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Chronic cranial windows allow for longitudinal brain imaging experiments in awake,

behaving mice. Different imaging technologies have their unique advantages and

combining multiple imaging modalities offers measurements of a wide spectrum

of neuronal, glial, vascular, and metabolic parameters needed for comprehensive

investigation of physiological and pathophysiological mechanisms. Here, we detail a suite

of surgical techniques for installation of different cranial windows targeted for specific

imaging technologies and their combination. Following these techniques and practices

will yield higher experimental success and reproducibility of results.
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INTRODUCTION

The utilization ofmultiple imagingmodalities in neuroscience enables comprehensive investigation
of brain structure and function. Each imaging technology has unique advantages and disadvantages.
For example, while ultrasound (US) allows whole-brain imaging of cerebral blood flow, it cannot
achieve micron resolution. On the other hand, two-photon (2-P) microscopy yields micron
resolution but is limited by relatively shallow penetration (in common practice, limited to the upper
cortical layers) and relatively small field of view (usually, <1 mm).

Previous studies have described design and surgical implantation of chronic cranial windows in
mice enabling longitudinal measurements (Mostany and Portera-Cailliau, 2008; Holtmaat et al.,
2009; Andermann et al., 2010; Goldey et al., 2014; Roome and Kuhn, 2014; Heo et al., 2016).
These window implants allow imaging of awake mice, which is important for investigation of
brain function without the confounding effects of anesthesia on the physiology of nervous and
cardiovascular systems. Although some of these protocols are highly detailed, they usually employ
imaging with one system. Here, we expand on these previous publications and describe a spectrum
of surgical methods in mice suited for multiple imaging modalities, used alone or in combination,
including 2-P microscopy, laser speckle contrast imaging (LSCI), intrinsic optical signal imaging
(IOSI), optical coherence tomography (OCT), and functional US (fUS). These optical windows can
last for a span of up to 6 months after surgery and can be made MRI-safe for combined optical
imaging or optogenetic (OG) stimulation in awake mice undergoing fMRI.
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METHODS

The protocols described below contain surgical procedures
as well as pre- and post-operative measures. Common
procedures are presented in the main text. Procedures
specific for individual imaging modalities are presented in
the Supplementary Material. All surgical procedures and
imaging protocols were approved by the institutional Animal
Care and Use Committee.

Pre-operative Measures
Adequate planning and preparation decrease the time spent
during surgery and the risk of infection or inflammation leading
to an overall increase in the success rate of surgery.

4 A’s: Anesthesia, Analgesia, Antibiotics, and

Anti-inflammatories
In our procedures we have used isoflurane for anesthesia,
buprenorphine for analgesia, ibuprofen for analgesic, and
anti-inflammatory properties, dexamethasone for prevention
of inflammation and brain edema (Hedley-Whyte and Hsu,
1986) and cefazolin and trimethioprim-sulfametoxazole
as broad-spectrum antibiotics. For details, please see the
Supplementary Material.

Sterilization and Preparation of the Surgical Room
The surgery room should be prepared before the start of the
surgery. Surfaces should be cleaned with antiseptic solution
and clutter should be avoided. There should not be any
non-essential personnel traffic into the room. Surgical chair
should be comfortable and adjustable. Surgeon should don
personal protective equipment including lab coat, surgical mask,
and gloves.

All tools and supplies used for surgery, starting from
dissection of the skin, need to be sterile. Surgical tools and
metal head bars should be autoclaved. If a surgical tool tip
touches a non-sterile surface during the surgery, it should
be bead sterilized. A metal tool tray should be autoclaved.
Batches of paper cleaning wipes (e.g., Kimwipes) and glass
pipettes can be autoclaved. Saline can be autoclaved in glass
bottles (∼10ml) or purchased in sterile 10-mL batches. Gelatin
absorbable hemostatic sponge (e.g., Surgifoam), cotton-tipped
applicators, and bone wax are purchased in sterile batches. Thirty
minutes before surgery, heating blanket, and hot bead sterilizer
are switched on. The surgical microscope is adjusted (height and
focus are in the middle of their dynamic range). Surfaces, trays,
and handles are cleaned with an antiseptic solution.

