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Abstract: The demand for wheelchairs has increased recently as the population of the elderly and
patients with disorders increases. However, society still pays less attention to infrastructure that can
threaten the wheelchair user, such as sidewalks with cracks/potholes. Although various studies have
been proposed to recognize such challenges, they mainly depend on RGB images or IMU sensors,
which are sensitive to outdoor conditions such as low illumination, bad weather, and unavoidable
vibrations, resulting in unsatisfactory and unstable performance. In this paper, we introduce a
novel system based on various convolutional neural networks (CNNs) to automatically classify the
condition of sidewalks using images captured with depth and infrared modalities. Moreover, we
compare the performance of training CNNs from scratch and the transfer learning approach, where
the weights learned from the natural image domain (e.g., ImageNet) are fine-tuned to the depth
and infrared image domain. In particular, we propose applying the ResNet-152 model pre-trained
with self-supervised learning during transfer learning to leverage better image representations.
Performance evaluation on the classification of the sidewalk condition was conducted with 100%
and 10% of training data. The experimental results validate the effectiveness and feasibility of the
proposed approach and bring future research directions.

Keywords: deep neural networks; transfer learning; self-supervised learning; wheelchair safety

1. Introduction

With the growth in the population of the elderly and the incidence of disorders requir-
ing mobility assistance, the demand for wheelchairs has recently increased. According to
the recent report on the wheelchair market share and forecast [1], the wheelchair market
was valued at USD 4 billion in 2021 and is expected to reach USD 6.5 billion by 2028,
with a CAGR of 6.8%. However, a large number of wheelchair users are still challenged
by insufficient urban infrastructure, such as the lack of wheelchair ramps and damaged
sidewalk or roads, resulting in significant difficulties in their daily lives [2]. To address this
issue, various studies and services have been presented. Studies from [3–7] attempted to
improve and enhance the hardware utility and performance of a wheelchair. For example,
Favey et al. and Arnay et al. [3,4] developed new sensors to increase the driving quality
of electric wheelchairs, while studies from [5–7] focused on the development of motors
and controllers to address various issues while driving through uphill, ramp, and stairs.
In addition, there have been studies to facilitate wheelchair control by sensing surface
electromyography (sEMG) signals from the human arm to detect gestures [8] or by using
printed pressure sensor units to identify and inform irregular and improper posture to
prevent sitting-related health issues [9]. Moreover, in [10], the muscular activity of the
user was measured through electromyography (EMG) sensors, which were then processed
and utilized to control both the wheelchair and robotic manipulator. Kim et al. [11] used
electroencephalography (EEG) signals to establish a connection between brainwaves and
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three wheelchair commands: turn-left, turn-right, and move-forward. While previous work
has improved the capabilities and functionalities of hardware and software technologies
for a wheelchair, damaged urban infrastructure will still remain unmaintained or neglected
without adequate public services. In this context, various applications and services were
proposed by [12–16]. To detect and report urban anomaly events, some studies [12–14]
utilized crowdsourcing mechanisms. Studies from [15,16] developed web/mobile-based
applications to share issues regarding the maintenance of urban infrastructures. Despite
the emergence of these services, people with disabilities still have to exert considerable
effort if they wish to immediately report such issues to government offices by mobile or
web applications while controlling or manually driving their wheelchairs.

With a recent growth of computer vision and machine learning technologies, there have
been various attempts to automatically detect and report defects on roads and sidewalks.
Previous approaches primarily captured RGB road images or sensor data (e.g., accelerome-
ter and gyroscope) and exploited deep learning and machine learning algorithms for both
detecting road cracks/potholes [17–20] and recognizing sidewalk anomalies [21,22]. These
methods can automatically detect the defects on the road surface but still have the following
limitations: (1) the captured RGB images are not helpful to classify the road condition under
low-light conditions (e.g., nighttime) and (2) sensors can produce noisy data or restrict the
user’s natural movements, adversely affecting the overall performance. Therefore, studies
on advanced techniques are still required to achieve more robust performance as well as
improved usability.

