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Synthetic DNA is rapidly emerging as a durable, high-density
information storage platform. A major challenge for DNA-based
information encoding strategies is the high rate of errors that
arise during DNA synthesis and sequencing. Here, we describe the
HEDGES (Hash Encoded, Decoded by Greedy Exhaustive Search)
error-correcting code that repairs all three basic types of DNA
errors: insertions, deletions, and substitutions. HEDGES also con-
verts unresolved or compound errors into substitutions, restoring
synchronization for correction via a standard Reed–Solomon outer
code that is interleaved across strands. Moreover, HEDGES can
incorporate a broad class of user-defined sequence constraints,
such as avoiding excess repeats, or too high or too low windowed
guanine–cytosine (GC) content. We test our code both via in sil-
ico simulations and with synthesized DNA. From its measured
performance, we develop a statistical model applicable to much
larger datasets. Predicted performance indicates the possibility
of error-free recovery of petabyte- and exabyte-scale data from
DNA degraded with as much as 10% errors. As the cost of DNA
synthesis and sequencing continues to drop, we anticipate that
HEDGES will find applications in large-scale error-free information
encoding.

DNA | information storage | error-correcting code | indel | Reed–Solomon

DNA is an ideal molecular-scale storage medium for dig-
ital information (1–7). An arbitrary digital message can

be encoded as a DNA sequence and chemically synthesized
as a pool of oligonucleotide strands. These strands can be
stored, duplicated, or transported through space and time. DNA
sequencing can then be used to recover the digital message,
hopefully exactly. Advances in the cost and scale of DNA
synthesis and sequencing are increasingly making DNA-based
information storage economically feasible. While synthesis today
costs $0.001 per nucleotide, some observers project a decrease
of orders of magnitude (8). A strand of DNA containing the
four natural nucleotides can encode a maximum of 2 bits per
DNA character. With this maximum code rate (defined as
rate r =1.0), no error correction is possible, because there is
no redundancy in the message. However, both DNA synthesis
and sequencing introduce errors in the underlying DNA pools,
requiring efficient error-correcting codes (ECCs) to extract the
underlying information. An ECC reduces the code rate but is
necessary to protect against errors when a message is encoded
as DNA characters, and, later, when decoding DNA characters
back to message bits.

An ECC must correct the three kinds of errors associated
with DNA—substitutions of one base by another, as well as
spurious insertions or deletions of nucleotides in the DNA
strand (indels). Indels represent more than 50% of observed
DNA errors (Fig. 1A). However, most DNA encoding schemes
use ECCs that can only correct substitutions, a standard task
in coding theory (9–12). The coding theory literature reports
only a few ECCs that correct for deletions, and there are no
well-established methods for all three of deletions, insertions,

and substitutions (13, 14). Prior DNA storage implementations
correct for indels by sequencing to high depth, followed by mul-
tiple alignment and consensus base calling (Fig. 1B) (1, 3, 6).
This approach represents an inefficient “repetition” ECC. More-
over, repetition ECCs only correct errors associated with DNA
sequencing. Correcting synthesis errors using this approach also
requires pooling multiple synthesis reactions, which is the most
costly and time-consuming step in DNA-based information stor-
age (2). Finally, alignment and consensus decoding does not
scale well beyond small proof-of-principle experiments. In sum,
ECCs that require high-depth repetition in the stored DNA
have very small code rates because a large number of stored
nucleotides are required per recovered message bit.

Here, we describe an algorithm to achieve high code rates
with a minimum requirement for redundancy in the stored DNA.
We adapt the coding theory approach of constructing an “inner”
code (so termed because it is closest to the physical channel, the
DNA) to correct most indel and substitution errors. The inner
code translates between a string of {A,C ,G,T} and an interme-
diate binary string of {0, 1}, with no added or dropped bits even
in the presence of indels in the DNA string. An efficient “outer”
code corrects residual errors with extremely high probability.
Our inner code, termed HEDGES (Hash Encoded, Decoded by
Greedy Exhaustive Search), is optimized for real-world DNA-
based information storage: 1) It finds and corrects indels, or
converts them to substitutions (which it also usually corrects). 2)
It admits varying code rates, with correspondingly greater tol-
erance of DNA errors at lower code rates. 3) It is adaptable

Significance

This paper constructs an error-correcting code for the {A, C,
G, T} alphabet of DNA. By contrast with previous work, the
code corrects insertions and deletions directly, in a single
strand of DNA, without the need for multiple alignment of
strands. This code, when coupled to a standard outer code, can
achieve error-free storage of petabyte-scale data even when
∼10% of all nucleotides are erroneous.

