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Abstract: Improving fertilizer use efficiency (FUE) is an effective means to reduce fertilizer use
and environmental contamination. Few studies have considered the spatial effects of FUE and its
determinants. This paper calculated the FUE of agricultural production by adopting panel data on
31 provinces in China from 2007 to 2017 using a stochastic frontier method with a heteroscedastic
inefficiency term, and discussed the spatial characteristics. Further, the geographical weighted
regression model (GWR) was employed to examine the spatial impact of factors on FUE and revealed
the spatial dispersion and agglomeration effect. The results show that averaged FUE in China was
0.722, and had a significantly decreasing trend with a significant regional difference and spatial positive
correlation in different provinces. The non-agricultural employment ratio was the leading factor
for increasing FUE, and its degree of influence showed a decreasing trend from eastern to western
China. The different agricultural industry development modes, crop planting patterns adjustment,
labor transfer, and policy incentive systems for increasing the non-agricultural employment ratio
should be developed for different regions. Farmers’ income had a negative impact on FUE, but the
influence degree decreased annually. Education level had a negative impact on FUE and was relatively
weak, but the influence degree was increasing. This should strengthen the exploration of a scientific
and practical technical training system for farmers on fertilizer use while improving educational levels
in different regions on the basis of local characteristics. The impact of disasters on FUE depended on
their severity, and a combined weather and disaster forecasting mechanism should be developed.

Keywords: fertilizer use efficiency; spatial effect; geographical weighted regression; impact factors;
stochastic frontier production function

1. Introduction

Chemical fertilizer is a crucial input for crop production, and has made a substantial contribution
to grain yields, especially in China, where chemical fertilizer has contributed to 56.81% of the increase
in grain yield [1,2]. The application of chemical fertilizer in China has increased from 8.84 million tons
in 1978 to 56.53 million tons in 2018. However, increasing fertilizer use has weakened the marginal
effect of the increasing yield [3], and overuse has resulted in low fertilizer use efficiency (FUE) [4,5] and
various environmental problems, such as acid rain [6], soil pollution [7], biodiversity loss [8], and water
eutrophication and contamination [9,10], which threaten the sustainable development of agriculture
and even public health [11]. To put into practice the conviction that clear waters and green mountains
are as valuable as mountains of gold and silver, and to achieve green agricultural production and
sustainability, it is necessary to reduce the unreasonable use of chemical fertilizers.

Int. J. Environ. Res. Public Health 2020, 17, 8830; doi:10.3390/ijerph17238830 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0003-0140-208X
https://orcid.org/0000-0002-5551-0492
http://dx.doi.org/10.3390/ijerph17238830
http://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/17/23/8830?type=check_update&version=2


Int. J. Environ. Res. Public Health 2020, 17, 8830 2 of 23

Efficient management of agricultural chemical fertilizer by improving FUE or fertilizer productivity
is a critical measure to reduce fertilizer use [5]. Especially in China, FUE is only approximately 30%,
almost half that of FUE in developed countries [12]. Fertilizer use can be reduced by 50% if China were
to increase the current FUE to the level of developed countries, without crop yield reduction [13,14],
which shows great potential to reduce fertilizer use and eliminate the adverse environmental effect of
chemical fertilizer. Therefore, it is worthwhile to examine the FUE of agriculture production in China
and its influencing factors to improve FUE.

Considerable efforts have been made by the government for reducing fertilizer use and increasing
FUE. The Chinese government proposed the Chemical Fertilizer Use Zero Increase by 2020 plan in 2015,
and the Chemical Fertilizer Use Negative Increase plan was proposed in 2019, while the objective of
implementing these policies is to increase FUE [5,12]. Around this goal, each province has formulated
various policies and actively adjusted the agricultural industrial structure. Due to the different natural
endowments and policies in each province, FUE is usually different in each province, while similar
characteristics in adjacent regions and provinces may lead to spatial correlation and the agglomeration
effect of FUE, so it is essential to analyze the spatial effects of FUE and its influencing factors.

Although current studies have already analyzed FUE and its determinants, few studies have
considered the heteroscedasticity of error (the error usually assumed to have the same variance given
any value of the independent variable; if the variance is different, the error is heteroscedastic) or
have analyzed the spatial correlation and agglomeration effect of FUE, and the spatial effects of
factors affecting FUE. This paper attempted to analyze the spatial effect of the factors influencing
FUE at the provincial level using the geographical weighted regression (GWR) model on the basis
of investigating the spatial correlation and agglomeration effect of FUE. This paper is innovative
from various points of view. First, previous studies on FUE using the stochastic frontier analysis
(SFA) model neglect the heteroscedasticity of error components, so the heteroscedasticity in both error
terms and the stochastic and inefficiency error components are considered with the SFA model in this
paper, which allows us to consider the impact of provincial characteristics on the efficiency, such as
economic development level and average education degree. Second, although some studies have
analyzed the spatial heterogeneity of FUE, few studies have considered the spatial correlation and
agglomeration effect of different provinces. Because of the similarity of climate, resource endowment,
economic development, and technology spillover in adjacent regions, neighboring provinces have
obvious spatial correlation. Spatial correlation and agglomeration can significantly affect FUE in
adjacent provinces. Third, studies have mainly used the Tobit model to measure the impacts of factors
on FUE [5,15,16]. The spatial factor has not been considered, which can lead to estimation bias, and the
corresponding results and recommendations may be misleading. Therefore, this study aimed to reveal
the spatial distribution characteristics of FUE and analyze the spatial effects of factors affecting FUE.
Using the spatial panel data from 2007 to 2017, this study calculated FUE and examined its spatial
effect, then analyzed its determinants using the GWR model. Policy suggestions are put forward to
provide a reference for improving FUE and reducing fertilizer use in agricultural production, which is
crucial to the sustainable development of agriculture.

The rest of the paper is as follows. Section 2 presents the literature review of FUE and its
influencing factors. The calculation method, model, and data sources are described in Section 3.
Section 4 presents the empirical results of FUE and its influencing factors calculated by the GWR model.
Section 5 discusses the findings, and Section 6 ends with conclusions and policy implications.

2. Literature Review

In this section, the conception and estimation method of FUE are first introduced, then the factors
affecting FUE are discussed, followed by the methods and their advantages in estimating the impact of
factors on FUE. It concludes with highlights on how this paper fills the gaps in the literature.