Although every surgeon may feel more comfortable with a
different set of tools and supplies, we recommend keeping the
number of sterile tools as low as possible to avoid accidental
contamination. Tools are supplies commonly used in our
laboratories are listed in the Supplementary Material.

Intraoperative Measures
Induction of Anesthesia
After the mouse has rested for at least 15min following the
transport, it is weighed and the tail is marked with a marker
pen for easier identification, when multiple mice are housed in

the same cage. Having a calm subject during the induction of
anesthesia increases the chances of stable anesthesia. Mouse is
lifted from the cage by the proximal tail. The body is immediately
rested on a flat surface or the palm or the back of the opposite
hand of the researcher since tail suspension is stressful for
the mice (Yapıcı-Eser et al., 2018) If the mouse is going to
receive inhalation anesthesia, it is slowly placed in an induction
chamber that is not pre-filled with anesthetic. Anesthesia is
induced with isoflurane at 3% followed by 1–1.5% maintenance.
Alternatively, ketamine-xylazine (K/X) injection (i.p.) can be
used for induction and can be supplemented with extra doses of
ketamine throughout surgery, or isoflurane. K/X has been used
as a standard anesthetic for surgical procedures, but the short
half life makes it less practical for longer procedures (Jaber et al.,
2014). On the other hand, isoflurane anesthesia is reported to
increase brain edema (Thal et al., 2012), but in our protocols with
the use of preoperative dexamethasone, we have not experienced
significant brain edema.

Surgical Procedure
The mouse is placed on the heating blanket and secured in the
stereotaxic frame (please see the Supplementary Material). A
sterile ointment is applied to the eyes. The application of this
ointment can be repeated as often as necessary. Not only does
this ointment protects the eyes from keratitis, it also protects
against accidental exposure to povidone-iodine solution (P-I) and
alcohol. Formany behavioral experiments, facial whiskers play an
important role for sensing and task performance. The whiskers
can be weighed down with some lubricant so that they are not
accidentally cut during surgery.

