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Learning to sense 
three‑dimensional shape 
deformation of a single multimode 
fiber
Xuechun Wang, Yufei Wang, Ketao Zhang, Kaspar Althoefer & Lei Su*

Optical fiber bending, deformation or shape sensing are important measurement technologies and 
have been widely deployed in various applications including healthcare, structural monitoring and 
robotics. However, existing optical fiber bending sensors require complex sensor structures and 
interrogation systems. Here, inspired by the recent renewed interest in information-rich multimode 
optical fibers, we show that the multimode fiber (MMF) output speckles contain the three-dimensional 
(3D) geometric shape information of the MMF itself. We demonstrate proof-of-concept 3D multi-point 
deformation sensing via a single multimode fiber by using k-nearest neighbor (KNN) machine learning 
algorithm, and achieve a classification accuracy close to 100%. Our results show that a single MMF 
based deformation sensor is excellent in terms of system simplicity, resolution and sensitivity, and can 
be a promising candidate in deformation monitoring or shape-sensing applications.

Complex deformation, bending or shape sensing has received growing attention, due to their booming applica-
tions in interactive sensing devices1–4 and soft robots5–8. Optical fiber sensors provide an efficient and competitive 
sensing solution, owning to their unique properties, including light-weight, low cost, freedom from electromag-
netic interference, and resistance to harsh environment and chemicals9–11. Among optical fiber bending sensors, 
fiber Bragg gratings (FBGs)12–14, long period fiber gratings (LPFGs)15,16 and specially designed optical fibers17,18 
are popular choices owing to their robustness. For example, the fiber sensor presented in Ref.19 exhibits high 
sensitivity (up to 1270 pm/°) and can be used to monitor small bending angles (2°). In Ref.20, a two-dimensional 
bending sensor based on long period gratings (LPGs) fabricated in three-core fibers were demonstrated. Fur-
thermore, FBGs were fabricated in a six-core fiber to achieve a spatial resolution down to 40 µm21. While these 
existing fiber-optic sensors have demonstrated good sensitivity and resolution, the application of these previous 
optical-fiber-shape sensors are limited by the complex fabrication process and expensive detection systems. The 
fabrication of high-accuracy FBGs and good-performance multicore fibers is complicated. The signal processing 
and interrogation systems involved are bulky and high cost, which especially limits their application in wearable 
and portable devices. Furthermore, the spatial resolution of fiber-grating-based bending sensors is restricted 
by the minimal length of individual gratings that need to be incorporated to measure each deformation point. 
Therefore, a deformation sensor consisting of only standard and low-cost fibers would be ideal.

Multimode fibers (MMFs) are high-capacity information channels22–24. The MMF output speckles contain 
rich information and have been used in applications such as spectrometers25, optical trapping26 and imaging27. 
Very recently, utilizing MMF output speckles, researchers employed deep learning in input-pattern reconstruc-
tions, including MINIST characters28,29, natural scenes30 and even randomly distributed spatial information31. 
Here, we hypothesize that the MMF speckles possess the information that relates to the complex deformation 
along the fiber itself. In this work. We attempt to use machine learning to interpret the complex deformation of 
the fiber with output speckles. In fact, speckle-based MMF bending classification was recently reported32–34 on 
one-point low dimensional to classify such MMF bending. In Ref.34, a spring needle was used to press the fiber 
to achieve bending at one point, where the freedom of deformation is relatively low as both ends of the fiber were 
fixed. In this work, we propose the following to experimentally study speckle-based 3D multi-point deformation 
classification through a single MMF.
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Experiment and results
One‑point deformation experiment.  Firstly, we studied the bending-location classification along the 
MMF axial direction using MMF speckles. As shown in Fig. 1 (see “Methods” section for details), we used a 
11 cm long MMF and fixed a 5 cm section of this MMF between two translation stages as the deformation 
region. A 6 mm diameter steel rod controlled by a translation stage was used to induce one-point deformation 
within the 5 cm bending region. The fiber was carefully aligned to avoid twisting during deformation and was 
also stabilized so that the rest of the MMF (except for the bending point) remained undisturbed. The deforma-
tion was then formed by moving the steel rod perpendicular to the fiber axial direction for 5 mm to bend the 
fiber at one point. The camera was used to acquire an output speckle image 5 s after the deformation was applied, 
leaving enough time for the MMF and the speckle to stabilize. The steel rod was then translated 0.3 mm along 
the axial direction of the fixed MMF and the speckle acquisition was repeated. Having acquired output speckles 
at 20 different fiber bending points, we started a new loop by moving the steel rod backwards along the MMF 
axial direction for another repeating measurements. This process was repeated until we collected 40 speckles for 
each deformation location of the MMF. Finally, within 2 h we collected in total 800 speckle images, which were 
subsequently used for the deformation classification.