Author contributions: W.H.P., J.A.H., S.K.J., and I.J.F. designed research; W.H.P., J.A.H.,
S.K.J., J.M.S., and I.J.F. performed research; W.H.P., J.A.H., S.K.J., and I.J.F. contributed
new reagents/analytic tools; W.H.P., J.A.H., S.K.J., J.M.S., and I.J.F. analyzed data; and
W.H.P., J.A.H., S.K.J., J.M.S., and I.J.F. wrote the paper.y

Reviewers: J.B.P., University of Pennsylvania; and H.V.P., Princeton University. y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y

Data deposition: The sequenced reads used in testing are available on the Sequence
Read Archive (SRA) under accession nos. SAMN14897329–SAMN14897335 (SRA Project
PRJNA631961). The computer code used for the generation and testing of the inner
HEDGES code and outer RS code is available on GitHub, https://github.com/whpress/
hedges.y
1 To whom correspondence may be addressed. Email: wpress@cs.utexas.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2004821117/-/DCSupplemental.y

First published July 16, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.2004821117 PNAS | August 4, 2020 | vol. 117 | no. 31 | 18489–18496

http://orcid.org/0000-0003-0771-0841
http://orcid.org/0000-0002-2943-9397
http://orcid.org/0000-0001-8387-1917
http://orcid.org/0000-0002-1130-2675
http://orcid.org/0000-0002-9371-2431
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN14897329
https://www.ncbi.nlm.nih.gov/sra/?term=SAMN14897335
https://www.ncbi.nlm.nih.gov/bioproject/631961
https://github.com/whpress/hedges
https://github.com/whpress/hedges
mailto:wpress@cs.utexas.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004821117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004821117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2004821117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2004821117&domain=pdf


A B

C

D E

F

G

Fig. 1. (A) Distribution of insertion and deletion errors (indels) in a typical DNA storage pipeline (Table 1); ins, insertion; del, deletion; sub, substitution.
(B) (Left) Existing DNA-based encoding methods require sequence-level redundancy, strand alignment, and consensus calling to reduce indel errors. (Right)
HEDGES corrects indel and substitution errors from a single read. (C) Overview of the interleaved encoding pipeline used throughout this paper. (D) HEDGES
encoding algorithm in the simplest case: half-rate code, no sequence constraints. The HEDGES encoding algorithm is a variant of plaintext auto-key, but
with redundancy introduced because (in the case of a half-rate code, for example) 1 bit of input generates 2 bits of output. Hashing each bit value with
its strand ID, bit index, and a few previous bits “poisons” bad decoding hypotheses, allowing for correction of indels. (E) An example HEDGES encode,
encoding bit 9 of the shown data strand (red box). As in D, half-rate code, no sequence constraints. (F) The HEDGES decoding algorithm is a greedy search
on an expanding tree of hypotheses. Each hypothesis simultaneously guesses one or more message bits vi , its bit position index i, and its corresponding DNA
character position index k. A “greediness parameter” Pok (see SI Appendix, Supplementary Text) limits exponential tree growth: Most spawned nodes are
never revisited. (G) Illustration of a simplified HEDGES decode. The example bit strand message is encoded and then sequenced with an insertion error. Blue
squares give decoding action order: 1, Initialize Start node; 2 to 5, explore best hypothesis at each step; and 6, traceback and output the best hypothesis
message. DNA image credit: freepik.com.
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to the experimental constraints on DNA synthesis, for exam-
ple, balanced GC content and the avoidance of homopolymer
runs. 4) It has, effectively, zero strand ordering errors, removing
a source of large bursts of errors. Although this paper’s main con-
tribution is an efficient indel-correcting code, we also develop a
specific implementation of the outer Reed–Solomon (RS) code
for DNA-based storage. The RS code is applied “diagonally”
across multiple DNA strands (Fig. 1C) to more evenly distribute
synthesis and sequencing errors, which improves error correc-
tion performance (15). We test our strategy (both in silico and
in vitro) with degraded DNA oligonucleotide pools. Based on
these experiments, we use computer simulations to demonstrate
that this coding strategy enables error-free exabyte (1018)-scale
DNA storage.

Results
HEDGES Theoretical Design. Fig. 1 shows the data flow for
HEDGES encoding and decoding algorithms. In the terminol-
ogy of coding theory, HEDGES is an infinite-constraint-length
convolutional code (a “tree code”) incorporating some features
specific to the DNA channel. It is decoded via a stack algorithm
that assigns costs to both indels and substitutions. The decoding
algorithm succeeds probabilistically, with the ability to signal suc-
cess or failure. Decoding failures are then regarded as erasures
(unknown bits or bytes) and can be corrected in the outer code
[i.e., an RS(255,223) code]. Alternatively, the error strand can be
discarded and resequenced.

The simplest case is a half-rate code (1 bit encoded per
nucleotide) with no constraints on the output DNA sequence,
shown in Fig. 1D (see SI Appendix, Fig. S1 for full diagram). The
basic plan is a variant of a centuries-old “text auto-key encod-
ing” cryptographic technique (16) (see also Wikipedia, “Autokey
cipher”). We generate a stream of pseudorandom characters
Ki ∈{0, 1, 2, 3}≡{A,C ,G,T}, where each Ki depends deter-
ministically, via a hash function, on a fixed number of previous
message bits {bj}, on the current bit position index i of the
current message bit bi , and on the strand ID. We then emit
a character Ci in {A,C ,G,T} with Ci =Ki + bi , the addi-
tion performed modulo 4. Redundancy for error correction
occurs because, at each i , Ci can take on only two out of four
values, because bi ∈{0, 1}. The output DNA is always com-
pletely (pseudo)random because the hash is pseudorandom.
Thus, the DNA is, in this sense, independent of the encoded
message. We note that nothing limits this scheme to the four
“natural” nucleotides; generalization to an increased number is
straightforward.