In this paper, we propose a novel system to automatically classify sidewalk conditions
using depth and infrared imaging modalities to handle the aforementioned issues. The
proposed system monitors the sidewalk surface by downward recording using a single
camera attached to the wheelchair and uses an advanced deep learning-based technique
to achieve a robust performance. Specifically, the captured images are used for train-
ing a ResNet-152 [23] architecture using a self-supervised transfer learning approach. To
exploit the advanced image representation learned from self-supervised learning, pre-
trained weights on the ImageNet [24] dataset are used through the SimCLRv2 frame-
work [25], which is one of the state-of-the-art self-supervised learning (SSL) approaches.
For performance evaluation, we compare the classification accuracy of the proposed ap-
proach with those of supervised learning and supervised transfer learning methods, and
analyze how the image modality (i.e., depth, infrared, and depth+infrared) affects the
overall performance.

The main contributions of this paper are twofold:
(1) We investigated the feasibility of adopting a self-supervised representation learning

and transfer learning approach for classifying the condition of the sidewalk. In particular,
it was demonstrated that image representations learned from the general image domain
(e.g., ImageNet) can be applied to the domain of sidewalk images.

(2) We evaluated the performance of our approach based on the single-modal (i.e.,
depth or infrared) data as well as multi-modal (i.e., depth+infrared) data. For the multi-
modal approach, we exploited both early fusion (i.e., combining raw images) and late
fusion (i.e., combining intermediate CNN features) methods. Through the experimental
result, we discussed how the choice of image modality affects the performance of the
proposed approach.

The rest of this paper is organized as follows: Section 2 describes the data collection
procedure and Section 3 provides details of the proposed approach. In Section 4, an analysis
of the experimental result is presented. Finally, the conclusions, limitations, and further
research directions are discussed in Section 5.

2. Data Collection

To establish a dataset for our study, we set up the hardware configuration of a
wheelchair, as shown in Figure 1a. A single Intel RealSense D415 camera that supports
multi-modal recording with depth and infrared modalities was used to capture sidewalk
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images. As shown in Figure 1a, the camera was installed on the desk of the wheelchair for
downward recording. Figure 1b illustrates our recording configuration while driving the
wheelchair. The images of the surface of sidewalks in front of the wheelchair (30–50 cm
away) were recorded at 3–5 frames per second.

For data collection, six university students (3 male and 3 female, 22–24 years old)
were recruited to drive a wheelchair. Figure 2 shows the predetermined route for the data
collection. The route consisted of two sub-routes, namely (A) and (B), as shown in Figure 2,
comprised of straight and curved pavements. The data collection procedure consisted of
2 sessions corresponding to each sub-route. Specifically, the participants moved through
the sidewalk between the endpoints of each sub-route and took a 10 min break between
the sessions. During data collection, the participants drove the wheelchair at a normal
speed (i.e., approximately 0.77 m/s). While driving the wheelchair along the route, a pair
of depth and infrared images were captured simultaneously over a period of 30–40 min for
each subject.

(a) (b)

Figure 1. Wheelchair setup. (a) Hardware setup, (b) Recording configuration.

As a result, we collected 1500 images of damaged sidewalks and another 1500 im-
ages of normal sidewalks for each modality (i.e., depth and infrared). Examples of the
captured images can be found in Figure 3. Unlike RGB images, which may not be useful
under low-light conditions (e.g., at dawn or night) [26,27] or bad weather (cloudy or rainy
conditions) [28,29], images captured with the modalities used in this study are relatively
less affected by outdoor conditions [30]. Therefore, it is expected that the use of depth
and/or infrared modality images will facilitate the classification of sidewalk conditions
in the wild. While collecting the images, we could observe some physical shocks and vi-
brations caused by wheelchair users’ rough driving skills and/or bad sidewalk conditions
applied to the wheelchair body, which may degrade the quality of the images. In this work,
however, only the raw images without any image preprocessing steps applied were used
for training and testing the models to figure out the effectiveness of the deep learning-based
approaches. Nevertheless, the raw images in Figure 3 still clearly show the difference
between the images of damaged and normal sidewalks. In contrast to the normal sidewalk
(see Figure 3b), the curbs and cracks (black and red boxes in Figure 3a) resulted in irregular
patterns on both the depth and infrared images. In using the images with a single modality
(i.e., depth or infrared) or image pairs with both modalities, the CNN models were trained
with various learning strategies to classify the condition of the sidewalk as either normal or
damaged. In the next section, we describe the details of how we trained a CNN model to
classify the condition of sidewalks using the collected data.
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Figure 2. Recording route.