Cefazolin and buprenorphine are injected. Hair is removed
with depilatory cream, and the skin is wiped with wet surgical
sponges to remove remaining hair. The bare skin is cleaned
with a 5% P-I solution (e.g., Betadine) followed by alcohol
swabs repeatedly for three times with alternating wipes. P-I
solution should be completely rinsed off since it may cause
the mouse to itch when dried up. The skin is marked with
a semi-permanent marker (e.g., fine tip Sharpie) to define the
surgical borders slightly smaller than the intended size, because
the skin will stretch after the cut, which makes the incision
larger. The skin is cut with a #11 blade and scissors following
the markings. Sub-cutaneous tissue is dissected with scissors.
The remaining subcutaneous tissue is pushed aside with sterile
cotton tip applicators starting from the middle and moving
toward the edges until the bone is dry. The periosteum is
removed by scratching with a #15 blade. This procedure is
repeated until no loose connective tissue is left. A crosshatch
pattern is carved on the skull with a blade sparing the exposure
and surroundings to improve adherence. The skull is dried
completely with pressurized air and covered with cyanoacrylate
glue (Loctite 4014). For better control, a drop of glue is placed
in the middle of the skull and dragged to the edge of the skin
with a sterile wooden applicator (the handle of sterile cotton
tipped applicator could be used after sharpening the tip with a
sterile blade). It is best to position the skin in place before the
application of the glue and drag the glue just until the skin edge
to attach it in place.
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The exposure is marked using a semi-permanent marker (e.g.,
fine tip Sharpie). Marking the exposure on dried glue has the
advantage as the marking can be cleaned with a sterile cotton
tip applicator and alcohol before drawn again for adjustments to
the drawing. Head bar is attached with glue (Loctite 401) and
dental acrylic. Applying the acrylic before the glue completely
dries promotes a chemical reaction between the two yielding
a stronger bond (Winkler et al., 2006). The details for the
adjustments and attachment of different head bars are described
in the Supplementary Material. When the head bar is secured
in its place, the bone on the exposure is thinned along the
marked craniotomy perimeter using a surgical drill and tungsten
carbide burrs with 0.3-0.5mm diameter. It is important to drill
slowly (up to 15,000 rpm) and softly to prevent heating of
the bone which would exaggerate inflammatory processes. A
standard craniotomy takes about 15–30min. The drill bit should
be regularly dipped in chilled saline to avoid excessive heating.
The bone should regularly be chilled with chilled saline prior
to removal. The bone dust should be removed by washing the
area with sterile saline. The excess liquid could be removed from
the area using sterile wipes. Alternatively, a vacuum aspiration
system equipped with a sterile blunt tip could be used. In case of
bleeding from the bone, sterile sponges in saline and bone wax
are utilized. It is recommended to stop drilling until the bleeding
is completely under control. The thickness of the bone along the
drilled perimeter can be checked by pressing on the bone gently.
When the bone is thin enough along the drilled perimeter, the
central piece is easily depressed when gently pushed. Prior to
removal of the central piece, a drop of saline at 37◦ C is placed
on the exposure. Using a craniotomy forceps, gently check for
an edge which can be pierced. Slowly pry the edge and follow
around. It is important to proceed slow to avoid bleeding from
the dura.When the bone is loose enough, tear the remaining edge
and remove the bone. At this point a piece of saline-soaked gel
foam may be used to keep the dura moist, promote coagulation,
and remove small residues of bone dust, and blood clots.

When all the bleeding is under control, the borosilicate glass
or polymer is placed on the exposure replacing the bone. The
window is pushed down and inside the craniotomy such that
the bottom surface of the window comes in touch with the brain
surface. A stereotaxic frame manipulator equipped with a sterile
plastic pipette tip or a sterile wooden stick can be used to hold
the glass in place. For soft polymer windows, manual handling
may be needed. The details for the attachment of specific glass or
polymer windows is described in the Supplementary Material.
The cover is then sealed with glue, dental acrylic, and a second
layer of glue. The whole skull surface and the part of the head
bar that is attached to the skull are covered with dental acrylic
and a thin layer of glue. 0.1ml of 5% dextrose is injected
subcutaneously for surgeries up to 2 h. If the surgery takes longer
than that, this injection is repeated every 2 h.

After the glue and acrylic are completely dry and the animal
is marked (e.g., by ear notch), the exposure is covered by a
protective cap (please see the following section). The animal
is then placed in a clean cage that is positioned on top
of a heating blanket set to 37◦C and is monitored until it
regains motor control before being returned to the vivarium.

In case of isoflurane, the mouse should regain some motor
control within 10min and eating/drinking within 1 h after a
successful surgery. In case of K/X, the mouse is expected to
recover some motor functions after ∼30min following the last
supplemental K injection, but the time course of recovery can
vary between animals.

Protective Caps
For chronically prepared animals we suggest using a protective
cap on top of the exposure. This prevents the possible break in
the glass and protects soft exposure covers like polymers.

In the case of glass windows, regardless of the head bar design,
casting silicone can be used right before the end of surgery.
Casting silicone components are mixed 1:1, and a large drop
is applied to cover the glass windows and surrounding acrylic.
This polymer helps keep the glass safe and clean and acts as a
thermal insulation barrier. The anesthesia is discontinued when
the silicone is set (∼5min following application). This silicone
can be gently peeled for imaging sessions leaving no residue
behind and can be reapplied when the session is over and before
the animal is released to the home cage.