The decoding algorithm sequentially guesses message bits
(Fig. 1F). Each guessed bit bi—along with its guessed position
i—allows the algorithm to predict (via the forward encoding
algorithm) a nucleotide value Ci . If Ci agrees with the observed
value, a reward is assigned to that guess. If Ci disagrees, the guess
is penalized as appropriate for a substitution. If it disagrees, but
would agree at a different assumed position, plus or minus one,
that distinct guess is assigned a penalty appropriate for an inser-
tion or deletion. A heap structure keeps systematic track of all
currently viable chains of guesses. To prevent the heap from
growing exponentially, only chains of guesses that have close to
the best total score are extended preferentially, using a variant of
the A∗ algorithm (17).

In summary, the algorithm encodes information as a stream
of nucleotides such that any single decoding error in either
nucleotide identity or nucleotide position will “poison” the
downstream predictions. Thus, on decoding, there will be only
one good-scoring chain of guesses—the correct one. In the
unlikely case that the heap grows larger than a preset size Hlimit
(e.g., 106), we declare a decode failure and mark the remain-
ing part of the strand as an erasure. Similarly, by including the
strand ID in the hash function input, any strand with incor-

rectly decoded strand ID will be “poisoned” for the full length
of the message and fail to decode. This results in effectively zero
strand ordering errors, the most expensive type of simple error
in interleaved encoding schemes.

Testing In Silico. For in silico testing, we assumed equal rates
for substitutions, insertions, and deletions with total error prob-
ability per nucleotide Perr =Psub +Pins +Pdel. Any other dis-
tribution can then be conservatively bounded by the choice
Perr =3max(Psub,Pins,Pdel). For simplicity, we assumed that
errors occurred at random positions in the DNA strand. The
experimental tests in vitro had no such assumption (see below).

The HEDGES algorithm was implemented in C++ for
speed, with a Python-callable interface for encoding/decoding
single strands. As an initial validation of programming accu-
racy and interface design, we used an outer-code concatenated
design with packets of 255 strands of length 300 protected by
RS(255,223). A detailed description of the encoding design is
provided in SI Appendix, Supplementary Text; all corresponding
computer programs are provided in SI Appendix and available
via GitHub. For every code rate r in {0.166, 0.250, 0.333, 0.500,
0.600, 0.750}, and each assumed Perr in {0.01, 0.02, 0.03, 0.05,
0.07, 0.10, 0.15}, we encoded 10 packets (∼106 nucleotides),
pooled all of the strands, and duplicated them as if sequencing to
depth 5, meaning that each strand was duplicated a Poisson ran-
dom number of times, with mean 5. We verified that the pooled
and duplicated strands could be decoded, the packets recovered
and ordered, RS applied, and the messages recovered without
error—but only up to some maximum tolerable error rate Perr
that increased with decreasing code rate. That is, we “tested to
failure” on Perr. For this test, the maximum heap size was set to
an intentionally small value, Hlimit =105, to increase the number
of decode failures and thus stress the program. The results of this
test were as expected and gave us confidence to proceed with in
vitro and larger-scale in silico testing (below).

We next needed to construct a statistical error model that
could be extrapolated to the petabyte or exabyte scale. For this
model, we needed to know the rate of bit errors and byte errors
in HEDGES output (for each code rate r as a function of Perr).
Because decode errors tended to occur in bursts, the rate of byte
errors was less than the 8× expected for independent bit errors.
We also needed to know the probability per strand of a decode
failure, and the distribution of such failures along the strands.
For each pair (r ,Perr), we simulated 12,000 strands of length
10,000 (about 108 nucleotides), now with Hlimit =106. Decode
failures occurred approximately uniformly along the strands,
consistent with the hypothesis that the heap decode “loses its
way” only on rare, local, random sequences (SI Appendix, Fig.
S2). Decode failures are thus characterized by a single value, the
mean run length to failure in a Poisson model. Fig. 2A shows
the byte error rate as a function of code rate, while SI Appendix,
Fig. S2 gives full details on observed bit and byte error rates, and
mean runs to decode failures. Byte error rates were typically 3 to
5 (not 8) times the bit error rates.

Using these byte error rates, we then modeled HEDGES in
an overall concatenated ECC design. Fig. 2B shows the average
number of message bytes that could be decoded before encoun-
tering an uncorrectable error using the concatenated design pre-
viously described (see Methods for details). A broad set of code
rates (green) are suitable for gigabyte- to exabyte-scale DNA
storage. HEDGES decode failures in this region occur every 104

to 105 nucleotides but get corrected by the RS outer code or,
optionally, by using another exemplar of the strand (see Discus-
sion). Similar simulations with the imposed output constraints
of no homopolymer runs (e.g., GGGG or AAAA) greater than
four, and 4≤CG≤ 8 in any window of 12 nucleotides, are
shown in SI Appendix, Fig. S3, and are not substantially dif-
ferent from Fig. 2. We also modeled the effects of sequencing
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Fig. 2. In silico performance of the HEDGES algorithm. (A) The in silico byte error rate for the HEDGES algorithm as a function of code rate, r, shown for a
range of simulated DNA error rates Perr. (B) The mean number of bytes to an uncorrectable error, assuming the interleaved RS(255,223) design discussed in
the text.

constraints more generally (SI Appendix, Supplementary Text and
Fig. S4), and the combined model and simulation results indi-
cate that the most common sequencing constraints have minimal
impact on HEDGES. In sum, in silico simulations indicate that
HEDGES is capable of error-free decoding of exabyte-scale
messages.