FUE is a main indicator for evaluating the effective use rate of fertilizer, and is usually used to
address environmental pollution caused by fertilizer input [13]. Many studies have analyzed FUE



Int. J. Environ. Res. Public Health 2020, 17, 8830 3 of 23

from the perspective of natural and social sciences based on agronomy and economic theory. In natural
sciences, the analysis of FUE mainly focuses on nitrogen use efficiency (NUE), which is defined as
the ratio of nitrogen uptake to total nitrogen fertilizer input [13,17], and it is calculated commonly
through field experiments. Duan et al. [6] investigated the effects of various fertilization experiments
on NUE at four sites in China and found that manure treatment had the highest NUE for wheat and
corn. Ladha and Chakraborty [17] indicated that the average world NUE is only 47%. Yang et al. [4]
evaluated NUE based on a field experiment and showed that NUE decreases linearly with the increasing
rates of nitrogen use in the Loess Plateau of China. Cao et al. [9] indicated that an active canopy
sensor-based precision N management (CS-PNM) strategy increases NUE by 68–123% using a field
experiment conducted in China. Wu et al. [12] calculated and compared the NUE of grain production
in China and other countries in the world and showed that the NUE was approximately 30% in China,
significantly lower than the world average of 50%, and that the NUE of different continents differs.
Furthermore, Lassaletta et al. [13] showed that FUEs differ in different countries by using a 50-year data
analysis, and compared to no straw treatment, the FUE increased by 10.57–48.77%, with a buried straw
layer under lower nitrogen and irrigation levels [18]. Liang and Shi [19] showed that poly-Y-glutamic
acid treatments significantly enhanced nitrogen and phosphorus uptake efficiency by 20.7–82.8% and
4.2–50.0% compared with no treatment, respectively.

Experimental methods have usually been used to calculate FUE in the natural sciences, and there
may be rigorous experimental conditions that have neglected human adaptive activities; thus, it is
not suitable for large-scale evaluation of FUE [20]. Therefore, many studies have evaluated FUE from
the perspective of social science based on economic theory, because the shortcomings of experimental
methods can be overcome by taking into account the human adaptive activities to natural and social
factors, such as weather and policy [5]. FUE is defined and calculated by the ratio of optimal required
input of fertilizer to the actual input when keeping output and other inputs constant [21].

Two methods are commonly used to evaluate FUE in the social sciences: data envelopment
analysis (DEA) and stochastic frontier analysis (SFA). Angeles et al. [22] measured fresh vegetable
production NUE using a DEA model in southeast Spain, and found that the efficiency was 0.927,
indicating better efficiency in the use of nitrogen fertilizer. Lidia [23] analyzed the eco-efficiency
of Chilean blueberry orchards by DEA and indicated that fertilizer had the lowest eco-efficiency.
Alfonso and Francisco [24] estimated the environmental efficiency of agricultural production regarding
fertilizer use in European countries with DEA, and showed that environmental efficiency from 2001 to
2012 had an increasing trend. Although DEA has the advantages of not requiring data dimensions
and manual weighting, it cannot distinguish the impact of statistical noise, which may be serious
in agricultural production; thus, it is recommended to use SFA for agriculture production [5,25].
Wu [15] estimated FUE in China with the SFA model and showed that the average FUE was only 0.333,
and two-thirds of fertilizer use was excessive. Ma et al. [16] measured FUE in the Taihu Basin, China,
using the translog SFA model, and indicated that the average FUE of rice production was only 0.254.
Bai et al. [5] calculated the FUE of apple production in China with the SFA model and found that
FUE had a regional characteristic, namely, the average FUE in Bohai Bay was higher than in the Loess
Plateau region; the FUEs differed significantly by province. However, all of these studies estimated
the FUE neglected the heteroscedasticity of the error terms, which may make the results inaccurate.
Considering the heteroscedasticity of the inefficiency error term, Benedetti et al. [26] estimated the
technical efficiency (TE) of irrigated crops in Italy and found that the heteroscedasticity was valid.
Loureiro [27] analyzed the impact of health on agricultural productivity using the heteroscedastic SFA
model, and showed that heteroscedasticity existed in both error terms. Thus, heteroscedasticity should
be considered when calculating the FUE using the SFA model.

Many studies have further discussed the influencing factors of FUE. An education degree has a
complex impact on FUE through changes in household behavior. These impacts include direct and
indirect causal effects [16,22]. Most of them have considered that an education degree increased FUE.
With an increasing education level, more skills and knowledge related to fertilizer use were mastered,
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absorbed, and used by householders [16]; subsequently, FUE increased accordingly [15,22]. Farm size
also influenced fertilizer use intensity. Wu et al. [12] showed that fertilizer use intensity decreases with
an increase in farm size. However, using the collected data on 300 farm households in Bangladesh,
Nasrin et al. [28] analyzed the effect of education on the fertilizer use intensity of farmers with different
farm sizes. The results indicated that education significantly affected small, medium, and large farms,
but had no significant impact on marginal farms. Naseem and Kelly [29] found that a primary and
secondary education degree had a significant positive impact on fertilizer use intensity. These may
lead to the overuse of fertilizer and low efficiency. Zhang and Bai [30] and Bai et al. [5] showed that the
degree of education had a significant negative impact on FUE, and the relationship between education
and FUE had a U-shape.

Income also affected FUE. Based on the environmental Kuznets curve (EKC), fertilizer use will
decrease with an increase in income [31], which may improve FUE. Based on the panel analysis,
Wu et al. [12] pointed that per capita gross domestic product (PGDP) has a significant positive impact
on fertilizer use intensity in China, and FUE increases and fertilizer use intensity decreases after the
income reaches the inflection point of the EKC [32]. Naseem and Kelly [29] indicated that gross national
product (GNP) per capita negatively affected fertilizer usage, which may increase FUE. Using the
random Tobit regression model, Wu [15] indicated that household income had the significantly largest
positive impact on FUE.