Figure 1b shows the average Pearson correlation coefficients (PCC) between the speckles collected in the 
first measurement and speckles collected in the rest measurements. It can be seen in Fig. 1b that, although the 
average PCC between neighboring bending locations are high between 0.6 and 0.7. The correlation coefficient 
decreased to 0.2 after a few times of deformation. Bending locations can still be accurately classified because the 
PCC between speckles collected at the same bending location is higher. The classification results using k-nearest 
neighbors algorithm (KNN) are shown in Fig. 1c. The classification accuracy is defined as the percentage of the 
correctly predicted speckles within test datasets (50% of the total datasets). Here we did not randomly select 
the training and testing datasets from the 800 datasets. Instead, to show the stability of the MMF-speckle based 
bending sensor, speckles recorded during the first half of the repeating speckle collections (i.e. the first 20 repeat-
ing measurements in the first hour of the 2-h measurements) were used as the training data and the rest were 
used as the test data. In Fig. 1c, the numbers of the diagonal elements show the percentage of correctly classified 
speckles, where a 100% classification accuracy is achieved for each bending location.

We then set up an electrical-motor driven system to test the classification of different bending angles at one 
deformation location on a piece of MMF (Fig. 2a). A 20 cm long MMF and electric motors (RS PRO Hybrid 
Stepper Motor 0.9°, 0.44 Nm, 2.8 V, 1.68 A, 4 Wires) were used in this experiment. The testing MMFs were 
secured in place on the motor by homemade 3D-printed fiber holders. An Arduino system was used to control 
the movement of the motor and to trigger the camera to record a speckle in a synchronized manner. One MMF 
end connected to the camera was fixed, and the other MMF end was movable and was fuse-spliced to a single-
mode fiber connected to a laser pointer. The motor bent the MMF at one point with bending angles ranging 
from 0° to 88.2° at a step of 1.8°. At each bending angle, the camera recorded one speckle image. We allowed 
5 s for the system to fully settle before each image acquisition. By repeating 50 different angles bending for 16 

Figure 1.   (a) Experiment setup for one-point deformation classification. (b) Average PCC for one-point 
deformation (the average PCC between the speckles collected in the first measurement and subsequently 
collected speckles in the rest 39 measurements). (c) Normalized confusion matrices for KNN classification 
results with one-point deformation experiment. KNN is trained by using only 50% dataset. LP Laser pointer, FH 
fiber holder, TS translation stage, OL objective lens.
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times, the entire process took about 1 h and in total 800 datasets were collected (16 speckles for each bending 
angle). Figure 2b is the average PCC of speckles between bending angles. The correlation coefficient decreased 
to 0.3 after several times of deformation. It can be seen that the average PCC between speckles collected at the 
same bending angle is higher than those between speckles collected at different bending angles. Using the first 
recorded 400 data to train the KNN and the rest 400 as the test data, we were able to achieve a classification 
accuracy of 95.75% (Fig. 2c). The small classification errors are believed to be a result of the variability of the 
motorized-bending system, i.e. the MMF and the motor may have not returned to exactly the same state after 
each movement.

The results presented above suggest: (i) the deformation applied at different points along the same MMF 
results in different speckle patterns and the machine learning algorithms (i.e. KNN here) is able to distinguish 
such subtle differences; and (ii) different degrees of deformation at the same point also result in different output 
speckles, which can subsequently be classified by KNN. These forms a good basis of the following complex 
deformation sensing experiments.