Testing In Vitro. We next tested real-world ECC performance on
a pooled sample of 5,865 synthetic 300-base pair DNA strands
that were exposed to accelerated aging or enzymatic muta-
genesis. Of these, 18 packets of 255 strands were HEDGES
inner-encoded (with subsets at each of six code rates) and
then RS(255,223) outer-encoded across strands. Five packets,
totaling 1,275 strands, were encoded with an unrelated error
correction algorithm (18), but also served as a negative control
on identifying and sequencing HEDGES strands into pack-
ets. Each HEDGES strand consisted of 3′ and 5′ primers of
length 23 nucleotides (see Methods) flanking a 254-nucleotide
DNA payload. When decoded into bytes, each payload com-
prised a 1-byte packet number, a 1-byte sequence number (these
“salt-protected” on encryption; see Methods), a message payload
whose length depended on the code rate, and a 2-byte runout.
The sample was PCR amplified and prepared for Illumina-based
sequencing. Additionally, we degraded the DNA separately via
error-prone PCR mutagenesis or by incubation at high tem-
perature (see Methods). Sequencing was done to a mean depth
of ∼50.

We performed two kinds of tests of the decoding algorithm,
with and without knowledge of the encoded message. “Type A”
tests assumed knowledge of the 5,865 strand sequences and could
be used to characterize the nature of end-to-end DNA error
rates. “Type B” tests were blind decodings of the sequenced
data, with knowledge only that the pooled DNA contained
HEDGES-encoded data in the specified format.

In our Type A tests, 10 to 15% of sequenced strands could
not be uniquely identified with any known input strand, even
using quite robust N-gram methods, and even for unmutagenized
aliquots. This may be the result of the low concentration, or of
contamination at some stage; but it also added to the challenge
for the blind type B tests.

For strands whose progenitor sequence could be identified,
Table 1 shows measured rates of substitution, insertion, and dele-
tion errors. Notably, only the highest mutagenesis kit protocol
produced a substantial increase in DNA errors. Data in ref. 3

estimate DNA degradation over a wide range of timescales and
temperatures, suggesting that 50 ◦C incubation for 8 h should
have produced significant mutagenesis. We did not find this,
however. So, for further analysis here, we consider only the
untreated and high-mutagenesis datasets.

Table 2 shows the results for decoding strands that were iden-
tified as belonging to packets of each code rate. Approximately
3% of the strands failed to decode even at small code rates
where, in simulation, there were many fewer such failures. Iden-
tification of these strands was ambiguous and may stem from
PCR mispriming, oligonucleotide misdimerization, and other
next generation sequencing (NGS) library preparation artifacts
that can vary from batch to batch. Indeed, for lower code rates
(where the ECC was relatively unstressed), strand decode failure
rates were slightly higher for the untreated case than for the high-
mutagenesis case, presumably due to batch-to-batch variation in
the number of such artifacts.

For this reason, the values for the mean run to an uncor-
rectable error in Table 2 are calculated assuming a strategy of
rejecting failed decodes, rather than counting them as erasures.
We adopted just this rejection strategy in our blind (type B)
decoding; the input data were several ×105 total reads of the
synthesized 5,865 strands (of which 4,590 were message bear-
ing) plus contamination. We shuffled the reads into random
order, then attempted HEDGES decoding one read at a time,
populating the 18 expected packets of 255 strands with success-
ful decodes and attempting the outer RS error correction when

Table 1. Observed end-to-end DNA error rates, which includes
errors introduced during synthesis, sample handling and storage,
preparation, and sequencing

Mutagenesis kit 50◦C incubation

Untreated Low Medium High 2◦h 8◦h

Substitution 0.0057 0.0075 0.0178 0.0238 0.0082 0.0085
Deletion 0.0054 0.0045 0.0067 0.0082 0.0040 0.0047
Insertion 0.0023 0.0020 0.0032 0.0039 0.0017 0.0019
Total 0.0134 0.0139 0.0277 0.0359 0.0140 0.0151

The observed total error rates on the order of 1% were approximately
doubled and tripled by the medium and high protocols (respectively) of the
mutagenesis kit. Incubation at 50 ◦C for 2 and 8 h had only a small effect
and was not further tested.
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Table 2. Measured in vitro performance and inferred extrapolation to large datasets

Code rate

0.166 0.250 0.333 0.500 0.600 0.750

Untreated
Strand decode failure rate 0.033 0.033 0.040 0.045 0.055 0.069
Observed byte error rate 0.00061 0.00110 0.00182 0.00240 0.00248 0.00547
Mean byte errors per RS decode 0.16 0.28 0.46 0.61 0.63 1.39
Mean bytes to uncorrectable 1.8E+28 9.2E+23 2.1E+20 2.2E+18 1.3E+18 3.8E+12

High mutagenesis
Strand decode failure rate 0.027 0.029 0.029 0.037 0.062 0.322
Observed byte error rate 0.00034 0.00114 0.00137 0.00345 0.00850 0.02888
Mean byte errors per RS decode 0.09 0.29 0.35 0.88 2.17 7.36
Mean bytes to uncorrectable 3.6E+32 5.1E+23 2.4E+22 5.9E+15 4.4E+09 4.9E+02

The upper two values in each box are as experimentally measured in vitro. The bottom values are
inferred from the measured quantities for error-free decoding of large datasets under the same experimental
conditions. Colors indicate feasibility for large data storage, by the same criteria as Fig. 2.

the number of erasures (missing strands) was small enough (see
Methods for details).