The non-agricultural employment ratio also had a complex impact on FUE. A higher non-agricultural
employment ratio resulted in less labor input for agriculture production and more income, after which
more fertilizers are used [33], which can lead to low FUE. Nasrin et al. [28] investigated the effect
of non-agricultural income on fertilizer use in different farm size groups. The results showed that
non-agricultural income can significantly stimulate all groups to use more fertilizer, and the smaller
the farm size, the greater the impact. With the random panel Tobit model, Shi et al. [34] found that
the non-agricultural employment ratio had a significant negative effect on FUE of wheat production in
China from 1998 to 2013. However, with non-agricultural income increasing, farming income was not as
important, and less fertilizer was used [35], increasing FUE [16]. Based on apple production panel data,
Bai et al. [5] indicated that the non-agricultural employment ratio had a significant positive and the highest
impact on FUE. Disasters also influence agricultural production and thus FUE. Avoiding or decreasing
disasters can improve FUE [16]. On the analysis of FUE of apple orchards in China, Bai et al. [5] showed
that the disaster ratio significantly negatively affected FUE.

Among the literature, the Tobit model has been commonly employed to analyze the influencing
factors of FUE; however, it neglects provincial and regional differences. Because of the difference
in geospatial location, the variables’ relationship and model structure will change accordingly [36].
Because the economic and regional resource endowments differ, fertilizer use intensity, FUE, and their
effects obviously vary by geographical position and province [5,28,37]. Spatial analysis that considers
various geographic factors can provide meaningful information to government agencies and concerned
individuals [36,37]. In the context of the spatial effect of FUE, the geographically weighted regression
(GWR) model is more suitable to estimate the factors affecting FUE than the ordinary least square (OLS)
model [38], because the potential spatial differences can be assessed by the GWR model by examining
the variations in the estimated parameters in different regions [39]. In a comparison between the OLS
and GWR model to predict spatial characteristics of nitrate contamination, Koh et al. [37] indicated
that the GWR models outperformed the OLS, and could provide undiscovered information that was
not revealed in the OLS model. Zhou et al. [38] analyzed the different causes of haze in different
regions in China with the GWR model and showed that the GWR estimate was better than the OLS
and that the effects of different environmental protection inputs differ by regions. Using the data of
30 provinces in China from 2004 to 2012, Wu [39] showed that population size and affluence level
were the main driving forces on the ecological footprint, and the GWR model was superior to the OLS
model. Robinson et al. [40] found that GWR could effectively analyze the agglomeration and diffusion
effects of nitrogen dioxide pollution in the United Kingdom. Wang et al. [36] explored the spatial effect
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of carbon dioxide (CO2) emission using the GWR model and showed that urbanization is a key factor
in increasing CO2 emissions. These studies have demonstrated that the GWR model is more suitable
than other models for estimating parameters in environmental studies [36–39], and spatial analysis
results can provide a more accurate reference for regional decision-making.

In general, chemical fertilizer is considered the main source of environmental pollution in
agriculture and has been overused. Thus, it is essential to explore FUE and its determinants for
improving FUE and reducing fertilizer usage and environmental pollution. This paper calculated the
FUE of agriculture production using a heteroscedastic stochastic frontier model, analyzed its spatial
distribution and characteristics, and then estimated the spatial effects of factors affecting FUE using the
GWR model.

3. Methodology and Data Source

This section first introduces the panel SFA model to estimate the FUE of agricultural production
during 2007–2017 in China, and then the spatial correlation test method of FUE is presented, and finally,
the GWR model for discussing the spatial effects of factors affecting FUE is described, followed by the
data sources.

3.1. Calculation of Fertilizer Use Efficiency

Although no essential differences exist between the results of SFA and DEA methods, SFA is more
advantageous for evaluating FUE in agricultural production [5,25]. Therefore, this study uses SFA to
evaluate FUE. The SFA model was first proposed by Battese and Coelli [41], and has been widely used
to evaluate efficiency of the environment, agriculture, industry, and economics. The general form is:

yit = f(xit, t,β) exp(vit − uit) (1)

where y denotes the output; i is the i-th observations (provinces); t refers to the time (year); x denotes
the input vector; β denotes the parameter vector; v refers to the error and v ∼N(0, σ2

v); u represents
technical inefficiency and is independent with v, and u∼ N(0+, σ2

u).
Technical efficiency (TE) is defined as:

TEit = yit/(f(xit,t,β) exp(vit)) = exp(−uit) (2)

In this study, the translog production function is used because it has fewer limitations and can be
regarded as a second-order extension of any logarithmic function, which is expressed as:

lnyit = β0 + β1lnferit + β2lnlait + β3lnarit + β4lnmeit

+β5lnpeit + β6t + β7(lnferit)
2 + β8(lnlait)

2 + β9(lnarit)
2

+β10(lnmeit)
2 + β11

(
lnpeit

)2
+ β12t2 + β13lnferitlnlait

+ β14lnferitlnarit + β15lnferitlnmeit + β16lnferitlnpeit + β17tlnferit

+ β18lnlaitlnarit + β19lnlaitlnmeit + β20lnlaitlnpeit + β21tlnlait

+β22lnaritlnmeit + β23lnaritlnpeit + β24tlnarit + β25lnmeitlnpeit
+β26tlnmeit + β27tlnpeit + vit − uit

(3)

where yit represents agricultural output value; i = 1,2, . . . , 31 and refers to the provinces in China;
t = 1,2, . . . , 18 and is the years from 1997 to 2017, which denotes technical progress for capturing
the movement of the production frontier; ferit represents chemical fertilizer; lait represents labor;
arit represents land input area; meit represents total agricultural mechanical power; and peit is the
pesticide input.
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FUE is measured, by the definition of social science, as the ratio of the optimal required input of
fertilizer to the actual input, and can be symbolized as follows [21]:

FUE =
{
min[θ; f(x, θfer;β) ≥ y]

}
≤ 1 (4)

where f(x, θfer;β) represents the production frontier function; θ represents the ratio of the optimal to
actual fertilizer input; x is the input vector other than fertilizer; and β denotes the parameter vector.
It can be proved that the fertilizer use is effective when the technical efficiency has no loss, that is,
when uit = 0; θitferit can be used instead of ferit to produce the same output [21], and then Equation (3)
can be derived as:

lnyit = β0 + β1ln θitferit + β2lnlait + β3lnarit + β4lnmeit + β5lnpeit + β6t
+β7(ln θitferit)