2D multi‑point deformation experiment.  Next, we tested the performance of our sensor for two-
dimensional (2D) multi-point bending. We used a 23 cm long MMF and fixed 12 cm section of the fiber as 
the experimental deformation region (Fig. 3a). A homemade fiber holder separated this bending region into 4 
equal-length 30 mm long sections. Three 6 mm-diameter steel rods were used to apply displacements at the joint 
between these sections. For each step of the displacement, one steel rod was translated by 0.05 mm to deform 
the MMF, and for each steel rod there were three displacement values (i.e. 0 mm, 0.05 mm and 0.1 mm). Hence, 
there were 27 deformation states in total. Note that here we used a much smaller displacement (0.05 mm) com-
pared with one-point experiment, to show the high sensitivity of the system. Similarly, before collecting a speckle 
we allowed 5 s for the system to settle after the displacement. The deformation process was repeated 50 times. 
In total, 50 speckles were collected for each deformation state and the entire process lasted about 2 h. Figure 3b 
shows the PCC between the states of the MMF recorded. The average PCC calculated for speckles of the same 
deformation state was the highest compared with the PCC between speckles from different deformation states. 
The correlation coefficient decreased to 0.2 after a few times of deformation. Using the first half recorded data 
to train the KNN and the rest as the test data, 100% classification accuracy was achieved as shown in Fig. 3c.

3D deformation experiment.  Finally, we attached our MMF sensor to a robotic arm (UR5, Universal 
Robot Company) for the proof-of-concept demonstration of three-dimensional (3D) deformation sensing. We 
first attached a 5 cm section of a 12 cm long MMF to a 5 cm-long end-effector section of the robotic arm for 3D 
one-point deformation test, as shown in Fig. 4a. The movement of the top section of the robotic arm follows a 
spherical Fibonacci lattice and the tip of the robotic arm can reach any points on a half spherical surface. The 
attached MMF therefore follows the same movement pattern as the robotic arm and is tested for 3D one-point 
bending. Based on the spherical Fibonacci lattice, we generated 50 different points on a 5 cm radius half sphere 

Figure 2.   (a) Experimental setup for one-point motor bending angle classification. (b) Average PCC for 
one-point motor bending (the average PCC compared themselves with all pictures in other angles). (c) The 
KNN prediction result with 50% dataset as the training data. The colored circles in c indicate the location and 
percentage of classification errors while the solid circular dots on the diagonal show the classification accuracy.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12684  | https://doi.org/10.1038/s41598-022-15781-8

www.nature.com/scientificreports/

and fed the point coordinates to the end effector of the robotic arm. The laser pointer and the MMF were sta-
bilized on the end effector, the MMF was deformed together with the robotic arm and followed the same 3D 
bending angle. The output speckle from the other end of the MMF was acquired by a camera. After the robotic 
arm reached a 3D deformation state, we allowed 3 s for the system to stabilize before the camera recorded a 
corresponding speckle. Note that we used a short waiting time (3 s) here instead of 5 s used in the previous 
experiments, as 3 s was found sufficient and additionally we can shorten the overall data acquisition time. These 

Figure 3.   (a) Experimental setup for 2D multi-point deformation classification. (b) Average PCC between the 
speckle collected in the first measurements and speckles collected in the rest measurements. (c) Normalized 
confusion matrices for the KNN classification. The deformation states are defined by a deformation coordinates 
(Y1, Y2, Y3), where x of the Yx element represents the x-th bending rod, and the value of each element Yx defines 
the bending displacement step, i.e., 0 is 0 mm, 1 is 0.05 mm and 2 is 0.1 mm.