As expected based on the results of Table 2, we achieved error-
free decodes of all packets, except in the case of two packets
with high mutagenesis at the highest code rate 0.750. With no
mutagenesis, 24,000 total reads were required for all 18 packets.
With high mutagenesis, 22,000 reads were required for 16 pack-
ets, while the undecodable two continued to fail indefinitely. In
the successful cases, the number of reads corresponded to about
depth 3 on message-bearing message strands. This depth was
required merely to sufficiently populate the packets for the outer
code to operate due to random strand sampling, not because of
any property of HEDGES as the inner code.

Discussion
HEDGES is designed to be flexible with respect to DNA strand
lengths, DNA sequencing and synthesis technologies, choices of
outer code, and interleaving details. The most important feature
of HEDGES is that it always either 1) recovers “perfect” syn-
chronization of the individual DNA strand to which it is applied
(that is, completely eliminates insertion and deletion errors) or
else 2) signals that it is unable to do so by a decode failure. Here
“perfect” means that our reported bit and byte error rates, which
are small enough to be completely corrected by a standard outer
code such as RS, are already inclusive of any residual instances
of missynchronization.

In the feasible (green) regions of Fig. 2, HEDGES decode fail-
ures occur about every 104 to 105 nucleotides (bottom cells).
Two strategies are possible: 1) We can keep these strands and
mark as erasures the bits after the failure point, or 2) we can,
instead, use another strand from the pool showing the same
strand ID—thus increasing the sequencing depth requirement by
a tiny amount. The performance values shown in Fig. 2 use strat-
egy 1; those in Table 2 use strategy 2. Importantly, HEDGES
allows constraints on the encoded DNA strands such as reduc-
ing homopolymer runs and maintaining a balanced GC content.
SI Appendix, Fig. S3, when compared to Fig. 2, shows that
such constraints impose little penalty on both the code rate and
error correction level. Thus, we demonstrate that both are viable
strategies for error correction.

We performed both in silico and in vitro experiments to val-
idate HEDGES across a variety of error rates. Such statistical
analyses of rare events, based on both experimental data and
simulations, should be a required part of all future proposals
for DNA data storage. HEDGES performance on real DNA
with observed total errors of ∼1% and ∼3% (Tables 1 and 2)
was comparable to computer simulation at the same total DNA
error rates and to the statistical model we built using simple

Poisson random errors (Fig. 2). In both cases, HEDGES demon-
strates the feasibility of large-scale error-free recovery at code
rates up to 0.6 (1.2 bits per nucleotide) for ∼1% DNA errors;
and 0.5 (1 bit per nucleotide) for ∼3% DNA errors. Error-free
exabyte-scale storage is feasible at DNA error rates as large as
7 to 10% with a code rate of 0.25 (0.5 bits per nucleotide).
Thus, HEDGES paves the way for robust error correction
in large-scale but error-prone pooled synthesis of large DNA
libraries.

Methods
HEDGES Encoding in the Half-Rate Case. Given a message stream of bits

bi , i = 0, 1, 2, . . . , M, bi ∈{0, 1} [1]

(“the message” or “bits”), we want to emit a stream of DNA characters

Ci , i = 0, 1, 2, . . . , N, Ci ∈{A, C, G, T}≡{0, 1, 2, 3}

(“the codestream” or “characters”). We first review the case of a half-rate
code, where we emit exactly one Ci (2 bits of output) for each bi (1 bit of
input). Then we will generalize to codes at other rates r (message bits per
codestream bit), 0< r< 1, so that the streams bi and Ci are not then in
lockstep, and M 6= N. One should think of N as being on the order of 102

to 104, the maximum length of a single DNA strand that can be cheaply
synthesized today or in the foreseeable future. We want to be able to
decode, without residual errors, a received codestream C′ that differs from
C by substitutions (errors), insertions, and deletions (collectively “indels”).
Indels are silent: Their positions in the codestream C′ are not known to the
receiver.

We generate a keystream of characters Ki ∈{0, 1, 2, 3}, where each Ki

depends pseudorandomly (but deterministically by a hash function) on some
number of previous message bits bj (with j< i), and also directly on the bit
position index i and the strand ID,

Ki = F(Si , Ii , Bi), [2]

where Si is s bits of salt (strand ID), Ii is the lower q bits of the bit index,
Bi is the previous p bits, and F is a chosen hash function. (See SI Appendix,
Supplementary Text for initialization.) We then emit a codestream character

Ci = Ki + bi , [3]

the addition performed modulo 4.
The redundancy necessary for error correction comes from the fact that

bi takes on only two values, while Ki and Ci can have four values. This gener-
ates (only) 1 bit of redundancy per character, that is, can be acausally valid by
chance half of the time. However, the dependence of Ki on many previous
message bits ties any given message bit to many future bits of redundancy.
Similarly, the dependence of Ki on i ties every bit to its position index, so
that insertions can be identified and removed, and deleted values can be
restored.
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Some further details about the encoding algorithm are given in SI
Appendix, Supplementary Text.

