nucleotide overhangs at the 3’ ends of both strands (Figure 2) [24–27].
One of the two strands (the guide strand) is selectively incorporated into the RNA-induced silencing
complex (RISC) with at its catalytic core the Argonaute-2 (Ago2) protein. The complementary strand
(the passenger strand) is degraded in a process that requires Ago2 and the endonuclease Component
3 Promoter of RISC (C3PO) [28–31]. Selection of the guide and passenger strand is a non-stochastic
process and involves the activity of the Dicer-2-associated co-factor R2D2 [32,33]. R2D2 probes the
thermodynamic stability of the siRNA duplex and binds the more stable 5’ end, eventually defining the
passenger strand. Dicer-2 selects the opposite strand that will be loaded as guide strand into Ago2 [34].
Dicer-2 processing and RISC loading is further promoted by the activity of co-factors including the
dsRNA binding protein Loquacious (PD isoform, Loqs-PD), Ars2 and heat shock proteins [35–38].
These proteins enhance siRNA biogenesis by stabilizing the RNA-protein complexes or facilitating
conformational changes during RISC loading. After the guide strand is stably bound by Ago2, it is
2’-O-methylated at the 3’ terminal nucleotide by the RNA methyl-transferase DmHen1 finalizing the
maturation of an siRNA-loaded RISC [39].
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Figure 1. The small interfering RNA (siRNA) pathway in Drosophila melanogaster. Double-stranded 93 
RNA precursors of different sources are processed by Dicer-2 into short interfering RNAs of ~21 nt in 94 
size. The siRNA duplex is loaded into an Argonaute2 containing RISC complex, where one strand 95 
(passenger) is degraded, and the guide strand is retained. The guide strand mediates target RNA 96 
recognition through Watson-Crick base pairing, followed by target cleavage (slicing) by Argonaute. 97 
Loqs-PD is required for endo-siRNA biogenesis, but dispensable for viral siRNA (vsiRNA) 98 
biogenesis. 99 

Figure 1. The small interfering RNA (siRNA) pathway in Drosophila melanogaster. Double-stranded
RNA precursors of different sources are processed by Dicer-2 into short interfering RNAs of ~21 nt in
size. The siRNA duplex is loaded into an Argonaute2 containing RISC complex, where one strand
(passenger) is degraded, and the guide strand is retained. The guide strand mediates target RNA
recognition through Watson-Crick base pairing, followed by target cleavage (slicing) by Argonaute.
Loqs-PD is required for endo-siRNA biogenesis, but dispensable for viral siRNA (vsiRNA) biogenesis.
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Figure 2. Dicer proteins process double-stranded RNA (dsRNA) into small interfering RNA (siRNA). 101 
(A) Schematic representation of the domain organization of human Dicer protein [40]. RIIIa, RNase-102 
IIIa; RIIIb, RNase-IIIb (B) Cryo-EM structure of human Dicer. Protein domains are colored in 103 
accordance to the scheme in A. The structure was determined by Liu et al. [41], and the published 104 
PDB file (5ZAM) was edited in Yasara View [42]. Drosophila Dicer-2 has a similar domain structure 105 
and L-shaped Cryo-EM structure as human Dicer [40]. (C) Schematic representation of the recognition 106 
and cleavage of dsRNA with a 3’ overhang and dsRNA with blunt termini by Drosophila Dicer-2, 107 
proposed by Sinha and colleagues [40]. Substrates with a 3’ overhang were proposed to bind the PAZ-108 
Platform domains (referred to as PAZ in panel A) via the 3’ terminal overhang. Blunt-ended termini 109 
bind to the helicase domain and the dsRNA threads through this domain, after which cleavage occurs 110 
by the two RNaseIII domains. The latter mode results in processive, ATP-dependent cleavage of 111 
dsRNA and may contribute to efficient production of vsiRNAs for antiviral defense.  112 

Figure 2. Dicer proteins process double-stranded RNA (dsRNA) into small interfering RNA (siRNA).
(A) Schematic representation of the domain organization of human Dicer protein [40]. RIIIa, RNase-IIIa;
RIIIb, RNase-IIIb (B) Cryo-EM structure of human Dicer. Protein domains are colored in accordance to
the scheme in A. The structure was determined by Liu et al. [41], and the published PDB file (5ZAM)
was edited in Yasara View [42]. Drosophila Dicer-2 has a similar domain structure and L-shaped
Cryo-EM structure as human Dicer [40]. (C) Schematic representation of the recognition and cleavage
of dsRNA with a 3’ overhang and dsRNA with blunt termini by Drosophila Dicer-2, proposed by Sinha
and colleagues [40]. Substrates with a 3’ overhang were proposed to bind the PAZ-Platform domains
(referred to as PAZ in panel A) via the 3’ terminal overhang. Blunt-ended termini bind to the helicase
domain and the dsRNA threads through this domain, after which cleavage occurs by the two RNaseIII
domains. The latter mode results in processive, ATP-dependent cleavage of dsRNA and may contribute
to efficient production of vsiRNAs for antiviral defense.
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Two models of substrate processing depending on their termini have been proposed for Dicer-2 [40].
Substrates with 3’ overhangs are cleaved distributively by Dicer-2 in an ATP independent manner,
releasing the dsRNA substrate after each cleavage. In contrast, dsRNA with blunt termini are locally
unwound, with one of the strand threading through the helicase domain in an ATP dependent manner,
after which the dsRNA re-anneals and becomes processively cleaved [40] (Figure 2C). Ago2-bound
siRNAs recognize target RNAs via Watson-Crick base pairing and usually complementarity across
the entire length of the siRNA/target duplex is required for efficient target cleavage. An exception
is the first nucleotide of the siRNA, which is locked in a pocket of the Ago2 MID/PIWI domain [43]
(Figure 3A,B). Upon formation of the siRNA/target RNA duplex, Ago2 cleaves the target RNA between
nucleotide ten and eleven counted from the 5’ end of the siRNA (slicing, Figure 3C) [25,26,28,44].
This small RNA-mediated endonuclease activity (slicing) requires the catalytic DEDX tetrad (where
X is D or H) in the PIWI domain of Argonaute proteins (Figure 3A) [45,46]. This motif is conserved
amongst slicing-competent Argonaute proteins; nonetheless it is not sufficient for slicing activity since
some slicing-incompetent Argonaute proteins also contain the motif [47]. After cleavage of target RNA,
the slicing products are quickly degraded by cellular ribonucleases [48].
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Figure 3. Argonaute proteins are at the core of small RNA silencing pathways. (A) Schematic
representation of the domain organization of mammalian Argonaute and the conserved residues
required for slicer activity. (B) Crystal structure of human AGO2 in association with a guide RNA and
a target RNA base pairing from nucleotide 2 to 8. Protein domains are colored in accordance to the
scheme in A. The structure was determined by Schirle and colleagues [49] and the published PDB file
(4W5Q) was edited in Yasara View. (C) Schematic representation of target slicing by Argonaute proteins.