When using the polymer covers, we suggest using harder
materials to cover the surface. While 3-D printed caps are the
most convenient ones to use, custom machined caps can also be
used. Cap can be mounted on the head bar using interlocking
designs or magnets (not MRI safe). For an exemplary design
please see the Supplementary Material.

Post-operative Measures (∼<10days)
Monitoring
Monitor the mouse daily for 5 days following surgery assessing
general appearance, weight, and pain scale (Langford et al., 2010).
TMP-SMX/Ibuprofen is supplied in drinking water during this
period. If there are signs of pain, additional buprenorphine
injections should be given in 12-h periods for up to 3 days. It
is also helpful to give some softened pellets of food immersed in
medicated drinking solution or gel food or hydrogel to feed and
hydrate the mouse.

Training for Head Fixation
Training sessions can start when the initial monitoring of the
animal is completed (post-operative ∼7 days). The mouse is
handled until calm and trained to sit still in the cradle for up to 1 h
with increasing duration (e.g., 15, 30, 45min, 1 h). On imaging
days, once the animal sits in the cradle, it is quickly fixed and left
to rest for 5min before moving the cradle under the microscope.
It is rewarded with a treat (e.g., sweetened condensed milk). The
cradle is positioned in the imaging setup and reward is offered
about every 15min. If the mouse shows signs of discomfort or
anxiety, the session is aborted, and themouse is released. Forceful
movement and struggling can lead to the mouse detaching its
head bar.

Imaging Under Light Anesthesia
The mouse can be imaged under light anesthesia (K/X or
isoflurane) when no functional data is needed. Eyes should
be protected with ointment. The glass window can be wiped
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FIGURE 1 | (A) Schematics of the borosilicate glass window implant. (B) Schematic illustration of the window implant over the whisker representation within the

primary somatosensory cortex (SI) and the headpost fixed to the skull overlaying the other (contralateral) hemisphere. (C) Images of the brain vasculature through the

(Continued)
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FIGURE 1 | glass window implant obtained by 2-photon imaging of fluorescein isothiocyanate (FITC)-labeled dextran injected intravenously. The images illustrate

preserved integrity of the vasculature between days 1 (left) and 28 (right) following surgical implantation. (D) Two-photon image stack obtained with Alexa 680 labeled

dextran injected intravenously illustrating the capability of deep imaging. The resolution for presented images was ∼1 µm/pixel. (E) Top: Image of the surface

vasculature calculated as a maximum intensity projection (MIP) of an image stack 0–300µm in depth using a 4× objective. Individual images were acquired every

10µm (top, left). A zoomed-in view of the region within the red square acquired with a 20× objective (top, middle, left). A plane 250µm below the surface

corresponding to the region outlined in blue (top, middle, right). The yellow circle indicates a small diving arteriole. An example temporal diameter change profile

acquired from the arteriole outlined by the yellow circle imaged 250µm below the surface (top, right). The vessel diameter was captured by repeated line-scans

across the vessel. These line-scans form a space-time image when stacked sequentially, from left to right. White arrowheads indicate the onset of stimulus trials (air

puffs to the whisker pad); four trials are shown. Graphs: Single-vessel dilation time-courses extracted from data. Time-courses for individual trials are overlaid for

sensory stimuli (left, n = 160 trials) and OG stimuli (right, n = 19 trials); the thick lines show the average. The stimulus onset is indicated by the black arrowhead and

the blue vertical line for the sensory and OG panels, respectively. (F) Concurrent IOSI and LSCI in the same subject. A CCD reflectance image of the surface

vasculature (left). The corresponding LS contrast image (middle, left). Ratio images of HbO (extracted from the OIS data, see Methods) and LS contrast showing the

region of activation following OG stimulation (middle, right, and right). The location of optical fiber is indicated on all images (black dotted line). The same arteriole is

outlined by yellow circles. The black parallelogram indicates the region of interest (ROI) used for extraction of time-courses. The resolution for presented images was