2 + β8(lnlait)
2 + β9(lnarit)

2 + β10(lnmeit)
2

+β11

(
lnpeit

)2
+ β12t2 + β13ln θitferitlnlait + β14ln θitferitlnarit

+ β15ln θitferitlnmeit + β16ln θitferitlnpeit + β17tlnθitferit

+ β18lnlaitlnarit + β19lnlaitlnmeit + β20lnlaitlnpeit + β21tlnlait

+β22lnaritlnmeit + β23lnaritlnpeit + β24tlnarit + β25lnmeitlnpeit
+β26tlnmeit + β27tlnpeit + vit − uit

(5)

Subtracting Equation (3) from (5), we obtain:

(β 1 + β 13lnlait + β 14lnarit + β 15lnmeit + β 16lnpeit
+β 17t)(ln θitferit − lnferit) + β 7[(ln θit ferit)

2
−

[
(lnferit)

2
]
+ uit

= 0
(6)

According to the definition of FUE, we have:

lnFUEit = ln θit = ln(θitferit/ferit) = ln θitferit − lnferit (7)

FUE can be obtained in Equation (6) as:

FUEit = exp
{(
−λit ±

√
λit

2 − 4β7uit

)
/2β7

}
(8)

where

λit =
∂lnyit

∂lnferit
= β1 + β13lnlait + β 14lnarit + β 15lnmeit + β 16lnpeit + β 17t + 2β 7lnferit (9)

Considering that fertilizer use efficiency is in the range (0, 1), the solution out of the range of
Equation (8) should be abandoned [21].

The spatial heteroscedasticity of the stochastic variance is considered (west, central, or east
China), which can be introduced by different agri-ecological and soil characteristics, climate, etc.
The exponential form of heteroscedasticity is used as:

σ2
vit = exp(δ11westit + δ12centralit + δ13eastit) (10)

where west represents whether the province is located in the western part of China, central indicates
whether the province is located in the central part of China, and east shows whether the province is
located in the eastern part of China. These variables represent the different agricultural production
condition and resource endowment in different provinces, which are out of the farmers’ control and
can greatly affect agricultural production.
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The heteroscedasticity of the efficiency usually is considered to be affected by provincially
specific characteristics. In this paper, the education level (edu), non-agricultural employment (non),
income (inc), and disaster (dis) are assumed to affect the inefficiency variance, which is modeled as

σ2
uit = exp(δ21eduit + δ22nonit + δ23incit + δ24disit) (11)

3.2. Spatial Correlation Test

The spatial correlation should be tested before the GWR model. Two methods have been used to
measure spatial correlation, namely, the global and local spatial correlation tests, mainly measured by
Moran’s I and Geary’s C index. Moran’s I has been more widely used because it is less susceptible to
deviation from the normal distribution than Geary’s C index [42]. Thus, this study employs Moran’s I
to measure the correlation of FUE, and it can be measured as follows:

Moran′s I =
n
∑n

i=1
∑n

j=1 wij

(
yi − y

)(
yj − y

)
∑n

i=1
∑n

j=1 wij
∑n

i=1

(
yi − y

)2 (12)

where yi (yj) denotes the observation of the i-th (j-th) province, and n denotes the number of provinces.
In this study, the FUE of agriculture production is represented by yi, and wij represents the spatial
weight matrix; y is the mean of yi or yj (i, j = 1, 2, . . . , n).

Moran’s I index has a value range of (−1, 1). If Moran’s I > 0, the FUE of agricultural production
has a spatially positive correlation; if Moran’s I < 0, FUE has a spatially negative correlation. If Moran’s
I = 0, there is no spatial correlation between FUE.

Although the global Moran’s I can analyze the spatial autocorrelation of FUE in China as a
whole, it cannot specifically reflect the local spatial dependence of each province. Calculation of the
local Moran’s I can obtain the spatial dependence of regional agglomeration and diffusion, and the
Moran scatter plot. The scatter plot comprises four quadrants, representing different local spatial
agglomeration patterns.

3.3. Geographical Weighted Regression Model

If the spatial correlation test is significant, the spatial model is necessary for further analysis.
The GWR model has been widely used to analyze the spatial differences between different spatial
locations, which was firstly proposed by Brunsdon et al. [43]. The GWR model makes it easy to check
and identify patterns by measuring spatial dependence between variables [36,44]. Because of the
significant provincial differences in natural resources, environments, and economic and agriculture
development in China, fertilizer use intensity and FUE also have significant provincial differences [5],
and the spatial differences in FUE in different provinces may lead to spatial agglomeration and diffusion.
Thus, this paper employs the GWR model to examine the spatial relationship between FUE and its
determinants in agricultural production. Notably, GWR is a spatial regression model [45], and is
expressed as:

yi = β0(µi, υi) +
∑

k

βk(µi, υi)xik + εi (13)

where yi denotes the dependent variable for the i-th province; xik represents the k-th independent
variable; (µi, υi) is the spatial coordinates for province i; βk(µi, υi) represents the k-th regression
coefficient for province i; and εi denotes the error.

To estimate the regression coefficients of each province, the spatial weight matrix must be
calculated. The Gaussian kernel function is generally used to construct weights, which is:

wij = exp

−(dij

b

)2 (14)
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where wij denotes the weight for j-th province in the model estimated for i-th province, dij indicates
the distance between the i-th and j-th province, and b represents the kernel bandwidth. To identify
the optimal bandwidth, the cross-validation method (CV) proposed by Bowman [46] has been widely
used, which is:

CV =
n∑

i=1

[yi − y,i(b)]
2 (15)

where y,i(b) denotes the estimated value of yi. The b is optimal when CV is the minimum. However,
different weighting methods can produce different bandwidths. Akaike information criterion (AIC) is
commonly used as a criterion for determining the optimal bandwidth.