Endogenous sources of dsRNA are long inverted repeats that fold into perfectly complementary
hairpins or transcripts that are derived from convergent transcription. In addition, gene-pseudogene
pairs and transposon insertions are potential sources of dsRNA when they express transcripts with full
or partial complementarity (Figure 1). These genome-encoded dsRNA molecules are processed into
endogenous siRNAs (endo-siRNA) that have been implicated in transposon control and anecdotally
in the regulation of gene expression [50–54]. Yet, dsRNA is usually not very abundant in healthy,
uninfected cells and the major function of this pathway seems to be defense against foreign dsRNA of
viral origin [55] (discussed in Section 4).
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2.2. The miRNA Pathway in Insects

miRNAs are an endogenous class of small RNAs, expressed by plants, animals, protists and
even viruses [2]. Biogenesis of animal miRNAs resembles siRNA biogenesis, with some differences
including the origin of precursor RNAs. miRNAs are processed from genome-encoded hairpins,
called primary-miRNAs (pri-miRNAs) that are transcribed by RNA polymerase II and, less frequently,
by RNA polymerase III [56–58]. Pri-miRNAs are typically a few kb in length [59] and harbor either
single or multiple local stem-loop structures that undergo a series of maturation steps to generate an
Argonaute-associated miRNA [60]. Typically, these stem-loops are ~80 nt in size and consist of two
imperfectly base pairing arms, separated by a single-stranded loop region [61]. They are released from
the pri-miRNA transcript in the nucleus by the microprocessor complex, consisting of the RNase-III
enzyme Drosha and its co-factor Pasha [62–66]. Endonucleolytic cleavage by Drosha near the base of the
hairpin produces the precursor miRNA (pre-miRNA), a ~60 nt small RNA hairpin with a two-nucleotide
overhang at the 3’ end, indicative of RNase-III processing [66]. Subsequently, the pre-miRNA is exported
from the nucleus via the Ran-GTP dependent nuclear exporter Exportin-5 [67–70]. In the cytoplasm,
another RNase-III enzyme, Dicer-1, in a complex with the PB isoform of Loqs cleaves off the loop
of the pre-miRNA resulting in an RNA heteroduplex with two-nucleotide overhangs at both 3’
ends [24,71,72]. One of the two strands is selectively incorporated into the Argonaute-1 containing
miRNA induced silencing complex (miRISC) [73,74]. Strand selection is thought to be primarily based
on the thermodynamic properties of the heteroduplex; usually the strand with the weaker stability
at its 5’ end is incorporated into Ago1 [75,76]. The miRNA guides miRISC to target sites in the 3’
untranslated regions (UTR) of mRNAs, akin to target recognition in mammals [77] (described in
Section 2.3).

2.3. RNAi Pathway in Mammals

Whereas the miRNA and siRNA pathways are largely independent in insects, siRNA and miRNA
biogenesis and function in mammals depend on shared components (Figure 4), which results in crosstalk
between these pathways. Like in insects, miRNAs in mammals are an abundant class of small RNAs of
21–22 nt in length [78] that are primarily produced from RNA polymerase II synthesized pri-miRNAs.
These pri-miRNAs are processed into pre-miRNAs (pre-miRNAs) by the Microprocessor complex,
consisting of the RNaseIII Drosha along with DGCR8 (DiGeorge Syndrome Critical Region 8) [79].
Pre-miRNAs are transported to the cytoplasm, where they are cleaved by Dicer into miRNA duplexes.
These duplexes are loaded by Dicer and its co-factors TRBP (TAR RNA binding protein) and PACT
(Protein kinase RNA activator) into an Argonaute (AGO) containing RISC complex, from which the
passenger strand is eliminated. The RISC-associated mature miRNA base pairs with cognate messenger
RNAs (mRNA), resulting in destabilization of target mRNAs or blocking their translation [24,61,80,81].
All four ubiquitously expressed mammalian AGO proteins mediate miRNA-mRNA interactions with
approximately equivalent affinities [82–84] and overexpression experiments indicate that their miRNA
binding patterns are similar [85,86].

In contrast to canonical Dicer-dependent miRNAs, non-canonical miRNAs bypass processing
by Dicer or the Microprocessor complex. These non-canonical miRNAs can be derived from introns,
small nucleolar RNAs (snoRNAs), and tRNAs [87–93]. For example, the mirtron pathway, which
is also found in D. melanogaster and C. elegans, produces pre-miRNAs by the processing of introns
by spliceosomes and debranching enzymes in the nucleus [94]. Another non-canonical miRNA is
produced by processing of snoRNA ACA45 in a Drosha/DGCR8 independent, but Dicer dependent
manner [88].
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Figure 4. The RNA interference (RNAi) pathway in mammals. A single Dicer protein processes long
dsRNA into siRNAs and pre-miRNAs into miRNA duplexes. These small RNAs are loaded into
an Argonaute containing RISC complex, from which one of the strands is eliminated and degraded.
The other strand, referred to as guide strand (for siRNAs) or the mature miRNA (for miRNAs), is retained
and used to guide Argonaute onto target RNAs, resulting in cleavage (siRNA) or translational inhibition
or target RNA destabilization (miRNA). The scheme shows the cytoplasmic stage of the miRNA
pathway; the nuclear stage (pri-miRNA transcription, processing, and pre-miRNA nuclear export) is
not shown.

The miRISC complex is guided by the miRNA to target sites typically located in the 3’ UTRs of
mRNAs [77]. Target recognition is initiated by a short nucleotide stretch at the 5’ end of the miRNA
(position 2–8), the so-called seed sequence, accompanied with various degree of base pairing at the
3’ end [77,95–97]. Mechanisms for miRNA-mediated gene silencing include translational repression,
de-adenylation, and enhancement of mRNA decay [77,98,99]. The majority of mRNAs is estimated to
be regulated by miRNAs [100], and post-transcriptional regulation by miRNAs is thus implicated in
almost all cell biological processes.

Although miRNA-mediated gene regulation seems to be the dominant function of mammalian
RNAi, early evidence has already indicated that the siRNA pathway is functional in mammals.
Transfection of synthetic siRNAs or expression of short-hairpin RNAs (shRNAs) with complementarity
to a gene of interest was found to induce robust and sequence-specific RNAi, without activation
of the interferon response as siRNAs are too short to be detected by dsRNA sensors (discussed in
Section 3.1) [25,101]. Moreover, long dsRNA was reported to be functional in gene knockdown in
embryonal teratocarcinoma cell lines that are interferon defective [102–104].