HEDGES Decoding Algorithm. For simplicity, assume that error rates are
“small,” so that “most” DNA bases are received as they were intended. (We
saw, in Results, that DNA character error rates up to ∼5 to 10% are toler-
able.) Suppose we have correctly decoded and synchronized the message
through bit bi−1 and now want to know bit bi . Guessing the two possi-
bilities, {0, 1}, we use Eq. 3 to predict two possibilities for the character
Ci . In the absence of an error, only one of these is guaranteed to agree
with the observed character C′i . We assign, to a guess that generates dis-
agreement with C′i , a penalty score equal (conceptually) to the negative
log probability of observing a substitution error. In other words, a wrong
guess might actually be right, but only if a substitution has occurred. If nei-
ther guess produces the correct Ci , then both are assigned the substitution
penalty.

We have not yet accounted for the possibility of insertions and deletions,
however. In fact, there are more than the above two possible guesses. We
must guess not just bi ∈{0, 1}, but also a “skew” ∆∈{. . . ,−1, 0, 1, . . .}
that tells us whether, in comparing C to C′, we should skip characters
(∆> 0) because of insertions, or posit missing characters (∆< 0) because
of deletions (in which case, there is no comparison to be done). As a
practical simplification, we consider only ∆∈{−1, 0, 1}, requiring multiple
indels to resolve as concatenated single indels. Then there are six guesses
for (bi , ∆)∈{0, 1}⊗{−1, 0, 1}. Each can be scored by an appropriate log
probability penalty for any implied substitution, insertion, or deletion.

Log probability penalties accumulate additively along any chain of
guesses. In the causal case of a chain of all-correct guesses, we accumulate
penalties only in the (relatively rare) case of actual errors. However, because
of the way that the key Ki (Eq. 3) is constructed, a single wrong guess for
either bi , i, or ∆ throws us into the acausal case where 3/4 of subsequent
comparisons of computed C (at some bit position index i) to observed C′ (at
some index k) will not agree—thus penalties will accumulate rapidly. The
decoding problem, conceptually a maximum likelihood search, thus reduces
to a shortest-path search in a tree with branching factor 6, but with the
saving grace that the correct path will be much shorter than any deviation
from it.

The rate of decode errors rises in the last several bytes of message,
because some incorrect chains don’t have time to accumulate bad scores.
To counter this, we pad each strand with (typically) two “runout bytes” of
message zeros at encode, and ignore them at decode. The need for runout
bytes makes the HEDGES algorithm inefficient (and thus unsuitable) for an
application needing very short DNA strands (e.g., tens rather than hundreds
of nucleotides).

Further details about the decoding algorithm are given in SI Appendix,
Supplementary Text.

Use of Salt to Protect Critical Message. In Eq. 3 and Fig. 1D, we allowed for
some number of bits of known salt Si when message bit bi is encoded. The
use of salt is optional, but is desirable in an overall interleaved design where
sequenced strands from a pool need to be correctly ordered at decode time
(SI Appendix, Supplementary Text). This is generally the case when the outer
code is interleaved across strands. To the outer code decoder, each incor-
rectly ordered strand is equivalent to a full strand length of random errors,
so it is very important to protect strand ID message bits that determine the
strand ordering for outer decoding. Here is how salt is enabling of extra pro-
tection: Suppose we want to protect an initial s message bits. Then define,
recursively, the salt by

S0 = b0

Si = Si−1bi , i = 1, . . . , s− 1 (denoting concatenation)

Si = Si−1, i≥ s

. [4]

Most errors in the first s bits will be corrected as usual by the shortest-path
heap search. But any residual error that gets through will “poison” the salt
for the entire rest of the strand, rendering it undecodable. In effect, we
convert an error in the protected bits into an erasure of the whole strand.
This may seem drastic, but it is just what we want: A strand with incorrect
serial number (and hence incorrect ordering among other strands) would
look like a strand of errors to the outer code; an erased strand is equivalent
to only half as many errors.

Code Rates Other than One-Half. A simple modification of the encode and
decode algorithms described above allows for code rates other than one-

half. Take the input bitstream of expression 1 and partition it into a stream
of values vk with variable numbers of bits in the range 0 to 2, according to
a repetitive pattern like the ones shown in Table 3. See also SI Appendix,
Fig. S1.

Here are two examples showing how to interpret the entries in Table 3
(with adjacency denoting 2-bit values in Z4):

Rate 0.750: v0 = b0b1, v1 = b2, v2 = b3b4, v3 = b5, . . .

Rate 0.250: v0 = b0, v1 = 0, v2 = b1, v3 = 0, . . .

.
Eq. 3 for encoding now becomes

Ci = Ki + vi = F(Si , Ii , Vi) + vi (mod 4), [5]

where Vi is composed of concatenated previous variable bits. Pattern values
of 0 provide 1 bit of additional redundancy check relative to the base case of
code rate one-half, while pattern values of 2, encoding 2 bits per DNA char-
acter, provide 1 bit less (i.e., zero). By construction, the code rate is one-half
the average of the integers in the pattern. The column in the table labeled
Pok is a “greediness parameter” that mitigates the tendency of the heap
to expand exponentially; see SI Appendix, Supplementary Text for details
of this.

Decoding follows exactly the same pattern. Guessing a 2-bit vi spawns 12
child hypotheses, while guessing a zero-bit vi spawns only 3.