In this study, education level, income, non-agricultural employment, and disasters are used
to explore the spatial impacts on FUE using the GWR model. As aforementioned in the literature
review, farmers’ income is increasing rapidly with the high-speed development of the economy in
China, which is a key factor influencing the FUE of agriculture production. Additionally, with the
acceleration of urbanization and the non-agricultural employment of rural laborers, the non-agricultural
employment ratio increase is one of the leading factors that affects FUE. The natural disaster ratio
in agriculture production may also influence fertilizer use intensity and further FUE. Meanwhile,
with the increase of education level and environmental awareness of farmers, a study on whether
they play a critical role in China’s FUE is worthwhile. The GWR model requires variables with low
correlation, and if a high correlation between the independent variables is observed, an inaccurate
estimation may occur. Therefore, this paper attempts to find out the suitable variables from the main
factors affecting FUE. Multicollinearity should be tested between these variables, including farmers’
age, education, income, non-agricultural employment ratio, land size, disaster ratio, irrigation fee,
fertilizer price, and agriculture subsidy. Serious multicollinearity is observed among these variables.
Farmers’ education level, income, non-agricultural employment ratio, and disaster ratio have a lower
correlation with the variance inflation factor (VIF) test. This paper examines the spatial impacts of
farmers’ education level (edu), income (inc), non-agricultural employment ratio (non), and disaster
ratio (dis) on FUE. The model is:

FUEi = β0(µi, υi) + β1(µi, υi)edui + β2(µi, υi)inci + β3(µi, υi)noni + β4(µi, υi)disi + εi (16)

where (µi, υi) represents the spatial coordinates for province i (i = 1, 2, . . . , 31); Bk (k = 1,2,3,4) represents
the k-th regression coefficient for province i; FUE denotes fertilizer use efficiency; and Ei is the residual.

3.4. Data Sources

This study firstly uses the latest data for 11 years in 31 provinces of China, from 2007 to 2017,
to examine the spatial differences of FUE in agriculture production, and then uses the cross-sectional
data on 2007, 2010, 2014, and 2017 to explore the spatial effect of FUE and its determinants, and further
analyze the changing trends of four variables during the study period.

The variables to calculate FUE, including agricultural output value, fertilizer, labor, pesticide,
planting area, and mechanical inputs, are collected from the China Rural Statistical Yearbook (2008–2018)
(National Bureau of Statistics of China, 2008–2018). The influencing factor data on farmers’ income,
disaster ratio, and education level are obtained from the China Statistical Yearbook (2007, 2010,
2014, and 2017) (National Bureau of Statistics of China 2007, 2010, 2014, and 2017). The data on
non-agricultural employment ratio comes from the China Agricultural Statistical Yearbook (2007, 2010,
2014, and 2017) (National Bureau of Statistics of China 2007, 2010, 2014, and 2017). The data have
been used in many other studies [5,36], and were collected through a three-stage random sampling in
the sample counties, villages, and households in each province, and then the data collected from the
households selected from the samples are estimated to the provincial level data. Further, the data are
tested for reliability by Cronbach’s α, which is 0.923, showing better internal consistency and stability.
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In addition, in order to eliminate inflation, the rural consumer price index has been used to smooth
agricultural output and farmers’ income.

4. Results

4.1. Model Choice

The results of the SFA depended largely on the specific function form; thus, the specific form
of the function should be tested first. The results tested with the likelihood ratio (LR) are shown in
Table 1. As seen from Table 1, at a 5% significance level, the hypothesis that the translog production
function would degenerate into a Cobb–Douglas (C–D) function was rejected. The following two
hypothesis tests indicated that technical progress existed and was not neutral [5]. The fourth hypothesis
was accepted, implying that the variances of the stochastic error in different physical locations of
the provinces had no statistically significant difference, with regard to Eastern, Central and Western
China (Southern and Northern China were also tested, but results were insignificant), while the last
hypothesis showed that there was heteroscedasticity in the inefficiency error. Thus, the translog
production function considering the heteroscedasticity of the inefficiency error and containing time
and interaction with other variables was preferred for estimation.

Table 1. Model tests.

Null Hypothesis Degree of
Freedom (k) LR Test Threshold

χ2
0.05(k) Decision

C-D production function
H0: β7 = β8 = β9 = . . . = β27 = 0 21 72.174 32.670 Reject

No technical progress
H0: β6 = β12 = β17 = β21 = β24 = β26 = β27 = 0 7 780.048 14.067 Reject

Neutral technical progress H0: β17 = β21 = β24 = β26 = β27 = 0 5 116.652 11.070 Reject
Heteroscedastic variance of stochastic errorH0: δ1 = 0 3 6.326 7.045 Accept

Heteroscedastic variance of inefficiency errorH0: δ2 = 0 4 70.245 8.761 Reject

4.2. Estimation Results of SFA

The results in Table 2 show that the fixed effects model was better than the random effects model
using the Hausman test. Therefore, the fixed effects stochastic frontier production function was
estimated using the maximum likelihood method with Stata 12.0 (StataCorp, College Station, USA),
and the results are presented in Table 2.

As shown in Table 2, the coefficients of labor and pesticide were significantly positive at the
significance level of 1%, indicating that they had a positive effect on agricultural production, which was
consistent with Wu [15] and Ma et al. [16]. The coefficient of mechanical power was significantly
negative, but the quadratic coefficient was significantly positive, showing the overuse of mechanical
power, and it had a significant U-shaped impact on agricultural production. The significantly positive
coefficients of time and its quadratic indicate that technical progress existed during the study period,
and its marginal impact was strengthening. Additionally, the coefficients of the interaction of time
with fertilizer, labor, mechanical power, and pesticide were all significant, meaning that the technical
progress was not neutral. The interaction coefficients of fertilizer and mechanical power, fertilizer and
pesticide, and labor and mechanical power were all significantly negative, suggesting that a substitute
relationship exists between them, which is supported by Ma et al. [16]. In addition, it can be seen from
the interaction coefficients that labor and fertilizer, cropland area, and mechanical power, as well as
mechanical power and pesticide, had a significant complementary relationship, which is consistent
with Bai et al. [47].

In addition, farmers’ income and the non-agricultural employment ratio had a significant
positive impact on the inefficiency variance, indicating that farms with higher income and more
non-agricultural employment opportunities are more different in efficiency than farms with lower
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levels in these items. Due to the imbalance of farmers’ income and non-agricultural employment
opportunities, the inefficiency variability may increase. This result is consistent with Loureiro [27],
who found that the main farm operator, who works outside of the farm, has a positive impact on
inefficiency variance, as this means more non-agricultural employment opportunities and income.

Table 2. Estimated results of SFA.