RNAi in mammals is characterized by processing of dsRNA by Dicer into 21–23 nt short interfering
RNAs (siRNAs) [105]. Subsequently, siRNAs are preferentially loaded onto AGO1 or AGO2, of which
only AGO2 possesses slicing activity in mammals [83,86]. After elimination of the passenger strand,
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the guide strand directs AGO2 onto complementary mRNA through base pairing. In contrast to
the seed-based target recognition of miRNAs, siRNA targeting requires base pairing of the entire
small RNA, resulting in target RNA cleavage by AGO2. As in insects, target cleavage occurs between
nucleotide ten and eleven, counted from the 5’ end of the siRNA [106].

The evolutionary conservation of AGO2-mediated target cleavage in mammals suggests important
functions for this activity. AGO2 efficiently mediates target repression independent of its slicer activity,
as miRNA-mediated gene silencing in AGO1, AGO3, and AGO4 deficient embryonic stem cells was
comparable to control cells [83]. Yet, biogenesis of the non-canonical miRNA miR-451, implicated
in the regulation of erythroid development, is Dicer-independent and instead depends on AGO2
catalysis [107]. In this case, the short length of the stem of only 17 bp likely explains why miR-451
fails to be processed by Dicer [108]. Besides being indispensable for miR-451 biogenesis, inactivation
of AGO2 by insertional mutagenesis in mice results in a lethal phenotype as only wild-type and
heterozygous offspring are observed [86]. In addition, loss of AGO2 results in a severe developmental
phenotype, including a defect or failure in neural tube closure and mispatterning of brain structures [86].
The fact that AGO2 inactivation leads to these phenotypes in a background of wildtype AGO1, AGO3,
and AGO4, which act redundantly in the miRNA pathway, suggests that slicing activity of AGO2
is important in development. Yet, biochemical or genetic evidence that slicing is required for the
observed phenotypes is currently lacking. Evolutionary conservation of slicer activity would also be
consistent with an antiviral function of AGO2 in mammals; this will be discussed in Section 5.

3. Innate Antiviral Immunity and the Interferon Pathway

The innate immune response to viral infection in mammals is characterized by induction of
type I interferons (IFN), cytokines with strong antiviral activity [109]. They signal in an autocrine
and paracrine fashion via the interferon-α/β receptor (IFNAR), consisting of two subunits, IFNAR1
and IFNAR2 [110–112] (Figure 5). Upon binding of type I IFNs, IFNAR activates the JAK-STAT
pathway to induce expression of hundreds of Interferon stimulated genes (ISGs) [113,114]. Collectively,
ISGs impede viral replication and provide a window for the adaptive immune response to clear the
infection [115]. ISGs inhibit viral replication via a wide range of activities, including the inhibition
of transcription (Mx1, TRIM5), translation (PKR, IFIT family members, OASL), and replication (IFIT
family members, OAS1/2/3), and the induction of RNA degradation and apoptosis (RNaseL) [115,116].
Furthermore, type I IFNs can induce the release of chemokines, increase antigen presentation by innate
immune cells, induce the production of antibodies, and stimulate effector T cell responses [117]. As the
activities of ISGs are potentially cytotoxic, expression and activation of interferon and ISGs is under
tight regulation.

3.1. Sensing of Foreign Nucleic Acids

The innate immune system distinguishes self from non-self based on molecular patterns. Viral
infection is sensed by the presence of foreign nucleic acids, either on the basis of non-self structural
features, such as double-stranded RNA or the presence of a 5’ triphosphate moiety on RNA, or their
subcellular localization (Figure 5A). Different receptors have been identified that recognize foreign
DNA or RNA, including the RIG-I-like receptor (RLR) family of RNA sensors (retinoic acid inducible
gene I [RIG-I; also known as DDX58]) and melanoma differentiation associated gene 5 [MDA5; also
known as IFIH1]), members of the Toll-like receptor (TLR) family (specifically TLR3, TLR7, TLR8,
and TLR9), and the DNA sensors absent in melanoma 2 (AIM2) and cyclic GMP-AMP synthetase
(cGAS) [118]. Upon recognition of foreign nucleic acids, these pattern recognition receptors directly or
indirectly activate transcription factors, including nuclear factor-κB (NF-κB), IFN-regulatory factor
3 (IRF3), and IFN-regulatory factor 7 (IRF7), subsequently leading to the induction of chemokines,
cytokines, and antiviral effector proteins.

Viral double-stranded RNA is also recognized by a group of ISGs that function as antiviral effectors,
rather than as signaling molecules. Members of this group are dsRNA-activated protein kinase R (PKR;
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also known as eIF2AK2), 2’-5’-oligoadenylate synthetase 1 (OAS1), and adenosine deaminase acting
on RNA 1 (ADAR1). For example, upon activation by dsRNA binding, PKR inhibits cap-dependent
translation of (viral and host) mRNA [119]. Likewise, dsRNA activates OAS1, which synthesizes 2’-5’
oligomers of adenosine (2’-5’ oligoadenylate) [120,121]. The second messenger 2’-5’ oligoadenylate in
turn activates ribonuclease L (RNase L) [122], which degrades viral and cellular RNAs.
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Figure 5. Cytosolic recognition of foreign nucleic acids and activation of interferon stimulated genes
(ISGs). (A) Domain structure of the cytosolic RNA sensors RIG-I and MDA5, showing the CARD
signaling domain, the DExD/H-box helicase domain, and the C terminal domain (CTD). LGP2 lacks
the CARD signaling domain. (B) Schematic representation of the interferon response in mammals.
RIG-I and MDA5 recognize non-self viral RNA signatures, including the presence of a 5’ triphosphate
moiety on RNA (3P-RNA) or long dsRNA. Upon detection of foreign nucleic acids, the CARD domains
transduce the signal to mitochondrial antiviral-signaling protein (MAVS) located at mitochondrial
membranes, leading to the phosphorylation and activation interferon response factors (IRF) 3 and 7.
Upon activation, IRF3 and IRF7 form homodimers and translocate to the nucleus, where they bind
Interferon-Stimulated Response Elements (ISRE) to activate transcription of type I interferons (IFN-α
and IFN-β). Type I IFNs translocate across the cell membrane, after which they signal in a paracrine or
autocrine manner via the interferon-α/β receptor (consisting of two subunits, IFNAR1 and IFNAR2).
This activates the JAK-STAT pathway, leading to phosphorylation of STAT transcription factors
(signal transducer and activator of transcription). Phosphorylated STAT1 and STAT2 heterodimerize,
and translocate to the nucleus to activate expression of broad range of ISGs.
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3.2. RIG-I-Like Receptors

The RLR protein family consists of the three members RIG-I, MDA-5, and LGP2, all of which
are expressed in the cytosol of most cell types [123] (Figure 5A). Furthermore, RLRs are themselves
ISGs that are transcriptionally induced by IFN in a positive-feedback loop [123]. RLR receptors
are DExD/H-box helicases, where DExD/H refers to Asp-Glu-x-Asp/His and “x” can be any amino
acid [124]. The conserved helicase core of RLRs, consisting of two highly similar tandem helicase
domains (Hel1 and Hel2) separated by a unique insertion (Hel2i), is critical for the integration of
signals triggered upon RNA binding [124]. The C-terminal domain (CTD) of RLRs is the site of RNA
recognition and confers ligand specificity [125,126]. MDA5 and RIG-I, in contrast to LGP2, possess
two adjacent CARD (caspase activation and recruitment) domains at their N-terminus. These domains
are important for transmitting structural changes via the conserved helicase domains, leading to the
oligomerization of the adaptor protein MAVS (mitochondrial antiviral signaling) on mitochondrial
membranes [127]. This results in the activation of IRF-3, IRF-7 and NF-κB, which subsequently
translocate to the nucleus and induce transcription of type I IFNs and a subset of ISGs [113,128,129].