5.5 µm/pixel. Graphs: Time-courses of HbO and HbR (shown in red and blue, respectively), and LS contrast (shown in black) in response to sensory and OG

stimulation. These time-courses were extracted from the polygonal ROI shown in top images. (G) Corrected GE EPI image (left, top) and a corresponding structural

image (TurboRARE, left, bottom). The resolution for EPI and TurboRARE is 200 µm/pixel 100 × 50 and ∼75 µm/pixel, slice thickness = 1mm. Red arrows point to

the peripheral edges of the implant, i.e., the glass/bone boundary. The red line indicates the bottom of the glass implant, i.e., the glass/brain boundary. The BOLD

signal in response to sensory stimuli in a fully awake mouse (top, middle). Spatiotemporal evolution of the BOLD signal change from a single slice cutting through the

center of the evoked response, presented as trial-averaged ratio maps, in response to a 20-s train of 100-ms light pulses delivered at 1Hz (“blocked” OG stimulus) in

a single Emx1-Cre/Ai32 subject. EPI images were thresholded to reflect the sensitivity of the surface RF coil (for display purposes only). The ratio images are overlaid

on the structural (TurboRARE) image of the same slice. BOLD response time-courses extracted from the active ROI (top, right). Fifty seven stimulus trials are

superimposed. The average is overlaid in thick black. The BOLD signal in response to OG stimuli in a fully awake mouse (bottom, middle). Spatiotemporal evolution of

the BOLD signal change from a single slice cutting through the center of the evoked response, presented as trial-averaged ratio maps, in response to a 20-s train of

100-ms light pulses delivered at 1Hz (“blocked” OG stimulus) in a single Emx1-Cre/Ai32 subject. EPI images were thresholded to reflect the sensitivity of the surface

RF coil (for display purposes only). The ratio images are overlaid on the structural (TurboRARE) image of the same slice. BOLD response time-courses extracted from

the active ROI (bottom, right). Twenty eight stimulus trials are superimposed. The average is overlaid in thick black. Modified from Desjardins et al. (2019).

with alcohol and, if necessary, it can be gently scraped with a
blade. Soft polymer windows should not be treated with alcohol.
Instead, sterile saline can be used. This imaging protocol is
suitable for morphological imaging where small movements may
cause imaging artifacts the researcher wants to avoid.

Over the course of days 1–10 after surgery, exposure may
become inflamed and some dural vessels could develop from the
sides, but this should resolve, and the exposure should be ready
to image around day 10–14 after surgery. High-quality exposures
allow imaging of intravascular fluorescent tracer fluorescein
isothiocyanate (FITC)-dextran (2 MDa) down to at least 500µm
with 900 nm excitation.

Imaging (∼Day 10+)
Delivery of Contrast Agents
For imaging protocols that involve i.v. contrast agents, a brief
anesthesia is induced with 3% isoflurane in O2 or air. Retro-
orbital injection (Yardeni et al., 2011) of contrast agents (e.g.,
0.05ml FITC at 5% in PBS) is performed using a tuberculin
syringe 31G, 0.5′′ needle. Care is taken not to scratch the orbital
fossa (bone), because this may cause irritation and pain when
anesthesia is discontinued. Alternatively, intravenous injections
can be given through the tail vein, however, this may result
in local inflammation with imperfect application and is not
recommended for novice researchers.

Awake Imaging
In cases where an i.v. injection is performed, themouse is allowed
to wake up and recover from anesthesia for 15–60min. The
mouse is handled until it becomes calm. After that, the head
bar is fixed in the mouse holder and brought in the imaging
setup. Reward is offered in line with the experimental protocol.

The imaging session should not last longer than 60–90min. The
mouse should be released and returned to its home cage when
the frequency of its movement starts increasing. Movement can
be detected via cameras and/or accelerometer (Bergel et al., 2018).
The mouse is returned to its cage and the cage to vivarium after
the imaging session is over.