Variable Coefficient Standard Error Variable Coefficient Standard Error

Constant(β0) −0.189 0.151 lnFer*Time(β17) 0.029 ** 0.014
lnFer(β1) 1.506 1.334 lnLa*lnAr(β18) −0.149 0.089
lnLa(β2) 3.269 *** 1.228 lnLa*lnMe(β19) −0.822 *** 0.204
lnAr(β3) −0.017 0.502 lnLa*lnPe(β20) −0.240 0.154
lnMe(β4) −2.787 *** 0.991 lnLa*Time(β21) 0.053 *** 0.014
lnPe(β5) 1.792 *** 0.690 lnAr*lnMe(β22) 0.221 *** 0.080
Time(β6) 0.309 *** 0.059 lnAr*lnPe(β23) −0.038 0.048

lnFer*lnFer(β7) −0.001 0.185 lnAr*Time(β24) 0.006 0.010
lnLa*lnLa(β8) 0.011 0.163 lnMe*lnPe(β25) 0.277 ** 0.120
lnAr*lnAr(β9) −0.021 0.064 lnMe*Time(β26) −0.076 *** 0.013

lnMe*lnMe(β10) 0.416 *** 0.144 lnPe*Time(β27) −0.016 ** 0.007
lnPe*lnPe(β11) 0.001 0.106 Inefficiency variance (σu2)
Time*Time(β12) 0.007 *** 0.001 edu 0.034 0.102
lnFer*lnla(β13) 1.436 *** 0.311 income 0.0003 *** 0.000
lnFer*lnAr(β14) 0.004 0.097 nonagr 3.118 *** 0.954
lnFer*lnMe(β15) −0.582 ** 0.253 disa −0.112 0.592
lnFer*lnPe(β16) −0.542 *** 0.137 constant −3.916 *** 0.855

look likelihood 146.913
Hausman test Chi-square = 64.31 p-value = 0.000
Mean TE 0.816 (min, max) (0.163, 0.983)

Note: ***, **, and * denote the significance levels of 1%, 5%, and 10%, respectively.

The TE can be calculated using Equation (2) according to the SFA model. The mean, minimum,
and maximum TE values are presented in Table 2. The results show that the average TE of agricultural
production was 0.816 in China from 2007–2017, and had a large variability ranging from 0.163 to
0.983. This result indicates that farmers get approximately 81.6% of the potential output by using
the given inputs, and another 18.4% can be increased further under the same inputs and technical
conditions if the technical inefficiency is eliminated. The result is similar to Ma et al. [16] and
Singbo et al. [48]. Ma et al. [16] showed that the average TE of rice production in the Taihu Basin,
China, was 0.84, and Singbo et al. [48] indicated that the average TE of vegetable production was 0.85
in Benin. These results are slightly higher than our results, probably because the heteroscedasticity in
the inefficiency error term was ignored in their studies.

4.3. Results of FUE

Table 3 illustrates the detailed annual results of FUE in each province of China from 2007 to
2017, which is calculated by using Equation (7). As seen in Table 3, the average FUE of agricultural
production was 0.722 during the research period, ranging from 0.018 to 0.989, which shows that
the differences in FUE among the provinces were larger. This result is similar to Wang et al. [49],
who indicated that the average FUE of agricultural production was 0.731 from 1998 to 2012 in China.
FUE indicates that the fertilizer input in agriculture production in China can be decreased by 27.8% to
maintain the agricultural output value with current production technologies and other inputs, and
shows great potential for improved FUE and reductions in fertilizer use in China.
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Table 3. Fertilizer use efficiency in 31 provinces of China.

Province 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Mean

Beijing 0.316 0.323 0.336 0.342 0.353 0.364 0.373 0.386 0.385 0.394 0.102 0.334
Tianjin 0.278 0.273 0.286 0.295 0.316 0.327 0.387 0.421 0.524 0.645 0.084 0.349
Hebei 0.873 0.899 0.907 0.931 0.940 0.906 0.896 0.716 0.535 0.901 0.440 0.813
Shanxi 0.765 0.749 0.947 0.963 0.962 0.926 0.865 0.761 0.566 0.682 0.382 0.779

Inner Mongolia 0.921 0.905 0.831 0.840 0.865 0.890 0.833 0.580 0.388 0.894 0.191 0.740
Liaoning 0.932 0.880 0.784 0.922 0.806 0.746 0.696 0.524 0.480 0.943 0.243 0.723

Jilin 0.899 0.896 0.770 0.650 0.663 0.716 0.439 0.362 0.137 0.822 0.018 0.579
Heilongjiang 0.897 0.718 0.718 0.474 0.682 0.685 0.808 0.578 0.225 0.848 0.101 0.612

Shanghai 0.274 0.276 0.283 0.243 0.247 0.249 0.251 0.252 0.253 0.342 0.062 0.248
Jiangsu 0.863 0.836 0.809 0.778 0.795 0.699 0.463 0.333 0.216 0.896 0.163 0.623

Zhejiang 0.812 0.862 0.810 0.808 0.832 0.577 0.462 0.351 0.280 0.871 0.192 0.623
Anhui 0.910 0.962 0.928 0.960 0.953 0.867 0.786 0.695 0.519 0.954 0.408 0.813
Fujian 0.951 0.901 0.861 0.904 0.874 0.808 0.761 0.620 0.506 0.966 0.331 0.771
Jiangxi 0.950 0.924 0.826 0.645 0.505 0.223 0.643 0.488 0.417 0.964 0.231 0.620

Shandong 0.859 0.942 0.931 0.907 0.871 0.649 0.642 0.532 0.424 0.837 0.304 0.718
Henan 0.962 0.963 0.957 0.974 0.960 0.726 0.846 0.812 0.694 0.891 0.523 0.846
Hubei 0.779 0.825 0.760 0.877 0.911 0.824 0.519 0.283 0.102 0.911 0.125 0.629
Hunan 0.938 0.940 0.899 0.969 0.961 0.933 0.839 0.755 0.671 0.963 0.519 0.853

Guangdong 0.982 0.965 0.926 0.943 0.940 0.915 0.824 0.773 0.676 0.887 0.491 0.847
Guangxi 0.978 0.970 0.914 0.956 0.945 0.896 0.850 0.783 0.731 0.982 0.594 0.873
Hainan 0.835 0.710 0.476 0.584 0.463 0.594 0.306 0.299 0.227 0.918 0.105 0.502