HEDGES Parameters. For encoding, the parameter choices are 1) the choice
of code rate and variable bit pattern (as in Table 3), the default case being
code rate 0.5; 2) the number q> 0 of low-order bits of position index
in the hash; 3) the number p> 0 of previous message bits in the hash;
4) the number s≥ 0 of salt bits; and 5) the number n≥ 0 of initial mes-
sage bits to be protected by salt. Aspects of the choices of, and trade-offs
among, these parameters are further discussed in SI Appendix, Supplemen-
tary Text.

It is an important point that choosing the decode runtime parameters,
for example, Hlimit or Pok, is not an irrevocable choice. Given a DNA message,
one can make multiple tries, varying the decode parameters adaptively until
acceptable performance is achieved. Simply increasing Hlimit and retrying
will often rescue failed decodes (SI Appendix, Supplementary Text and Fig.
S6). One can evaluate success by running time and by the count of errors
needing correction by the outer RS code. The parameter values that we
suggest may be viewed as starting points.

Imposing DNA Output Sequence Constraints. DNA synthesis and sequencing
platforms have sequence-dependent error profiles. Imbalanced GC content
and homopolymer runs are well known to be problematic, for example,
leading to indel and substitution errors or even whole strand dropout errors
in popular sequencers such as those from Illumina and Oxford Nanopore
(19, 20). Thus, many proposed ECCs impose constraints on GC content,
homopolymer runs, or both. These typically involve one-off coding designs
for each constraint, often reducing significantly the effective code rate (7).
An important property of the HEDGES algorithm is that it can accommo-
date a large class of sequence constraints without additional, one-off, code
design. Moreover, constraints may be imposed without decreasing the code
rate (a seeming paradox that we explain below).

Consider the class of constraints that can be applied to a nucleotide
sequence with only “past” information. That is, from the emitted sequence
[. . . , Ci−3, Ci−2, Ci−1], we can determine whether the choice of Ci is con-
strained and, if so, what is the set of its allowed values, here denoted {C∗i },
whose size we denote #C∗i . We assume 0<#C∗i ≤ 4, because a zero value
would imply a constraint so severe that the strand cannot be continued at

Table 3. Mapping of bits bi to variable bits vi for various
code rates

Code Rate Pattern Pok*

0.750 2, 1, 2, 1, . . . −0.035
0.600 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, . . . −0.082
0.500 1, 1, . . . −0.127
0.333 1, 1, 0, 1, 1, 0, . . . −0.229
0.250 1, 0, 1, 0, . . . −0.265
0.166 1, 0, 0, 1, 0, 0, . . . −0.324

*See Code Rates Other than One-Half.
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all. (One could adopt the convention of relaxing such constraints if they are
sufficiently rare.)

The only required change in the HEDGES algorithm is to replace
Eq. 5 by

Ci = Ki + vi = F(Si , Ii , Vi) + vi (mod #C∗i ) [6]

and output the thus-indexed character in the acceptable set {C∗i } (SI
Appendix, Fig. S1).

Note that Eq. 6 has the same code rate as [5]. How is this possible when
constraints always act to reduce the number of possible output strings,
and hence reduce the channel capacity? The answer is that [6] absorbs the
reduced capacity completely into the error correction, not into the message.
The extreme case is when #C∗i = 1. Then, the emitted character does not
depend on the message bits vi , which become de facto erasures. At decode
time, the missing bits are restored by virtue of the fact that they enter Vi

and thus the hash function for later emitted characters.
This is a versatile scheme. When there is a possibility of emitting an

unacceptable homopolymer, #C∗i will decrease from 4 to 3. When the
GC count in a specified window is too large (or small), #C∗i will decrease
from 4 to 2. More-complex constraints are easily added. For example, Illu-
mina sequencers have been reported to have high error rates following a
GGC motif (4). To disallow GGC motifs, one might have imagined build-
ing a bespoke code around triplets of characters encoded as members of
a large Galois field (3) and removing GGC, NGG, and GCN as possible output
triples. Within HEDGES, GGC can be disallowed as an afterthought, simply
by adding it to the list of forbidden outputs.

Statistical Model of System Designs with Outer Codes. We take as input, from
SI Appendix, Fig. S5, the byte error rate Pbyte and mean run to decode failure
Lfail. The outer code is characterized by its length NT = Nm + Nc, where Nm is
the number of (payload) message bytes, and Nc is the number of correction
bytes. For RS(255,223), we have NT = 255 and Nm = 223. The number of cor-
rectable byte errors is well known to be Nc/2, with erasures (bytes known
to be missing) counting as half of an error.

We assume that the RS error correction is interleaved, that is, runs across
strands. We further assume that, as in our example concatenated design,
each RS input byte string samples uniformly along the length of the DNA
strands and thus sees uncorrelated errors and erasures with their respective
mean rates. We implemented this by applying the RS outer code “diago-
nally” across strands, so that strand ends (for example) are distributed over
multiple RS decodes (Fig. 1C). The number of errors in each RS correction is
thus a random Poisson variableNerr with mean NT Pbyte.