Euthanasia
Whenever, the experimental study is completed or if the exposure
is no longer imageable, euthanasia is performed in accordance
with Institutional Animal Care and Use Committee guidelines.

RESULTS

In this section, we will present example imaging data that were
acquired from chronically prepared animals. Details of specific
surgical procedures and imaging protocols are described in the
Supplementary Material.

Glass Windows Used in 2-Photon
Microscopy, IOSI, LSCI, and
MRI-Compatible Optical Imaging in
Conjunction With OG Stimulation
This preparation is a modification of the design described by
Chen et al. (2015). It has been used by our group in several studies
including Desjardins et al. (2019). A glass plug constructed
from one 5-mm round coverslip and two or three 3-mm round
coverslip is used in this surgery (Figures 1A,B). Structural
imaging demonstrating the state of the surface vessels 1 and 28
days after the surgery is obtained after i.v. (retroorbital) injection
of FITC-dextran (Figure 1C). The quality of the window can
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FIGURE 2 | (A) Representative image of cranial window immediately after surgery. In this preparation, animal was implanted with a one-point secured flat head bar

and half Crystal Skull glass (please see Supplementary Material for details). (B) Intrinsic optical signal imaging of change in total hemoglobin concentration during air

(Continued)
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FIGURE 2 | puff stimulation of the contralateral forelimb. Black circle indicates the vessel targeted for photothrombotic occlusion. The resolution for presented images

was 5.5 µm/pixel. (C) Relative CBF detected by LSCI at 1 h after photothrombosis. The resolution for presented images was 5.5 µm/pixel. (D) OCT angiograms of

flowing vessel before stroke (top) and 1-h after photothrombotic stroke (bottom). Transverse and axial resolutions of the OCT system using a 10× objective (Mitutoyo)

were 3.5 and 3.5µm. (E) Representative images showing collateral occlusion (circled in black). Top panel shows laser speckle contrast images as visualized in real

time. Bottom panel shows relative blood flow changes associated with the occlusion. (F) Two-photon maximum intensity projections (left) and volumes (right) of

400µm stack 5 days before photothrombosis (top) and 4 weeks after photothrombosis. Red circle indicates vessel targeted for photothrombosis. Red square

indicates regions chosen for volume projections. The resolution for presented images was ∼1.5 µm/pixel. Modified from Sunil et al. (2020).

be further appreciated in a 3D vascular stack that was obtained
after injecting Alexa 680-dextran (Figure 1D). Functional data
were obtained with 2-photon imaging of vasodilation in
response to sensory stimuli applied to the whiskers as well
as OG stimuli stimulation in animals expressing VGAT-ChR2
(Figure 1E). The same animals can be used for measurements
of oxygenated hemoglobin (HbO), reduced hemoglobin (HbR),
and total hemoglobin (HbT) concentrations using IOSI and
cortical blood flow using LSCI in response to sensory and OG
stimuli (Figure 1F). Finally, the same animals can be used for
optical imaging and OG stimulation performed simultaneously
with fMRI when headposts are made from polyether ether
ketone (PEEK) plastic (Figure 1G). For details, please see the
Supplementary Material and Desjardins et al. (2019).

We have also modified these glass windows with polymer
sealed ports for injection of drugs or various fluorophores
(Roome and Kuhn, 2014). These ports also allowed
insertion of thin electrodes or optical fibers. Please see the
Supplementary Material for details.