(a) (b)

Figure 3. Example of sidewalk images. (a) Damaged sidewalk, (b) Normal sidewalk.

3. Classification of Sidewalk Condition

Figure 4 depicts an overview of the proposed system which consists of training and
testing phases. As mentioned in Section 2, a set of images of sidewalks were captured with
depth and infrared modalities, and were then used for both training and testing CNNs.
As shown in the testing phase of Figure 4, the problem to be addressed in this paper is a
binary classification task in which a label of each sidewalk image with various modalities
(i.e., depth, infrared, and depth+infrared) is classified as either normal or damaged. In
the course of CNN training, we built three different CNN training pipelines using the
following strategies: (1) supervised learning from scratch and (2) transfer learning with
pre-trained models. In particular, for a transfer learning approach, we utilized (1) the
models pre-trained on the ImageNet dataset with supervised labels and (2) the models pre-
trained on the ImageNet dataset without labels (i.e., models trained with self-supervised
learning). For each learning approach, we also exploited a multi-modal approach in
which a set of image pairs of depth and infrared modalities were used for training and
testing. For all the pipelines, we exploited ResNet-152 architecture [23] as our base network
architecture. Finally, the trained models from each different strategy were used in the
testing phase for the performance evaluation. The next subsections describe the details of
each learning approach.

3.1. Supervised Learning from Scratch

Supervised learning from scratch is a standard method for training a base model (e.g.,
CNN in our case) with randomly initialized weights. For this strategy, a set of image–label
pairs for the target domain should be prepared. Figure 5a illustrates the procedure for
supervised learning from scratch applied in this study. As depicted in the figure, we used
the ResNet-152 as a base network architecture, which is a model that won first place at
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the ILSVRC 2015 classification task and reported a 3.57% error on the ImageNet dataset.
As shown in Table 1, the ResNet-152 architecture consists of five convolution blocks with
152 layers. The convolution blocks were designed with 1× 1 and 3× 3 convolution kernels,
except for the Conv1 block. During the training process, images from the target domain
(i.e., depth or infrared sidewalk images) and their corresponding labels were used as input
data. Therefore, the network directly learned the image features from the dataset and
classified each image as either normal or damaged.

Figure 4. System overview.

Table 1. Architecture of ResNet-152.

Layer Name Output Size 152-Layer

Conv1 112 × 112 7 × 7, 64, stride 2

Conv2 56 × 56

3 × 3 max pool, stride 2 1× 1, 64
3× 3, 64
1× 1, 256

× 3

Conv3 28 × 28

1× 1, 128
3× 3, 128
1× 1, 512

× 8

Conv4 14 × 14

 1× 1, 256
3× 3, 256

1× 1, 1024

× 36

Conv5 7 × 7

 1× 1, 512
3× 3, 512

1× 1, 2048

× 3

1 × 1 Average pool, 1000-d fc, softmax
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(a)

(b)

(c)

Figure 5. Training strategies. (a) Supervised learning from scratch, (b) Transfer learning with
supervised pre-trained models, (c) Transfer learning with self-supervised pre-trained models.