While the lack of CARD domains renders LGP2 signaling incompetent, it is important for
fine tuning the immune response. LGP2 amplifies signaling via MDA5 by promoting the rate of
MDA5-RNA interactions and increasing nucleation of MDA5 filaments on dsRNA [130,131]. As a
consequence, loss of LGP2, results in an increased sensitivity to viruses that are detected by MDA5,
such as picornaviruses [132,133]. Likewise, signaling upon dsRNA detection by RIG-I is regulated by
LGP2 [134,135]. In line with its role in modulating the immune response, mice deficient in LGP2 have
altered CD8+ T cell responses to rabies virus, influenza A virus and West Nile virus infections [136–138].

In addition to their role in RNA sensing and signaling, RLRs may also exert direct antiviral
activity [139,140]. For example, RIG-I binding to the 5’-ε region of the pre-genomic RNA of hepatitis
B virus counteracts the interaction with the viral polymerase (P), resulting in suppression of viral
replication [139]. Likewise, the influenza A virus nucleocapsid is destabilized by binding of RIG-I
to the viral “panhandle” promoter, resulting in interference with virus replication at the onset of
infection [140]. These findings suggest that RIG-I, besides its well-characterized role in innate sensing,
possesses antiviral effector functions by directly interacting with viral dsRNA structures.

3.3. Innate Antiviral Immunity in Pluripotent Cells

Stem cells are critical for tissue maintenance, growth, and repair [141]. Stem cells reside in specific
anatomical structures, called stem cell niches, in which they communicate with each other and their
surrounding cells, and respond to cues received from the extracellular matrix [142]. Stem cell niches are
often in close proximity to the blood supply [142], but tissue stem cells, such as smooth muscle progenitor
cells and skeletal stem cells, may also circulate in the peripheral blood [143,144]. These characteristics
render stem cells sensitive to infection by different pathogens. Given the importance of stem cells
and their relatively low abundance, it is essential that effective antiviral defense mechanisms are
in place to protect these cells from damage and cell death. Yet, a full-blown interferon response
could be detrimental due to the potentially cytotoxic effector mechanisms induced. Indeed, the IFN
response is severely attenuated in embryonic stem cells (ESCs) [145], and is regulated at multiple
levels in human ESCs. For instance, pathogen recognition receptors including the dsRNA sensor
and signaling molecules OAS1, MDA5 and TLR3, are downregulated in human ESCs [146], whereas
other proteins such as PKR and RIG-I are expressed, but fail to respond to dsRNA stimulation [146].
Moreover, a recent study demonstrated that suppression of the IFN response in mESCs depends on
miRNA mediated silencing of MAVS, and that knockout of a single miRNA (miR-673) restores the
response [147].

Although stem cells are refractory to type I IFNs [145], human ESCs are highly resistant to viral
infection [148]. It was found that human ESCs and induced pluripotent stem cells (iPSCs) intrinsically
express a subset of ISGs, including IFITM1, IFITM3, EIF3L, and BST2, which conferred protection
against infection with dengue virus and vesicular stomatitis virus [148]. Antiviral protection may
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extend to other virus families, as IFITM-family members restrict entry of diverse viruses, at the
level of pH or cathepsin-dependent fusion in endo/lysosomes and to a lesser extent at the plasma
membrane [149], although post-entry restriction mechanisms have been reported as well [149].

Intrinsic ISG expression varies between stem cell types including ESCs and tissue stem cells
(mesenchymal stem cells, neural stem cells and pancreatic stem cells), and decreases upon stem cell
differentiation [148,150]. The decreased basal ISG expression and increased responsiveness to IFN
allow terminally differentiated cells to induce the full spectrum of antiviral ISGs. Interestingly, besides
being IFN non-responsive and expressing high levels of selected ISGs, ESCs have been found to possess
an active RNAi response, which may contribute to antiviral control [13] (discussed in Section 5.3).

3.4. Viral Antagonism of the IFN Response

The interferon system exerts strong adaptive pressure on viruses, which in turn have evolved
antagonists of type I and type III IFN responses [151,152]. For example, the influenza A virus
non-structural protein 1 (NS1) is a well-known IFN antagonist that inhibits the phosphorylation
and nuclear import of IRF-3 and interferes with posttranscriptional processing of cellular antiviral
pre-mRNAs via its dsRNA binding properties [153,154]. dsRNA-binding proteins from many other
mammalian viruses, including vaccinia virus E3L, Ebola virus VP35, reovirus s3, bunyavirus NSs,
and herpesvirus US11, likely bind viral dsRNA to prevent detection by cellular dsRNA sensors and
induction of an IFN response [155]. Another mode of action is antagonism of IFN pathway components
such as RLRs or downstream signaling components including IRF3, IRF7, STAT1, or STAT2 [152].
For example, the NS5 protein of yellow fever virus inhibits the antiviral action of the IFN pathway by
binding to STAT2 [156], and thus preventing its interaction with the IFN-stimulated response element
in the promoters of ISGs [156]. Many other mechanisms for IFN suppression have been described,
including the regulation of phosphorylation events (e.g., Ebola virus VP40), interference with ubiquitin
modification (e.g., influenza A virus NS1), host transcription shut-off (e.g., adenovirus E1A), inhibition
of RNA processing and trafficking (e.g., vesicular stomatitis virus M protein), translational shut-off

(e.g., hepatitis C virus), or IFN decoy mechanism (e.g., vaccinia virus B18R). For a review, see [152].

4. Antiviral RNA Interference in Insects

While small RNA pathways are evolutionarily conserved from invertebrates to mammals, animal
clades differ in the specific makeup of these pathways. Drosophila provides a notable example, as
the miRNA and siRNA pathways are largely independent pathways, with Dicer-1 and Argonaute1
(Ago1) dedicated to the miRNA pathway, and Dicer-2 and Argonaute2 (Ago2) dedicated to the siRNA
pathway [157] (discussed in Section 2). This characteristic facilitates the use of genetic approaches to
assess the antiviral function of RNAi, as Dicer-2 and Ago2 null mutants are viable and fertile, and do
not have defects in the gene regulatory miRNA pathway.