Figure 4.   (a) Experimental setup for 3D one-point deformation classification. (b) Average PCC for 3D 
one-point bending between the speckles collected in the first measurement and speckles collected in the rest 
measurements. (c) The KNN classification result for 3D one-point bending using first half collected data as the 
training dataset and the second half data as the test dataset.
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50 3D deformation states were repeated 16 times within 1 h. The average PCC between speckles collected at 
the same bending state were much higher than the PCC between speckles collected at different bending states 
(Fig. 4b). The correlation coefficient decreased to 0.2 after several times of deformation. Again, we trained the 
KNN using first recorded 400 samples and validated the bending classification with the rest 400 data recorded 
later. Figure 4c shows the classification accuracy for 3D one-point deformation. These results indicate that all 
3D one-point deformation of the fiber can be successfully classified, and a classification accuracy 100% can be 
achieved. In addition, we also achieved 100% classification accuracy for 3D one-point deformation of the MMF 
using the Robotic arm at the same bending degree, but different orientation, and the results are given in Sup-
plementary Information 1.

Based on the 3D one-point deformation results above, we tested 3D three-point deformation sensing using 
a 220 cm-long MMF by attaching a 43 cm section of the fiber onto the entire robotic arm and covering three 
bendable joints, as shown in Fig. 5a. We used sealer tape to secure the fiber to the surface of the robotic arm 
(expect for the robotic arm bending joints, where the fiber was not covered by the sealer tape). The 3D three-
point deformation was achieved by rotating these three robotic joints, resulting in the corresponding deformation 
on the attached MMF. For each bending joint, the bending angle can vary in the range from − 30° to + 30° with 
a minimal step of 1°. 360 deformation states in combination of movements of these three robotic joints were 
randomly generated and were repeated 5 times within 1 h. The camera recorded one speckle image within 1 s 
every time when the robotic arm moved to a bending state and a total of 1800 speckles are recorded. Similar to 
the electric motor experiment presented in the previous section, there appeared instabilities induced by relative 
fiber movements, i.e. the MMF may have not returned to the exactly same deformation state even though the 
robotic arm is back to the same state. This can be seen in the average PCC shown in Fig. 5b, where a reduced 
correlations between speckles collected at the same bending state are noted. The speckles have a low average 
correlation. We believe that such an instability is not the inherent property of the MMF sensor, but a result of 
the inevitable relative movements of the fiber under the sealer tape when the robotic arm was moved. Never-
theless, 98% classification accuracy was still achieved as shown in Fig. 5c when we used the first 80% recorded 
data to train the KNN and the rest 20% data as the test dataset. Further experimental results for 3D multi-point 
deformation are provided in Supplementary Information 2.

Discussions and conclusion
One foreseeable challenge when applying the single MMF deformation sensor in real world is the high variability 
of the MMF output speckles, which is sensitive to the environment conditions, including temperature, vibration, 
and mechanical stress. Any small changes in these can lead to variations of the speckles, as shown in Supple-
mentary Information 3 where the decorrelation of the output speckles along the time is clearly seen. The drifting 
of the MMF output speckle can be minimized by specially designed packaging and fixtures. To compensate the 
drifting, more training data can be included to enable the neural network to learn all possible variations29, or to 
update the neural network continuously by semi-supervised learning31.

Figure 5.   (a) Experimental setup for 3D three-point deformation classification; (b) Average PCC for 3D 
three-point bending between the speckles collected in the first measurement and speckles collected in the rest 
measurements. (c) KNN classification result using the last 20% recorded data in 3D three-point bending. The 
blue-colored circles in c indicate where the classification is unsuccessful.
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Most experiment results presented in our work show high classification accuracy of 100% or very close to 
100%. We believe that those observe classification errors (although only a few) are not the inherent error of the 
MMF bending sensor itself but are mainly due to the experimental setup, including the errors of the motor, the 
elasticity of the fiber jacket material after being stretched, and the small but undesirable relative movements 
between the taped-fixed fiber and the robotic arm in each robotic arm movement. Again, these can be improved 
with a specially designed packaging to secure the fiber on the structure or device to be monitored.