3.2. Transfer Learning with Supervised Pre-Trained Models

Transfer learning is a well-known approach to utilize the weights of an existing model
pre-trained on a large-scale dataset (e.g., ImageNet dataset) rather than to update the
weights from scratch to solve the same or similar task. With a fine-tuning task where the
pre-trained weights are updated to fit the target domain, the model can be more quickly
converged even with higher accuracy [31]. For this strategy, we used the ResNet-152
network pre-trained on the ImageNet database, followed by a single dense layer to be
updated for our domain. Figure 5b shows how a transfer learning process with supervised
pre-trained models works. In contrast to the supervised learning from scratch, where the
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initial random weights are used, the network first adopts the weights learned from a set of
image–label pairs in the ImageNet dataset and then fine-tunes the final layer to classify the
condition of sidewalk images. Since the pre-trained model functions as a feature extractor
in this protocol, all the layers in the pre-trained model are frozen, while only the final layer
is kept trainable.

3.3. Transfer Learning with Self-Supervised Pre-Trained Models

In contrast to the above approach, the SSL approach does not require class labels while
learning image representation during a pre-training task. Instead, the SSL solves various
pretext tasks without labels [32–35], such as an instance discrimination task where the
features of the same instance are pulled away from those of all other instances [36]. This
is also based on the idea that under a certain type of image augmentation, the learned
representations should be invariant; therefore, the network can implicitly learn the un-
derlying structure/representation of the data. For the SSL-based transfer learning, we
used the ResNet-152 model pre-trained on the ImageNet database with the SimCLRv2
framework [25], which is one of the state-of-the-art SSL methods for image classification.

SimCLRv2 adopts a contrastive learning approach for learning underlying image
representations without class labels. Figure 6 briefly shows a pre-training process of
SimCLRv2. First, the model uses a total of N mini-batch examples to perform random
crop, color distortion, and Gaussian blur on each image xi twice. The transformed images
(x2k−1, x2k) from the same image are called positive pairs. The image representations
(h2k−1, h2k) of the images are then extracted by ResNet-152 encoder f (·). Representations
are transformed to features (z2k−1, z2k) by passing through the projection head g(·) MLP
networks. Finally, the model attempts to find a set of representations for the positive pair
by using the following contrastive loss:

li,j = −log
exp(sim(zi, zj)/τ)

∑2N
k=1 1[k 6=i]exp(zi, zk)/τ

(1)

where i and j indicate a positive pair of the same image, 1[k 6=i] is a indicator function used
as 1 when [k 6= i], τ denotes a temperature parameter, and sim(·, ·) is a cosine similarity
between two vectors. Compared to the first version of SimCLR [33], there have been several
design changes applied to fully leverage the power of general pre-training. For example,
SimCLRv2 increased the capacity of the projection head g(·) by making it a deeper non-
linear network; replaced the base network (ResNet-50) with a deeper but less wide model;
and replaced ResNet-152(3×) with 3× wider channels, selective kernels, and a channel-wise
attention mechanism that improved the parameter efficiency of the network.

Figure 5c illustrates the workflow of transfer learning with self-supervised pre-trained
models. The network first adopts the weights learned from the SimCLRv2 self-supervised
learning pipeline, which attempts to learn the underlying image representations of the
ImageNet dataset, and then fine-tunes the subsequent layers to classify the condition of
sidewalk images. Similar to the transfer learning approach with supervised pre-trained
models, the pre-trained ResNet-152 model is used as a feature extractor only; therefore, all
the layers in the pre-trained model are frozen, while only the final layer is kept trainable.

3.4. Multi-Modal Learning

In this study, we designed (1) a single-modal approach and (2) two types of multi-
modal fusion approaches for each training strategy as follows.

- Single-modal approach: Similar to the general CNN architecture for image classifica-
tion, the single-modal approach only takes a set of single-modal images (i.e., depth or
infrared) as input for the network.