Half Crystal Skull Covered Craniotomy
Used in 2-Photon Microscopy, IOSI, LSCI,
and OCT Imaging to Evaluate the Effects of
Stroke Caused by Photothrombosis
This preparation is a modification of the design described in Kim
et al. (2016) where they have created a curved glass replacement
to dorsal cranium and termed it the “Crystal Skull.” We have
modified this protocol using half of this commercially available
curved glass (labmaker.org) to prevent the disruption of blood
flow in sagittal sinus while extending the coverage to visualize
the distal branching points of MCA and the entirety of barrel
cortex which are more laterally positioned than the original
design of Crystal Skull placement. We have used our version
of preparation in several studies including Sunil et al. (2020).
In cases where a large cortical area is desired to be imaged,
surgery using crystal skull glass can be performed (Kim et al.,
2016). However, due to high risk of bleeding or thrombosis,
researchers may wish to avoid preparations involving the sagittal
sinus. We have successfully implemented a modified procedure
that allows us to image one hemisphere, which is sufficient for
our application (Figure 2A). This preparation prevents drilling
over the sagittal sinus, and small displacement of the glass
in the lateral direction allows covering the hemisphere up to
the lateral ridge, which cannot be achieved with the original
method. Here we present results from experiments involving
IOSI (Figure 2B), LSCI (Figures 2C,E), OCT (Figure 2D), and
2-photon microscopy (Figure 2F). We leveraged these large

windows in studies of recovery from experimentally induced
photothrombotic stroke in chronic, awake animals. The half
crystal skull window allowed us to longitudinally image the stroke
area after distal middle cerebral artery (Figures 2B–D,F, circles)
and collateral occlusion (Figure 2E, arrow). Both the stroked and
surrounding healthy tissue (Figure 2F) was accessible in the same
animal for a month after the stroke was induced, allowing for
long-term assessment of the pathology. For details, please see the
Supplementary Material and Sunil et al. (2020).

Soft Polymer Window Used in 2-Photon
Microscopy, IOSI, LSCI, OCT, and fUS
Imaging
This preparation is a modification of the “soft window” design
described in Boido et al. (2019). We used this preparation in
several studies including Kılıç et al. (2020) and Tang et al.
(2020). Although glass craniotomies are preferred because of the
durability, glass has properties incompatible with US imaging.
Here, we show typical results from animals prepared with a
polymethypentene (PMP) polymer soft window (Figure 3A).
This type of window is compatible with 2-P microscopy
(Figure 3B), LSCI and IOSI (Figure 3C), OCT (Figure 3D),
ultrasound localizationmicroscopy (ULM, Figure 3E), and fUSG
(Figure 3F). In contrast with the soft windows made from PDMS
(Heo et al., 2016), PMP windows are less permeable to air and
have no air bubbles formed on the cortical surface which makes
them more suitable for US imaging since the air bubbles will
lead to loss of signal. Although these windows are very stable,
compared to glass counterparts, the optical imaging quality
may degrade faster over time. For example, 2-P microscopy
imaging at 800 nm with FITC-dextran in a glass preparation,
can acquire good images down to 500–600µm in cortex with
quality comparable in first and the sixth month. However, with
PMP windows, while penetration in the first month with the
same imaging modality is comparable, we have experienced that
we could only image 300–400µm deep after 6 months and
150–200µm after 1 year (data not shown). For details, please
see the Supplementary Material and Kılıç et al. (2020) and
Tang et al. (2020).

DISCUSSION

The surgical procedures described in this manuscript and the
Supplementary Material are easy to follow for an experienced
surgeon. For novice surgeons, we recommend starting surgical
training using healthy, wild type, young adult mice (8–12 weeks).
For the first training sessions, avoiding the sutures between
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FIGURE 3 | (A) Representative images of US compatible craniotomy (top) and the position of an awake mouse for training and imaging. In this preparation, animal

was implanted with a two-point secured machined head bar and a PMP strip (please see Supplementary Material for details). (B) 2-P vascular stack taken with i.v.