4.1. Broad Antiviral Function of Insect RNAi

Recognition of dsRNA as a danger signal to induce an immune response is an effective strategy,
since almost all viruses produce dsRNA during their replication cycle [158,159]. Therefore, antiviral
RNAi is broadly active against a large number of RNA and DNA viruses in insects. The most prominent
viral dsRNA sources are (i) genomes of dsRNA viruses, (ii) replication intermediates of positive and
negative sense RNA viruses, (iii) long fold-back structures in viral RNA, and (iv) convergent transcripts
from the gene-dense genomes of DNA viruses (Figure 1) [11]. Dicer-2 recognizes and cleaves these
viral dsRNA molecules into 21 nt viral vsiRNAs, which are loaded into Ago2-containing RISC
complexes [55,160–162]. Whereas endogenous sources of siRNAs rely on both Dicer-2 co-factors R2D2
and Loqs-PD [35], vsiRNA biogenesis and RISC loading can occur in the absence of Loqs-PD [163].
Upon loading with vsiRNAs, RISC is programmed to specifically recognize and slice viral RNA,
resulting in reduced viral replication [11,163–166]. The importance of RNAi in antiviral defense has
been demonstrated using fly mutants deficient in Dicer-2, R2D2, and Ago2, which are more susceptible
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to virus infection and accumulate higher virus levels than wildtype flies [55,159,160,163,165–167].
Similarly, knockdown or inactivation of Dicer-2 and Ago2 in mosquitoes results in higher viral titers
upon infection with different viruses [168–171]. Thus, antiviral RNAi targets viral RNA using two
distinct steps, first by cleavage of dsRNA replication intermediates and second, through slicing of
single-stranded RNAs by Ago2.

Although the presence of two Dicer paralogs have facilitated genetic dissection of antiviral RNAi
in flies, multiple Dicers are not required per se for a functional antiviral RNAi response. For example,
the nematode C. elegans encodes only a single Dicer that produces both miRNAs and siRNAs, yet RNAi
has antiviral activity against non-natural and natural viruses [172–174]. Another point emerging from a
cross-species comparison relates to the role of RNA-dependent RNA polymerases (RdRPs) in antiviral
RNAi. Cellular RdRPs contribute to the amplification of RNAi and the establishment of a systemic
response in plants and nematodes through dsRNA synthesis used for the production of secondary
siRNAs [175]. Insects do not encode RdRP genes, yet it has been proposed that a systemic immune
response is established through spread of the RNAi signal to non-infected cells [176]. This occurs
via a non-conventional mechanism in which viral RNA is reverse transcribed into viral DNA by
cellular retrotransposons, followed by transcription of these viral DNA forms for de novo synthesis of
secondary siRNAs [177–179].

4.2. Viral Suppressors of RNAi

Insect viruses are not defenseless against the activity of the RNAi pathway; many have developed
strategies to antagonize the production or activity of vsiRNAs by expressing viral suppressors of RNAi
(VSR) [11,180,181]. Numerous VSRs have been identified and the mechanisms by which they suppress
RNAi is diverse, for instance by sequestering dsRNA or vsiRNAs to prevent Dicer-2 processing or by
inhibiting Ago2 function through direct interaction with the RISC complex. The fact that viruses, which
normally strive to reduce genome size to a minimum, devote genomic space to VSRs underscores the
strength of RNAi as an antiviral mechanism in insects.

One of the best characterized VSRs is the Flock House virus (FHV) B2 protein, which is able to
inhibit RNA silencing both in animals and plants [182], indicative of interference at evolutionarily
conserved features [182]. The B2 protein binds long and short dsRNA in a sequence independent
manner [174,183,184], thereby acting both upstream and downstream of Dicer cleavage. In addition,
it has been shown that FHV B2 binds to Dicer-2, which could impede its processing activity [185].
The importance of this suppressor for viral replication in vivo has been demonstrated in several
studies [55,164,186]. FHV mutants deficient in B2 expression (∆B2) were found to have severe
replication defects in RNAi-competent Drosophila, but not in RNAi-deficient flies, providing strong
genetic support that RNAi-suppression is the main function of B2 [55,164,186].

VSRs have also been identified in members of other insect virus families. These include the
Drosophila C virus 1A protein, a protein that binds dsRNA and thereby inhibits Dicer-2 processing [166],
and Drosophila X virus and Culex Y virus VP3, both with dsRNA and siRNA binding activities [187].
Nora virus VP1 and cricket paralysis virus (CrPV) 1A antagonize the catalytic activity of Ago2,
highlighting the importance of target RNA slicing for antiviral defense [55,188–190]. Suppression of
RNAi has also been demonstrated for viruses that are transmitted by insects. For example, the capsid
protein of yellow fever virus suppresses RNAi by inhibiting the processing of long dsRNA by Dicer-2
in the mosquito Aedes aegypti [171].

An evolutionary arms race may exist between host antiviral immune pathways and viral
counter-defense mechanisms. Indeed, the existence of VSRs in insect viruses is indicative of the strong
evolutionary pressure exerted by the RNAi pathway. VSRs, in turn, may drive adaptations in host
genes, which could explain the observation that RNAi genes are among the fastest evolving genes in
the Drosophila genome [191]. An ongoing cycle of adaptation and counter-adaptation could lead to
host specificity of VSRs, as has been observed for the VP1 protein of Drosophila immigrans Nora-like
virus [190].
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5. Antiviral RNAi in Mammals

In contrast to Drosophila, in which the miRNA and siRNA pathways rely on distinct Dicer and
Argonaute proteins [157], mammals only encode a single Dicer protein, which processes both miRNAs and
siRNAs [192]. Moreover, a single AGO protein (AGO2) is capable of slicing target RNA, but it also mediates
miRNA-dependent gene silencing [85,86,193]. This complicates the interpretation of experiments analyzing
viral virus replication in conditions in which Dicer or AGO genes are inactivated. Yet, several genetic tools
have been generated to study mammalian RNAi. For example, it has been possible to engineer mESCs
lacking Dicer, which supported its essential role in miRNA biogenesis [194–196]. As differentiation of ESCs
is dependent on cellular miRNAs [197,198], the generation of Dicer-deficient mouse embryonic fibroblasts
required the use of conditional Cre-recombinase-mediated knockout [196,199,200]. In addition,
an easy-to-manipulate human 293T cell line lacking human Dicer (NoDice cells) was generated using
transcription activator-like endonucleases (TALENs). As expected, these cells were unable to process
pre-miRNA precursors and lacked endogenous miRNA expression [201]. As in insects, additional to
genetics approaches, the detection of vsiRNAs and identification of VSRs in mammalian viruses are
used to study the antiviral function of RNAi.