- Multi-modal approach: Compared to the single-modal approach, a set of multi-modal
images (i.e., pairs of depth and infrared images) are fed into the network in this case.
To this end, we applied early fusion (i.e., combining raw images) and late fusion (i.e.,
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combining intermediate CNN features) methods. For early fusion, we conducted
element-wise multiplication between the infrared and depth images in the same pair
before feeding the images into the network. As depicted in Figure 7a, therefore, only a
single pipeline is required for this type of multi-modal learning. For late fusion, we
first extracted 256-dimension features from each modality and then concatenated them
into a single 512-dimension feature vector. This final feature vector is then passed to
the subsequent dense layers for classification of the condition of sidewalks. Figure 7b
depicts the procedure of late-fusion between the depth and infrared images.

Figure 6. Pre-training process of SimCLRv2.

(a)

(b)

Figure 7. Workflow of early fusion and late fusion approaches. (a) Early fusion, (b) Late fusion.

4. Experiments
4.1. Experimental Setup

In this paper, the experiments were conducted on a high-end server equipped with
a single Geforce RTX 2080Ti GPU, 32GB RAM, and an Intel i7-10700K CPU. We used the
Tensorflow framework to implement the proposed system.

For the experiment with single-modal images, we randomly selected 2000 images as
the training set and another 1000 images as the testing set. Similarly, for the experiments
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with multi-modal images, 2000 depth and infrared image pairs were used as a training set
and another 1000 pairs were used as a testing set. The original images with a resolution
of 640 × 480 were resized to 224 × 224 and then used for the training and testing of deep
neural networks for classifying sidewalk conditions.

For the supervised learning from scratch (called Supervised hereafter) and trans-
fer learning with supervised pre-trained models (called Transfersupervised hereafter), the
SGD optimizer with a learning rate of 0.0001 was used. With transfer learning with self-
supervised pre-trained models (called TransferSSL hereafter) using late fusion, the SGD
optimizer with a learning rate of 0.0005 was used. In the case of TransferSSL with single-
modal data and early fusion approaches, the lars optimizer [37] with a learning rate of
0.0001 was used. All the models were trained for 300 epochs with a batch size of 10, except
Supervised with a late fusion approach (5).

4.2. Evaluation

In the experiment, we evaluated the performance of the proposed method trained with
different learning strategies. In particular, to validate the robustness and effectiveness of
self-supervised learning, we divided our dataset into the full dataset containing 100% of the
training samples and a subset containing only 10% of the training samples and compared
the performance of each method on both datasets. All reported values were averaged from
10 repetitive experiments.

First, we discuss the classification accuracies of each model on the full dataset. Table 2
summarizes the validation accuracy of each model trained with 100% of the training data
(i.e., 2000 images for single-modal and 2000 image pairs for multi-modal setups). The
numbers in the table represent the mean accuracies and standard deviations. From Table 2,
we can observe the following results:

(1) The supervised learning from scratch approach showed the worst performance
among the classification models. Specifically, it achieved a validation accuracy of 65.81%
for the depth and 57.45% for the infrared modality. The use of multi-modal data was not
helpful in increasing the performance of the Supervised approach, yielding 61.71% and
53.56% for the early and late fusion, respectively. It should be noted that this approach
failed to achieve a high accuracy although it only utilized a set of images with labels from
the target domain (i.e., road surface images). This can be due to the insufficient amount
of data available for training a network which has a number of trainable parameters.
This is also in line with the common observation that the supervised learning of CNNs
from scratch requires a large amount of data from the target domain to have a successful
performance [38].

(2) All the classification models based on transfer learning outperformed the super-
vised learning from scratch model. Specially, Transfersupervised achieved a performance
gain of 2.57%, 14.92%, 4.77%, and 16.32% in the depth-based, infrared-based, early fu-
sion, and late fusion approaches, respectively. Additionally, the TransferSSL approaches
showed a higher performance improvement of 4.77%, 14.07%, 6.42%, and 21.3% in the
depth-based, infrared-based, early fusion, and late fusion approaches, respectively. These
results validate the feasibility of utilizing the transfer learning approach based on the
ImageNet database for our domain. It is also worth noting that the weights from the model
pre-trained on the image dataset consisting of RGB images of general objects were effective
for the depth/infrared images of the surface of sidewalks.