Chongqing 0.985 0.973 0.959 0.976 0.958 0.947 0.846 0.793 0.682 0.931 0.539 0.872
Sichuan 0.973 0.977 0.964 0.979 0.977 0.953 0.912 0.858 0.812 0.978 0.691 0.916
Guizhou 0.989 0.992 0.981 0.988 0.928 0.957 0.920 0.943 0.955 0.962 0.830 0.950
Yunnan 0.980 0.980 0.970 0.954 0.898 0.969 0.937 0.904 0.780 0.967 0.668 0.910

Tibet 0.956 0.901 0.957 0.905 0.947 0.856 0.647 0.676 0.506 0.972 0.564 0.808
Shaanxi 0.969 0.980 0.975 0.979 0.985 0.930 0.916 0.909 0.873 0.907 0.677 0.918
Gansu 0.909 0.874 0.867 0.946 0.970 0.955 0.948 0.836 0.697 0.771 0.566 0.849

Qinghai 0.948 0.952 0.877 0.927 0.970 0.922 0.805 0.736 0.567 0.983 0.494 0.835
Ningxia 0.920 0.943 0.909 0.916 0.930 0.802 0.646 0.429 0.265 0.726 0.186 0.697
Xinjiang 0.951 0.883 0.844 0.944 0.904 0.786 0.673 0.754 0.393 0.564 0.245 0.722

mean 0.857 0.844 0.815 0.822 0.816 0.761 0.701 0.618 0.500 0.847 0.357 0.722

FUE had a declining trend over the research period. The average FUE in China decreased from
0.857 in 2007 to 0.357 in 2017 with an annual decline rate of 4.169%. The provinces of Jilin, Heilongjiang,
Ningxia, Jiangsu, Inner Mongolia, Hubei, and Hainan had the fastest rate of decline. The possible
reason for this finding is that the usage of chemical fertilizer has increased significantly, but the
agricultural output value has not increased much in China, resulting in the overuse of fertilizer and
lower FUE [5,16,33].

Figure 1 presents the spatial distribution of FUE in each province in 2007, 2010, 2014, and 2017.
The FUE shows obvious spatial differences, whereas the relative position of FUE in each province
changed slightly in different years. On the whole, four provinces, including Shaanxi, Sichuan, Guizhou,
and Yunnan, had the highest FUE, with an average FUE of more than 0.910, located in the first echelon.
Three municipalities, including Beijing, Tianjin, and Shanghai, had the lowest FUE, and ranked in
the last echelon. The relative spatial position of the FUE in each province remained basically stable
during the study period. Compared with 2007, the relative position of Gansu has made rapid progress,
whereas the relative positions of Guangdong, Guangxi, and Henan regressed after 2014. The obvious
spatial disequilibrium of FUE among provinces and regions may be related to the wider agricultural
production areas. China’s agricultural production covers different regions, such as tropical, subtropical,
and temperate zones, and the different climatic conditions, resource endowments, planting habits,
and economic developments in different regions have led to significant differences in fertilizer use and
efficiency [5,15,33].
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Figure 1. Fertilizer use efficiency in 2007, 2010, 2014, and 2017 in China.

Figure 1 also presents the spatial agglomeration effect of FUE. The provinces with higher FUE are
mainly distributed in Southwest China, while the provinces with lower FUE were mainly concentrated
in Central and Eastern China, except for the Henan and Guangdong provinces. FUEs have adjacent
spatial agglomeration characteristics of high–high efficiency and low–low efficiency, which may be
related to the similar resource endowments and economic development in neighboring regions. On the
one hand, because of the similarity of resource endowments in adjacent regions, the production
behaviors of farmers in adjacent regions are roughly the same, for example, the convergence of crop
types and the similarity of input factors, leading to a certain spatial dependence of FUE. Moreover,
according to technology diffusion theory, agricultural technology will preferentially spill over to
neighboring areas with similar conditions, leading to spatial correlation. On the other hand, similar
economic development in adjacent areas also affects FUE. Because of the relatively low comparative
income of agricultural production, farmers in the regions with higher economic development tend
to cultivate on a large scale, which is conducive to exerting the scale effect of land and reducing the
usage of chemical fertilizers [12]; by contrast, farmers in regions with low economic development,
such as the Hubei and Jiangxi provinces, tend to transfer labor to non-agricultural industries with
higher income. The reduction in labor will reduce the field management intensity of farmers, but the
increase in fertilizer can make up for the loss of labor to a certain extent, which leads to increased
fertilizer use to replace labor [28,33], resulting in the correlation between FUE and regional economic
development. Therefore, because of the similarity of resource endowments and production behaviors
in the neighboring regions, as well as the spatial spillover effects of production skills, FUE has spatial
convergence and agglomeration in adjacent regions.
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4.4. Spatial Autocorrelation Test of FUE

Based on the qualitative analysis of spatial autocorrelation of FUE in the previous section,
the Moran’s I index will be further used for quantitative analysis. Table 4 shows the results of the
global Moran’s I index for FUE. The Moran’s I index in each year was significantly greater than zero
and showed an increasing trend. Thus, FUE had a significant positive spatial correlation in different
provinces, and the correlation was increasing.

Table 4. Moran’s I index of fertilizer use efficiency in China.

Index/Year 2007 2010 2014 2017

Moran’s I 0.235 0.247 0.333 0.444
p-value 0.003 *** 0.004 *** 0.000 *** 0.000 ***
Z-value 2.700 2.662 3.332 4.349

Note: ***denote the significance levels of 1%.