5.1. Viral Small RNA Profiles

A direct approach to analyze RNAi-mediated targeting of viruses is by the detection of vsiRNAs
using next-generation deep-sequencing technologies. Typically, small RNAs in the size range of
18–25/30 nt are purified and subjected to deep sequencing, after which the obtained small RNA
sequences are analyzed using bioinformatics tools. Mammalian Dicer produces both ~22 (+/- 1 nt)
miRNAs and siRNAs. Hence, the detection of vsiRNAs of ~22 nt in length, derived from the positive
and negative strands at approximately equal ratios, as seen in invertebrates [10,11], would be indicative
of viral dsRNA targeting by Dicer.

Several studies failed to identify vsiRNAs in virus infected mammalian cells [16–19,202] (Table 1).
For example, no detectable levels of vsiRNAs were obtained from the human Huh7 cell line infected
with dengue virus (DENV) and West Nile virus (WNV) [203]. Viral small RNAs displayed a broad size
range between 17–29 nt in DENV infected cells and the predominant read length in WNV-infected cells
were <20 nt, arguing against Dicer-mediated processing of viral dsRNA [203]. In agreement, a broad
panel of viruses (DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus,
measles virus, influenza A virus, reovirus, vesicular stomatitis virus, HIV-1, or herpes simplex virus-1)
did not replicate at higher levels in NoDice cells than in Dicer competent cells [203]. Other studies
identified detectable levels of viral small RNAs, although deletion of Dicer did not affect the levels of
these small RNA and it has been suggested that they are generated by ISGs, such as RNaseL [204,205].
In contrast to these results, several recent studies have proposed that antiviral RNAi is functional
in mammalian cells under specific cellular or experimental conditions. Specifically, antiviral RNAi
was observed in differentiated cells using viruses that are VSR defective, in pluripotent stem cells,
or under conditions in which the interferon response in inactivated. These studies are discussed in the
following sections.
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Table 1. Recent studies reporting viral small RNA profiles in mammalian experimental systems.

Virus (Mutant) Virus Family Host Experimental System Approach Viral siRNAs Detected a Reference

Nodamura virus (NoV ∆B2) Nodaviridae mice Suckling mice total small RNA yes [14]

hamster BHK cells total small RNA yes [14]

mice Embryonic stem cells total small RNA yes [13]

Encephalomyocarditis virus Picornaviridae mice Embryonic stem cells total small RNA yes [13]

Human enterovirus 71
(HEV71 D23A) Picornaviridae human 293T cells total small RNA yes [206]

Influenza A virus (∆NS1) Orthomyxoviridae human A549 cells total small and AGO2
associated small RNAs yes [15]

human A549 cells total small RNA yes [207]

human 293T cells total small RNA yes [207]

Influenza A virus human 293T cells total small RNA no [208]

mouse MEFs total small RNA no [202]

human A549 cells total small RNA no [207]

human 293T cells total small RNA no [207]

Borna disease virus Bornaviridae rat C6 glioma cells total small RNA no [202]

Coxsackie virus B3 Picornaviridae human HeLa cells total small RNA no [17]

Sindbis virus Togaviridae human HeLa cells total small RNA no [17]

mice MEFs total small RNA no [202]

human HEK293 cells total small RNA no [209]

human HEK293 cells total small RNA no [205]

monkey Vero cells total small RNA no [205]

Vesicular stomatitis virus Rhabdoviridae mice MEFs total small RNA no [202]

Yellow fever virus Flaviviridae human HeLa cells total small RNA no [17]

Zika virus Flaviviridae human Neural progenitor cells total small RNA yes [210]

MEFs, mouse embryonic fibroblasts; a Defined as a peak of 22-nt (+/- 1 nt) in size profiles of viral small RNAs, derived from both positive and negative viral RNA strands.
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5.2. Viral Suppressors of RNAi in Mammalian Viruses

The presence of virus-encoded suppressors in insect and plant viruses provides strong support for
the antiviral potential of RNAi [11]. RNAi reporter assays and biochemical assays are often used for
their identification and elucidation of the mechanisms of action. Strongest support for their importance
in RNAi suppression in vivo, however, depends on the observation of severe replication defects of
virus mutants lacking a putative VSR and rescue of this defect in RNAi-defective cells, as has been
extensively analyzed for FHV ∆B2 in insects [55,164,186] (described in Section 4.2).

RNAi suppressive activity has now been reported for a number of proteins from mammalian
viruses, including the B2 protein of Nodamura virus, NS1 of influenza A virus, the 3A protein of
human enterovirus 71 (HEV71), Ebolavirus VP35, SARS coronavirus N protein, and yellow fever
virus capsid [14,15,171,206,211,212] (Table 2). Several of these VSRs, including Nodamura virus B2,
influenza A virus NS1, and Ebolavirus VP35, are dsRNA binding proteins that possess a dual function
in suppressing both the IFN pathway and RNAi [211,213–216]. The yellow fever virus capsid protein
has likewise been proposed to bind dsRNA and prevent Dicer processing, although this has thus far
only been studied in the mosquito Aedes aegypti [171]. In addition, the subgenomic flavivirus RNA
(sfRNA), which is produced by incomplete digestion of the 3’UTR by the exonuclease Xrn-1 [217],
has been proposed as an suppressor RNAi [218], although many other activities has been attributed
to sfRNA, including the modulation of host antiviral responses by antagonizing G3BP1, G3BP2, and
CAPRIN1 [219]. A unique mechanism for RNAi suppression was found for the poly(A) polymerase of
vaccinia virus (VP55), which inhibits the stability of small RNAs, in particular miRNAs [220]. VP55
mediates the addition of 2-7 adenosines at the 3’ end of AGO-bound miRNAs (tailing), resulting in
their degradation [220].

For many of the proposed mammalian VSRs, the physiological importance during virus infection
awaits elucidation. A notable exception is the B2 protein of Nodamura virus, like FHV a member of
the family Nodaviridae. In a somatic cell line (BHK-21) and the limbs of newborn mice, vsiRNAs were
detected upon infection with a Nodamura virus mutant lacking B2 (∆B2), but not upon infection with
wildtype virus [14]. Moreover, abolishing the RNAi suppressive activity of B2 rendered suckling mice
resistant to infection, whereas wild-type Nodamura virus caused a lethal infection [14]. In agreement,
Nodamura virus ∆B2 mutants showed a broad range of replication defects in different mammalian cell
lines, suggestive of cell specific differences in RNAi potency [221]. Together, these findings illustrate
that suppression by VSRs can mask the antiviral activity of RNAi and that inactivation of VSRs may be
required to detect antiviral RNAi in differentiated mammalian cells.
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Table 2. Examples of viral suppressors of RNAi in mammalian (arbo-)viruses.