(3) The TransferSSL methods yielded performances comparable to or even better than
Transfersupervised, even though they were based on the image representations learned from
various pretext tasks without any image/class labels. Specifically, the depth-modality
and early fusion approaches produced 1.65–2.2% better accuracies than Transfersupervised.
Furthermore, the multi-modal approach with late fusion achieved the highest accuracy of
74.86%, outperforming all the other approaches. This implies that transfer learning using
image representations/features learned from self-supervision tasks on a dataset containing
objects and modalities that are significantly different from our target domain also works
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and can produce promising results. Since collecting training data for self-supervision
tasks that do not require labels is relatively easy, we can also expect further performance
improvement from enhanced image representations at a low cost.

(4) We found that a multi-modal fusion approach does not always work. The early
fusion approach was not helpful in improving the performance of the training methods
used in this study. No performance improvement was observed from the Supervised and
Transfersupervised approaches even though the late fusion was applied. Specifically, there
was an average performance degradation of 4.0% for Supervised, 2.2% for Transfersupervised,
and 2.9% for TransferSSL with early fusion. Only TransferSSL when adopting a late fusion
approach achieved a higher performance over single-modal approaches. It was also found
that transfer learning-based approaches, which exploit the weights of the models pre-
trained for learning image representations, resulted in a better performance with a late
fusion approach (i.e., feature-level fusion) than with the early fusion approach. In sum,
with 100% of the training data, we could observe the best classification accuracy using
TransferSSL based on multi-modal data with a late fusion approach. Finally, the confusion
matrices of all the networks trained with 100% of the training data can be found in Figure A1,
Appendix A.

Table 2. Validation accuracy on 100% of training data (unit: %).

Training Method Depth Infrared Early Fusion Late Fusion

Supervised 65.81 ± 0.0316 57.45 ± 0.0238 61.71 ± 0.0356 53.56 ± 0.0178
Transfersupervised 68.38 ± 0.0052 72.37 ± 0.0047 66.48 ± 0.0063 69.88 ±0.0111

TransferSSL 70.58 ± 0.0038 71.52 ± 0.0052 68.13 ± 0.004 74.86 ± 0.0206

Second, to validate the effectiveness of image representations learned from self-
supervised learning, we also conducted a performance evaluation using only 10% of the
training data (i.e., 200 images for single-modal images and 200 image pairs for multi-modal
images). Table 3 summarizes the validation accuracy of each model trained with 10% of the
training data. As expected, we could see that the performance of all the models drastically
decreased as the amount of training data reduced. In particular, the Supervised approach
reached an almost chance level. Transfersupervised achieved an accuracy of 58–62%, which is
approximately 8% less than the model trained with 100% data on average. The performance
of the single-modal-based TransferSSL approach also decreased to 63.32% with a 7.73%
drop on average, while they were still better than the Supervised (52.85% on average) and
Transfersupervised (61.37% on average) approaches. Most notably, TransferSSL with early
fusion did not significantly suffer from a reduced amount of training data, yielding the
highest accuracy of 64.45%. In contrast, we could observe a large performance drop of
TransferSSL with the late fusion approach, from 74.86% (with 100% data) to 62.55% (with
10% data), which is, however, still better than the other approaches. For more details, the
confusion matrices of all the networks trained with 10% of the training data are presented
in Figure A2, Appendix A.

Table 3. Validation accuracy on 10% of training data (unit: %).