In summary, we have demonstrated 3D multi-points deformation sensing via a single MMF using machine-
learning based speckle classification. The demonstrated single MMF deformation sensor is advantageous com-
pared with traditional optical fiber deformation sensors in several aspects. Firstly, the transducer itself is a 
standard MMF and is therefore extremely low cost. The sensing system can be incorporated as a compact and 
wearable device where only a light source and an image sensor are needed, without requiring complex wavelength 
interrogation systems such as those needed for FBG sensors. Secondly, our single MMF deformation sensor can 
be applied to various types of deformation and a good resolution is achieved. As shown in our experiment, a 
0.3 mm spatial resolution is achieved in Fig. 1, and a displacement as small as 0.05 mm can be successfully classi-
fied along the MMF (Fig. 3). Our experiment results prove that the single MMF speckle-based deformation sensor 
has good flexibility and sensitivity. Regardless of the influence of variations such as temperature and vibration, 
a resolution of 1° for 3D deformation is demonstrated in our experiment. It is possible to achieve even smaller 
resolution in micrometer scale (e.g. 5 µm) as demonstrated in Refs.32–34. Thirdly, 3D multi-point deformation 
is achieved via a single standard MMF and this is expected to be extended to more complex deformation or 3D 
shape sensing. In comparison, FBG based 3D shape sensing requires multiple fibers or specially designed multi-
core fibers. The advantages of our MMF deformation sensor include: high degrees of freedom, simple detection 
setup without requiring additional wavelength interrogation devices, and an overall low-cost system. This single 
MMF based 3D multi-points deformation sensing technique may find applications in limb motions monitoring, 
surgical tools manipulation, wearable device sensing and robotic control.

Methods
Optical sensing experimental setup.  Output from a laser pointer (650 nm, 1 mW, KLS-006, Kelushi) was 
coupled into MMFs (50 μm-core, 0.22NA, FG050UGA, Thorlabs) of different lengths between 110 and 2200 mm 
according to the requirements of different bending experiments). It has been experimentally demonstrated 
that multimode fibers with larger cores or smaller numerical apertures are more sensitive to deformation35. A 
longer MMF increases the variations between speckles for the same deformation but at the same time intro-
duces more instability. The other end of the MMF was imaged with a digital CMOS camera (2048 × 2048 pixels, 
6.5 μm × 6.5 μm pixel sizes, C11440-22CU, Flash4.0, Hamamatsu) through a 30 mm focal lens. All fibers were 
bare fibers and were tested without protective jacket or connectors. How the optical fiber speckle changes with 
deformation is given in Supplementary Information 4.

Optical sensing experimental setup.  The KNN algorithm was used to analyze the experimental data 
owing to its simple implementation and good classification performance36–38. KNN is simple and requires tuning 
only one hyperparameter (the value of k), while neural network training involves many hyperparameters con-
trolling the size and structure of the network as well as the optimization procedure. For advanced deep neural 
networks such as convolutional neural network (CNN), they require a much larger size dataset. Due to the small 
dataset size in our experiment, KNN is ideally positioned to classify the speckles. Another important justifica-
tion is that compared it with deep neural networks, such as CNN, KNN can obtained a similar accuracy in our 
experiment dataset. The results are provided in Supplementary Information 5. For more complicated deforma-
tions, deep neural networks could be used for better recovery, for example, to predict states not included in the 
training.

The KNN classification is performed by using a training dataset which contains both the input and the target 
variables and then by comparing the test data which contains only the input variables to that reference set the 
distance of the unknown to k nearest neighbors determines its class assignment by either averaging the class 
numbers of the k nearest reference points or by obtaining a majority vote for them.

The speckles were firstly normalized and standardized before applying them with the KNN. The size of 
the speckle was set to 120 × 120. Image preprocessing was done by using scaler.fit_transform function within 
Python sklearn.preprocessing Library. Bending state labels were inserted in each figure and at the same time 
corresponding speckle patterns of different bending states were identified. Subsequently, the labels and their 
corresponding speckles were set up in a dataset. This dataset was then split into two data groups for training and 
testing, respectively. After the training of KNN, speckle images in the test dataset were sent to KNN to obtain 
the predicted bending-state labels. The predicted labels were compared with the original bending state labels to 
determine the accuracy of KNN classification.

The kNN algorithm involves three main factors: the training set, the distance measurement, and the size of k. 
The best model hyperparameters is k equals to 3. The distance metric for the proximity evaluation in this paper 
was chosen to be the Euclidean distance.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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