Virus VSR Mechanism RNAi Suppression IFN Antagonist Mechanism IFN Antagonism References

Ebola virus VP35 dsRNA binding Yes
Inhibits PACT-induced RIG-I ATPase activity;

Blocks phosphorylation of IRF-3 and production
of IFN-β

[222,223]

Human enterovirus 71 3A dsRNA binding Yes (minor) nt [206]

SARS coronavirus N dsRNA binding Yes Inhibits TRIM25-mediated RIG-I ubiquitination,
resulting in inhibition of IFN production [212,224]

Influenza A virus NS1 dsRNA binding yes

Inhibits the ubiquitin ligase TRIM25, responsible
for ubiquitination and activation of RIG-I; Inhibits

PKR; Prevents activation of the 2′-5′

oligoadenylate synthetase/RNase L system

[225–227]

Nodamura virus B2 dsRNA binding nt - [228]

Vaccinia virus VP55 Polyadenylation of miRNAs, leading
to their degradation no - [220]

Yellow fever virus capsid dsRNA binding a no - [171]

nt, not tested. a RNAi suppression was shown in mosquitoes, but not analyzed in mammals.
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Another VSR that has been proposed to veil antiviral RNAi is influenza A virus NS1. It has been
demonstrated that an influenza A virus mutant lacking NS1 (∆NS1) replicates only poorly, indicating
that NS1 is essential for successful infection [229]. The same study found that this replication defect
was rescued in cells deficient in PKR, an important effector of the IFN pathway [229], suggesting that
evasion of the IFN response is the major function of NS1 in this experimental system. Could there still
be a role for NS1 in suppression of RNAi? Intriguingly, the slicing activity of AGO2 was reported to
restrict influenza A virus replication in somatic cells, independent of interferon [15], although another
study found that influenza virus (both wildtype virus and ∆NS1 mutant), accumulated to similar
levels in mouse embryonic fibroblasts (MEFs) with or without an intact RNAi pathway [21]. Small
RNA deep sequencing identified vsiRNAs in influenza A virus ∆NS1 infection, but not in wildtype
influenza A virus infections, supporting a physiological role of NS1 in masking the antiviral RNAi
pathway [15]. Importantly, vsiRNA production was lost in Dicer-deficient 293T cells, but rescued upon
ectopic expression of human Dicer, providing genetic support that the detected vsiRNAs were Dicer
dependent [15]. These observations have been confirmed in a study using wildtype and ∆NS1 mutant
influenza A virus in 293T cells and the lung epithelial cell line A549 [207]. However, these vsiRNAs
did not affect viral gene expression in this study, likely caused, at least partially, by inefficient vsiRNA
loading into RISC [207]. Yet, earlier studies reporting that NS1 does not inhibit RNAi in mammals
using reporter assays or engineered viruses [230–235]. The discrepancy between studies that did not
detect vsiRNAs [202,208] and recent reports that did detect vsiRNAs in influenza A virus infection may
be partially explained by the use of influenza ∆NS1 mutants [15,207] and AGO2 immunoprecipitation
before deep sequencing [15]. The sensitivity to detect rare vsiRNAs may be increased by enrichment
for siRNAs bound to AGO2, rather than sequencing all small RNAs, which would also detect random
degradation products.

The notion that VSRs may mask antiviral RNAi in mammals has now been supported by a third
example, human enterovirus 71 (HEV71), an RNA virus from the family Picornaviridae. Specifically,
the 3A protein of HEV71 was found to suppress the RNAi response by binding long dsRNA as
determined by gel mobility shift assay and Northern blot [206]. Viral siRNAs were detected in 293T
cells and mice upon infection with virus mutants carrying two mutations (D23A or R34A) in 3A,
but not in infections with wildtype virus [206]. In agreement, mutant virus had severe replication
defects, which was rescued in Dicer-deficient cells, albeit slightly [206].

5.3. Antiviral RNAi in Pluripotent Cells

Major differences exist in the innate immune response between pluripotent and differentiated
cells [148] (discussed in Section 3.3), and RNAi has recently been proposed as an additional antiviral
mechanism in mESCs [13]. Specifically, vsiRNAs with the characteristics of canonical siRNAs were
detected upon infection with encephalomyocarditis virus (EMCV), the level of which substantially
decreased upon cell differentiation [13]. Likewise, vsiRNAs were observed upon infection of mESCs
with the Nodamura virus ∆B2 mutant, whereas wildtype virus failed to produce vsiRNAs [13,14].
Extending these observations to the human system, it was found that Zika virus infection of human
neural progenitor cells results in vsiRNA production, and accordingly that Dicer and AGO2 knockdown
or transgenic expression of Nodamura virus B2 increases viral RNA levels [210]. Together, these studies
suggest that Dicer-mediated processing of dsRNA replication intermediates into vsiRNAs may occur
in pluripotent stem cells, but not or less efficiently in differentiated cells.

Several non-mutually exclusive possibilities have been proposed to explain why RNAi might
be favored over the IFN response in stem cells [236]. Pluripotent cells readily produce triggers of
the IFN response (e.g., cytoplasmic dsRNA) [237], but the IFN response may be incompatible with
pluripotency. For example, pluripotent cells undergo rapid cell division and the IFN response might
be muted to prevent the associated antiproliferative effects [238]. In addition, as interferon stimulates
differentiation, controlled inhibition of the IFN response in pluripotent cells might serve as a means
to maintain potency [238]. An effective RNAi response, on the other hand, seems to be important
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for stem cell biology as maintenance of stem cell properties is regulated by the endogenous RNAi
machinery [239]. Furthermore, high levels of transposon activity have been reported in undifferentiated
cells [240] and RNAi likely contributes to transposon repression in these cells.