Training Method Depth Infrared Early Fusion Late Fusion

Supervised 52.18 ± 0.0280 53.52 ± 0.0073 51.76 ± 0.0209 53.86 ± 0.0208
Transfersupervised 60.72 ± 0.0101 62.02 ± 0.0113 62.24 ± 0.0076 58.88 ± 0.0161

TransferSSL 63.35 ± 0.0045 63.29 ± 0.0032 64.45 ± 0.0025 62.55 ± 0.0173

Table 4 summarizes the performance differences according to the amount of training
data. Generally, transfer learning-based approaches showed less performance drops com-
pared with Supervised approaches. It seems that Supervised with an infrared modality
and a late fusion approach was less affected by the reduced training data; however, its
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performance was close to the chance level accuracy for both 100% and 10% data, which is not
meaningful. In contrast, the TransferSSL approaches tended to show competitive accuracy
with less performance drops, resulting in a more robust performance. However, as noted
above, the late fusion approach of TransferSSL failed to preserve a high classification accuracy
when the amount of training data was limited. This result is also related to the number of
trainable parameters for each method, as summarized in Table 5. The Supervised approach
attempts to learn the features from scratch with a large number of trainable parameters
(58 M); therefore, a large amount of training samples are essential for a successful training.
As a result, the Supervised methods presented a large performance drop as well as the
lowest accuracy (chance level) in our experiment. TransferSSL with a late fusion approach
requires more trainable parameters as well as a more complicated architecture than other
approaches, resulting in difficulties in training a model with a limited amount of data.
Finally, Figure 8a,b show the validation accuracy and loss of each model per epoch for both
100% and 10% training data setups. As shown in the figures, the Supervised approaches
failed to produce a stable performance while transfer learning-based approaches worked
better for both cases.

(a)

(b)

Figure 8. Accuracy and loss of each method per epoch. (a) Comparison of validation accuracy,
(b) Comparison of validation loss.

Finally, Table 6 summarizes the inference time required for each method. It was shown
that the most complex architectures (i.e., networks trained with multi-modal late fusion)
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consumed more time to make prediction results. Based on the result, we believe that
our frameworks are efficient enough to be used in real-time scenarios (i.e., with at least
25–34 FPS) and can be more optimized by further enhancement.

Table 4. Performance loss according to the amount of training data (unit: %).

Training Method Depth Infrared Early Fusion Late Fusion

Supervised 13.63 3.93 9.95 −0.3
Transfersupervised 7.66 10.35 4.24 11

TransferSSL 7.23 8.23 3.68 12.31

Table 5. Number of trainable parameters.

Method Single-Modal Early Fusion Late Fusion

Supervised 58,223,618 58,223,618 117,564,194
Transfersupervised 4098 4098 1,125,154

TransferSSL 4098 4098 1,125,154

Table 6. Inference time (unit: FPS).

Method Depth and Infrared Early Fusion Late Fusion

Supervised 204 142 34
Transfersupervised 207 142 26

TransferSSL 188 208 25

5. Discussion and Conclusions

In this work, we proposed a novel sidewalk condition recognition system for wheelchair
users using depth and infrared images, as well as various deep learning techniques. Our ex-
perimental findings showed that self-supervised learning with multi-modal data achieved
the best performance regardless of the amount of training data and validated the feasibility
of the proposed method. In addition to the quantitative evaluation, we briefly compared
our work with the previous studies in terms of qualitative aspects and discussed how our
approach works differently. Table 7 summarizes the differences among the studies working
on the automatic classification/detection of defects on roads and sidewalks. As shown in
Table 7, most studies attempted to utilize RGB images and acceleration data for recognizing
road conditions. However, studies from [17–20] mainly focused on detecting the damages
of a motorcar road and required a smartphone to be installed on the dashboard of a vehicle,
thus the method is not suitable for wheelchair users. In contrast, Watanabe et al. and
Iwasawa et al. [21,22] tried to recognize the status of the sidewalk by using acceleration
data. However, this kind of data is not only largely sensitive to the outdoor conditions
and inherent vibrations/noises of a wheelchair but also not feasible to provide users with
intuitive information about the defects observed. Moreover, collecting and labeling a large
amount of wheelchair vibration data for training machine learning or deep learning models
is another hurdle that must be overcome. To address the limitations of previous studies,
we utilized multi-modal images captured by a single camera that can be installed to the
body of a wheelchair and applied a transfer learning approach with pre-trained models
which learned visual features from unlabeled data using a self-supervised learning strategy.
We showed that fine-tuning the models pre-trained on the general image domain, using
the self-supervised learning strategy, to the heterogeneous image domain (i.e., depth and
infrared sidewalk images) works successfully. In addition, we found that the image features
learned in a self-supervised way better convey underlying image representations, thus the
proposed method could achieve more stable and robust performances even if the number
of training samples was reduced when compared to the models of traditional learning
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strategies. We believe the proposed work shows a promising approach for a domain where
the amount of heterogeneous multi-modality samples is limited, in particular.