Erasures can occur for two reasons: 1) If the DNA pool is sequenced
to a mean depth D, then a fraction pf1 = exp(−D) strands (and therefore
bytes) will occur zero times and be counted as erasures. 2) Along each
strand of length S, the probability of a (first) decode failure at position x is
(1/Lfail) exp(−x/Lfail), in which case S− x DNA positions are left undecoded.
The fraction (in either DNA or bytes) of such erasures is thus

pf2 =
1

S

∫ S

0

1

Lfail
e−x/Lfail (S− x)dx

= 1−
Lfail

S

(
1− e−S/Lfail

)
≈ 1

2

S

Lfail

. [7]

The number of erasures is thus a random Poisson variable Nera with mean
NT (pf1 + pf2). The mean run (in message bytes) to an uncorrectable error is
thus the reciprocal of a tail probability,

Lu.c. = 1/Prob(Nerr + 1
2Nera >

1
2 Nc). [8]

While the sum of two Poisson variables is Poisson, the factor one-half in
front of Nera spoils this, so Eq. 8 involves no simple distribution. Replacing
the one-half by either zero or 1 does give Poisson distributions, however,
that bound the desired result and turn out to be not too different numer-
ically (in their power-of-ten exponents, which is all we care about). As
an approximation, we thus may interpolate by setting the factor back to
one-half and pretend that it is still Poisson.

Poisson tail probabilities can be written exactly as incomplete gamma
functions (21). In our regime of interest, the upper and lower bounds (22),

pn < Prob(x≥ n|λ)<
(

1−
λ

n + 1

)−1

pn, [9]

nearly coincide, where pn = Prob(x = n) = exp(−λ)λn/n!. We can use the
upper bound to get a tight lower bound on Lu.c..

The values in Fig. 2 (red/yellow/green cells) result from performing
the above calculations with NT = 255, Nm = 223, Nc = 32, S = 300, and
D = 10.

Blind Decoding Tests. We eliminated reads in which the flanking 5′ or 3′

primers were not found, or were separated by significantly more or less
than the expected payload length of 254. Because any blind test must be
ignorant of the message, we did not eliminate the 10 to 15% of strands
that (we secretly knew) contained “junk” payloads that corresponded to no
intended message.

Taking the reads one at a time, we first attempted decodes at all six
designed code rates, but limiting the hypothesis budget to Hlimit = 5,000.
Whichever code rate got farthest in the message was declared as the puta-
tive actual code rate for that strand. At that code rate, we next attempted
to decode 2 bytes (the packet number and strand sequence IDs) plus three
runout bytes. If this decode succeeded, we checked by IDs to see whether
this strand was already seen and decoded. If not, we performed a full
decode with a hypothesis budget of Hlimit = 106. This strategy was designed
to avoid unnecessary full decodes.

When the full decode succeeded, we accepted it as authoritative for that
strand by packet and sequence ID, and performed no further full decodes
for that strand when encountered. When it failed, we discarded the strand.
That is, we did not attempt to rescue bytes up to the failure point.

After every 1,000 strands, we looked for packets that were sufficiently
populated to possibly allow RS(255,223) outer error correction, counting
missing strands as erasures. When the outer correction eventually suc-
ceeded, we marked that packet as done. This is a conservative strategy for
testing, using only the first observed read of each strand and a near-maximal
number of missing strands in each packet for the outer decode. In practice,
after sequencing, one would use all available reads and potentially reduce
the error rates even further.

DNA Library Prep and Sequencing. A DNA library of 5,865 300-nt oligonu-
cleotides was synthesized by Twist Biosciences. To introduce mutations, the
DNA storage library was mutagenized using the Diversify PCR Random
Mutagenesis Kit (Takara 630703). Samples were added with 480 µM MnCl2
and 40 µM 2′-deoxyguanosine 5′-triphosphate (dGTP), 640 µM MnCl2
and 200 µM dGTP, or 960 µM MnCl2 and 240 µM dGTP to achieve low,
medium, and high levels of mutagenesis, respectively. Samples were then
PCR amplified for 12 cycles using primers IF538 and IF539.

To mimic time-dependent aging of DNA, DNA storage library samples
were incubated at 50 ◦C for a period of 2 h or 8 h in water (3). Samples
were then PCR amplified for 12 cycles using primers IF538 and IF539.

PCR-amplified samples were purified using a PCR cleanup kit (NEB
T1030).

Illumina sequencing libraries were prepared using the NEBNext Multi-
plex Oligos for Illumina (E7335) primer set. Libraries were sequenced on
a paired-end MiSeq chip with 300 base pairs of read length. Final library
preparation and sequencing was performed by the University of Texas
Genomic Sequencing and Analysis Facility (GSAF).

Data Availability. The sequenced reads used in testing are available on
the Sequence Read Archive (SRA) under accession numbers
SAMN14897329, SAMN14897330, SAMN14897331, SAMN14897332,
SAMN14897333, SAMN14897334, and SAMN14897335 (SRA Project number
PRJNA631961) (23).

Oligos used in the study are as follows:
IF538: 5′-TCGAAGTCAGCGTGTATTGTATG-3′.
IF539: 5′-AACACGCTTAATCGCACTCACTA-3′.
The computer code used for the generation and testing of the inner

HEDGES code and outer RS code is available at https://github.com/whpress/
hedges. This paper utilized two commercial C++ source code libraries:
Numerical Recipes (http://www.numerical.recipes) and the Schifra Reed-
Solomon Error Correcting Code Library (http://www.schifra.com). The spe-
cific routines used in this paper are freely available for noncommercial use
and are included in the above GitHub repository.
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