FITC injection. The resolution for presented images was ∼1.5 µm/pixel. (C) LSCI (top) and IOSI (bottom) of both hemispheres during whisker stimulation. The

resolution for presented images was 5.5 µm/pixel. (D) Full field OCT angiography. Transverse and axial resolutions of the OCT system using a 5× objective (Mitutoyo)

were 7 and 3.5µm. (E) ULM images acquired by US. The resolution for presented images was ∼10 µm/pixel. (F) Experimental paradigm for fUS imaging (top). Trial

average of fUS images acquired during whisker stimuli (middle). The resolution for presented images was ∼100 µm/pixel. Time series of average velocity values

calculated for marked vessels (middle) during whisker stimuli. Note that contralateral cortical and subcortical activation is visible while ipsilateral cortex is not activated.

Modified from Tang et al. (2020).
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skull bones will increase the success rate. During training, a
surgeon also gets accustomed to a varying bone thickness across
the dorsal surface of the mouse skull. After the goals of this
training are achieved, craniotomies crossing the midline may be
attempted. Here, the main challenge is to meticulously remove
the bone without damaging the underlying sagittal sinus. Even
for experienced surgeons, using two half crystal skull windows
instead of making a single bilateral exposure may be preferable.
This is because exposing the midline entails high risk of bleeding
and thrombosis of the sagittal sinus.

The window quality depends not only on the optimization
of the craniotomy procedure but also on the proficiency in
sealing the window. This step may take some time to master.
Once all the procedures are mastered, a mouse with a chronic
window implant can be imaged routinely up to 6 months
with good outcome, although instances where imaging was
performed for up-to 1.5 years after surgery have been reported
(Füger et al., 2017).

Researchers should keep in mind that inflammation peaks
around the third day post-operatively and usually takes a few
weeks to resolve. While the inflammatory processes are ongoing,
the tissue will remain opaque and not suitable for optical imaging.
Therefore, imaging should start around 3 weeks after the surgery,
although training sessions can start earlier but not within the
first week after the surgery. In our experience, the best efficiency
is achieved when the mouse is given 1 week to recover before
starting the training and at least 4 training sessions in the
upcoming 10–14 days before starting the imaging. The exact
schedule may vary slightly depending on the subject.

Lastly, performing a craniotomy can be more invasive
compared to the thinned skull preparations (Shih et al.,
2012); but may give more flexibility with different imaging
modalities. Removing the skull completely eliminates a problem
of inconsistent thickness of the thinned skull preparations,
provides less scattering and therefore deeper optical penetration.
Also, most thinned skull preparations (Drew et al., 2010; Shih
et al., 2012) require the used of reinforcement which makes them
not suitable or less desirable for some imaging methods like fUS
or for optical imaging performed simultaneously with MRI.

Although truly simultaneous application with all of the
imaging/stimulation techniques mentioned here is not feasible,
one mouse can rotate between imaging instruments, sometimes
on the same day, provided that it is given enough time to rest
in between imaging sessions in the home cage. Some of the
abovementioned imaging modalities can be readily combined in
a multimodal setup that allow simultaneous use of the systems.
Examples include (1) LSCI, IOSI and photothrombosis (Kazmi
et al., 2013; Sunil et al., 2020) (2) 2-P microscopy and optogenetic
stimulation (Bovetti et al., 2017; Yang et al., 2018), and (3) MRI
and optical imaging and/or optogenetic stimulation (Lin et al.,
2016; Schlegel et al., 2018; Chen et al., 2019).

CONCLUSION

Even though it was introduced around 60 years ago, the
3R (Replacement, Reduction, Refinement) principle is

exceedingly relevant and important to the current in vivo
data acquisition protocols (De Angelis et al., 2019). These
principles serve as gatekeepers on the way of improving
both the quality of life of the animals used, as well as the
quality of the data collected. The surgical procedures described
here are designed to maximize the spectrum of imaging
techniques that can be applied on the same subject. They are
also modified to decrease the complications after surgery,
morbidity, and mortality therefore decreasing the number of the
experimental subjects.

We hope these detailed protocols will be helpful
for increasing the rigor and repeatability in imaging
studies and decreasing the number of animals utilized by
these studies.
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