Table 7. Comparison with previous studies.

Ref. Target Measuring Devices Measured Data Number of Modalities Classifier Learning Method

[17] Road condition Smartphone Acceleration and gyroscope 2 ML Supervised learning
[18] Road condition Smartphone RGB images 1 DL Supervised learning
[19] Road condition Smartphone Acceleration 1 ML Supervised learning
[20] Road condition Smartphone and RGB camera RGB images 1 DL Supervised learning
[21] Sidewalk condition Three-axis accelerometer Acceleration 1 DL Weakly supervised learning
[22] Sidewalk condition Three-axis accelerometer Acceleration 1 ML Supervised learning

Ours Sidewalk condition Depth camera Depth and infrared images 2 DL Self-supervised learning

However, there still exists room for improvement in terms of classification accuracy
and functionality. First, in this study, we attached a depth camera to the wheelchair desk
for recording forward scenes, but this configuration cannot be applied to the wheelchair
without a desk option. However, there are still several alternatives that can be considered.
In the case of manual wheelchairs, a camera can be installed at the front or side frame of the
armrest (or body) of the wheelchair. In contrast, electric wheelchairs are generally equipped
with a controller pad to drive the wheelchair, thus the front edge of the controller can be
considered one of the best places to install the camera. In particular, multiple cameras can
be used together for recording and recognizing sidewalk conditions in the case a power
supply issue is not critical. Second, our approach utilized only a single camera for the
classification of sidewalk conditions; however, the number and position of the installed
cameras can be changed according to the type of wheelchair. Recently, various approaches
based on multi-view images (i.e., images from multiple cameras) have been presented to
improve the performance of pose estimation and object recognition [39–41]. Inspired by
this, we expect that the proposed method can be extended to exploit multi-view images
for better performance. To this end, we also plan to apply model compression or pruning
algorithms to optimize the network architectures, minimizing the computing resources
(e.g., power consumption, memory usage, etc.) required for the real-time processing on
edge devices. Third, our current work cannot visualize/display damaged regions/routes
on the map because it focuses on the classification of sidewalk conditions. Therefore, we
will utilize GPS sensor data in the future to visualize the route where the wheelchair users
move away as well as a set of regions where severe damages were observed.

In sum, there still exist various challenging issues to be addressed; therefore, we will
extend our study by establishing a large dataset from more users and by training CNNs with
various setups. We also believe that our approach can be adapted to personal mobility vehicles,
such as electric kickboards and bicycles, thereby improving driver safety in the future.
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Appendix A. Confusion Matrix

(a) Depth (b) Infrared (c) Early fusion (d) Late fusion

(e) Depth (f) Infrared (g) Early fusion (h) Late fusion

(i) Depth (j) Infrared (k) Early fusion (l) Late fusion

Figure A1. Confusion matrix with 100% of training data: the first, second, and third row indicate the
confusion matrices from the Supervised, transfersupervised, and transferSSL approaches, respectively.
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(a) Depth (b) Infrared (c) Early fusion (d) Late fusion

(e) Depth (f) Infrared (g) Early fusion (h) Late fusion

(i) Depth (j) Infrared (k) Early fusion (l) Late fusion

Figure A2. Confusion matrix with 10% of training data: the first, second, and third row indicate the
confusion matrices from the Supervised, transfersupervised, and transferSSL approaches, respectively.
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