Dicer is crucial for processing long dsRNA into siRNAs, raising the possibility that RNAi activity
is regulated at the level of Dicer in different cell types. For example, the activity of human Dicer
is dependent on the substrate, as demonstrated by different cleavage rates on pre-miRNAs and
long dsRNA [241,242], suggesting different modes of recognition and/or processing of miRNA and
siRNAs in vivo. Furthermore, the N-terminal helicase domain of mammalian Dicer was found to
autoinhibit siRNA processing activity [241,243]. In agreement, in human somatic cells ectopically
expressing an N-terminally truncated version of human Dicer, vsiRNAs were detected upon influenza
A virus infection [208]. This is analogous to a natural situation in mice oocytes, which naturally
express an N-terminally truncated isoform of Dicer, Dicer-O, which efficiently processes long dsRNA
substrates into siRNAs [243]. Expression of Dicer-O is driven by an insertion in intron 6 of an MT-C
retroelement [243], a long terminal repeat (LTR) retrotransposon that is active in mouse oocytes and
can be used as alternative promoters for adjacent genes [244]. The MT-C promoter drives expression
of an alternative exon (AltE) [244] in-frame with the next exon, resulting in the deletion of the
N-terminal DExD helicase domain in the Dicer-O variant [243]. The truncated Dicer-O isoform is
limited to the Muridae family of rodents [243], and it is unlikely to play a role in antiviral RNAi. Yet,
these observations [208,243] suggest an important role for Dicer processivity in antiviral RNAi. Indeed,
it was recently demonstrated that the antiviral Dicer of Drosophila, Dicer-2, has two distinct modes
to process dsRNA substrates. Substrates with 3’ overhangs are cleaved distributively, whereas blunt
dsRNA is locally unwound, threaded through the helicase domain, and processively cleaved in an
ATP dependent manner [40] (Figure 2C). Distributive cleavage of substrates with 3’overhangs seems
consistent with the main function of human Dicer in miRNA biogenesis. Moreover, although the
helicase domain is conserved in human Dicer, a dsRNA threading mechanism has thus far not been
reported. Thus, whether the threading mechanism of Dicer is essential for efficient antiviral RNAi, and
whether human Dicer adopts this mechanism under specific cellular conditions remains an interesting
question for future research [40].

5.4. RNA Interference and Interferon Pathway

In mammals, the potent IFN response is the main innate antiviral pathway [113,118], whereas RNAi
seems to be antiviral in undifferentiated cells in which the IFN system is not active [13,146]. This raises
the question whether the IFN response masks or inhibits antiviral RNAi in mammals. In agreement with
this hypothesis is the observation that in MEFs deficient in the signaling molecule MAVS or interferon
receptor (IFNAR1), defective in respectively sensing non-self RNA and responding to type I IFNs,
long dsRNA induces sequence-specific gene silencing in a Dicer and AGO2-dependent manner [21].
Although the authors did not directly assess vsiRNA production using a deep-sequencing approach in
these cells, antiviral RNAi activity was suggested via a “dsRNA vaccination experiment” in which
IFN-deficient cells were protected from virus infection by prior treatment with virus sequence-specific
long dsRNA [21]. Although these experiments suggest competition between the IFN response and
RNAi, HeLa cells deficient in both RIG-I and MDA5 did not produce detectable levels of vsiRNAs
upon infection with Sindbis virus, yellow fever virus, and Coxsackie virus B3 [17].

Support for an interaction between the RNAi and IFN pathways also emerged from a large-scale
proteomics study to identify interactors of the innate immune system. This study identified a physical
interaction of LGP2 and Dicer [245], which was subsequently shown to contribute to suppression of the
RNAi pathway [20]. Binding of LGP2 to Dicer prevented cleavage of long dsRNA into siRNAs in vitro
and ectopic expression of LGP2 in IFNAR1-/- cells inhibited RNAi, as shown by northern blots detecting
siRNAs derived from transfected dsRNA [20]. Knock-out of LGP2 resulted in stronger RNAi responses
in reporter assays, but the effect was less pronounced than in cells lacking IFNAR1 [20]. Moreover,
it was found that LGP2 binds dsRNA binding sites on the Dicer co-factor TRBP, thereby inhibiting
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pre-miRNA binding and maturation [246]. Together, these results suggest that LGP2 interferes with
RNA silencing, strengthening the notion that the IFN response masks or inhibits an antiviral RNAi
response in differentiated mammalian cells.

Reciprocally, RNA silencing may also play a regulatory role in the interferon response. Several
studies have proposed that miRNAs play important functions in the negative regulation of cytotoxic
ISGs, particularly those associated with cell proliferation and cell death [247–251]. Moreover, viral
infection or treatment with the dsRNA mimic poly I:C induced ADP-ribosylation of AGO2, resulting
in inhibition of RISC activity and, thus, decreased siRNA and miRNA silencing activity [247]. As many
ISGs are targets of miRNAs, inhibition of RISC may increase ISG expression, suggesting that this
mechanism contributes to the rapid ISG expression upon viral infection [247].

6. Summary and Open Questions

Vertebrates rely on the protein-based IFN response to combat viral infections, whereas the RNAi
machinery, known for its potent antiviral activity in invertebrates, is conserved but primarily functions
in gene regulation. Mammals encode a single Dicer protein and four AGO proteins, of which only
AGO2 is slicer competent. The function of these proteins in both the miRNA and siRNA pathways
makes it difficult to genetically dissect the role of the RNAi pathway in inhibiting viral replication.
The notion that both the IFN response and RNAi rely on dsRNA to initiate the antiviral response adds
another level of complexity.

With the advancement of next generation sequencing technologies, a growing body of evidence
has emerged that supports a role for RNAi in antiviral defense in mammals. Detection of canonical
vsiRNAs in ESCs infected with EMCV or Nodamura virus ∆B2 provided the first compelling evidence
for a role of antiviral RNAi in mammals [13,14]. ESCs possess an attenuated immune response [145],
caused by reduced gene expression of IFN-pathway components or, in some instances, failure to
respond to dsRNA triggers [146]. It is now apparent that RNAi is suppressed by the IFN pathway,
likely due to the action of one or more ISGs [21] and through the interaction of Dicer and LGP2 [20].

VSRs seem to play an important role in differentiated cells, demonstrated by the accumulation of
vsiRNAs during Nodamura virus ∆B2 and HEV71 3A mutant virus infections [13,14,206]. These findings
were complemented by the detection of AGO2-associated siRNAs in somatic cells infected with
Influenza A virus ∆NS1 [15]. These studies indicate that VSRs may mask the antiviral RNAi response
in mammals. This situation is markedly different from the situation in plants and insects, in which
vsiRNAs are readily detected with most, if not all wildtype viruses analyzed, hinting at differences in
processivity of Dicer enzymes or differences in accessibility of viral dsRNA in mammals and insects.

Antiviral RNAi thus seems to be affected by the cellular context, IFN responses, and viral
counter-defense mechanisms (Figure 6). Important questions still remain for each of these aspects.
(i) How does the cellular context affect the antiviral immune response? Are there tissue and cell type
specific differences in antiviral RNAi? Why is the antiviral RNAi pathway functional in stem cells and
why is this activity lost upon differentiation? For example, are there specific determinants in stem cells
that favor RNAi over the IFN response? How does cell potency (e.g., toti-, pluri-, and multipotency)
affect the dominant antiviral immune response, and do tissue stem cells use RNAi for antiviral defense?
(ii) Which factors, beyond LGP2, contribute to the inhibition of RNAi in differentiated cells? What are
the relative contributions of the IFN and RNAi responses to host defense. (iii) How widespread is
RNAi suppression among mammalian viruses? Do mammalian viruses encode VSRs that suppress
AGO2, and what is the course of infection of virus mutants lacking this activity? Answers to these
questions will shed light on the sophisticated RNAi pathway and its functions in antiviral defense.
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