Furthermore, the Moran scatter plots were used to test the spatial correlation and agglomeration
of each province (Figure 2). There were 24 provinces distributed in the first and third quadrants in
2007; among them, six provinces in the eastern areas, such as Shandong, Fujian, Guangdong, Liaoning,
Jilin, Heilongjiang, two provinces in Central China, including Jiangxi and Hunan, and all of the twelve
provinces in Western China were the H–H agglomeration type. Another four provinces, including
Beijing, Tianjin, Shanghai, and Zhejiang, were the L–L agglomeration type. This result indicates that
FUE in these provinces had a high positive spatial correlation. Three provinces, namely, Shanxi, Hubei,
and Hainan, were the L–H agglomeration type, and four provinces, namely, Hebei, Jiangsu, Anhai,
and Henan, were the H–L agglomeration type, indicating a negative spatial correlation between FUE
in these provinces. Additionally, the quadrant positions of the provinces and autonomous areas in
the scatter plots were relatively stable from 2007 to 2010, but a few quadrant jumps were observed in
2014; three provinces, including Hubei, Ningxia, and Xinjiang, have jumped from the first quadrant
to the second quadrant. Meanwhile, the provinces of Inner Mongolia, Liaoning, and Fujian have
jumped from the fourth quadrant to the third quadrant, and then stabilized from 2014 to 2017. Overall,
FUE had a strong and stable spatial correlation and showed a spatial agglomeration effect. Thus, it is
necessary to analyze the spatial effect of FUE using the GWR model.

4.5. Results of GWR

The GWR model requires variables with a low correlation; thus, an assessment of the
multicollinearity of variables before using the GWR model is required. The VIF was used to test the
multicollinearity of the variables, and the result showed that the VIF was no more than 7.5, showing
no multicollinearity among the variables [36].

Table 5 demonstrates the regression result of factors affecting FUE in 2007, 2010, 2014, and 2017,
which was measured using ArcGIS 10.5. Adjusted R2 values show spatial variation throughout
different provinces; it had the largest value of 0.574 in 2010 and had the smallest value of 0.414 in 2017.
Additionally, the adjusted R2 value demonstrated a downward trend with the increase in years.

Table 5 also illustrates the maximum and minimum coefficients of 31 provinces over four years.
The result shows that farmers’ education level, non-agricultural employment ratio, disaster ratio,
and income had stronger explanatory power on FUE. The farmers’ education level and income had
a negative impact on FUE, and the effect of farmers’ income on FUE was significant at the level
of 1%, whereas the non-agricultural employment ratio had a significant positive impact on FUE,
and the impact of the disaster ratio on FUE was uncertain, which may mainly depend on the degree
of natural disaster. Among the influencing factors, the non-agricultural employment ratio had the
highest impact on FUE compared to the other three factors. Specifically, the smallest coefficient of
education level in 2007 was −0.002, and then it decreased to −0.042 in 2017, with a clear downward
trend. Regarding the non-agricultural employment ratio, the coefficients were 0.109, 0.525, 0.278,
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and 0.601 over the four years, indicating that the impact of the non-agricultural employment ratio on
FUE increased in fluctuation with the increasing years. The impact of the disaster ratio on FUE had
the characteristic of an inverted U-shape. The greatest coefficients of farmers’ income were −0.087,
−0.087, −0.051, and −0.043 over the four years, indicating that farmers’ income had an increasing
impact on FUE.

Figure 2. Moran’s I scatter plot of fertilizer use efficiency in 2007, 2010,2014, and 2017.

Table 5. GWR regression results.

Parameter

Year

2007 2010 2014 2017

Min. Max. Min. Max. Min. Max. Min. Max.

Intercept 1.233719 *** 1.234685 *** 1.066785 *** 1.117555 *** 0.853885 *** 0.855233 *** 1.043769 *** 1.062382 ***
Education level −0.002037 −0.001865 −0.005770 0.002720 0.021067 0.021201 −0.043542 −0.041685
Non-agriculture

employment ratio 0.109457 0.110484 0.525146 *** 0.813680*** 0.277719 0.279154 0.601153** 0.604344 **

Disaster ratio −0.066262 −0.065314 −0.019600 0.131110 0.013681 0.014561 −0.473800 * −0.470500 *
Farmers’ income −0.087294 *** −0.087285 *** −0.095688 *** −0.087224 *** −0.05095 *** −0.05094 *** -0.043317 *** −0.043266 ***

Bandwidth 431.058 45.520 431.058 185.083
AIC −28.619 −22.526 −15.936 −11.376

Adjusted R2 0.571 0.574 0.423 0.414

Note: ***, **, and * denote the significance levels of 1%, 5%, and 10%, respectively.

5. Discussion

5.1. Education Level

Figure 3 reveals the effect of education level on FUE in the 31 provinces. The result shows that the
impact of education level on FUE was negative in the studied years, except for 2014, which is consistent
with Bai et al. [5]. Compared with other factors, the education level has a relatively weak impact
on FUE, which is supported by the results of Wu [15], who found that education had the smallest
effect on FUE. Additionally, the difference of coefficients among neighboring provinces was small,
but the regression coefficients had an obvious spatial difference in the eastern, central, and western
areas, declining from the western to eastern areas in 2007 and 2010 and decreasing from northeastern
to southwestern areas in 2014 and 2017, indicating that the education level had a significant spatial
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dependence on the impact of FUE. Specifically, the most affected provinces were Xinjiang and Tibet
in 2007 and 2010, whereas the less affected provinces were concentrated in eastern and northeastern
areas, such as the Liaoning, Jilin, Heilongjiang, and Zhejiang provinces. The greatest affected provinces
were Heilongjiang and Jilin in 2014 and 2017, and the least affected provinces were concentrated in
southwestern areas, including Tibet and Yunnan. The average regression coefficient of education level
was −0.002, −0.003, 0.021, and −0.043 in 2007, 2010, 2014, and 2017, respectively, indicating that the
influence degree increased by year.

Figure 3. Regression coefficients of education over four years.

Although education level has an insignificant effect on FUE, the regression coefficient shows that
the main impact of education level on FUE is negative, which is consistent with Zhang and Bai [30]
and Bai et al. [5]. On the one hand, a higher education level means a higher awareness of the role
of fertilizer, which may lead to greater reliance on fertilizer as an input [33], and more fertilizer use
may lead to lower FUE. On the other hand, a higher education level means more non-agricultural
employment opportunities and higher agricultural labor opportunity costs; thus, a greater number
of chemical fertilizers will be used to replace the labor force [5], resulting in lower FUE. Education
level had a positive impact on FUE in 2014, which may be correlated with the economic development
situation of China in 2014. In 2014, economic development was not optimistic in China, and farmers
decreased agricultural production inputs, including reducing the fertilizer input, which may have
improved FUE. In addition, education level has a different spatial impact on FUE, which may be caused
by the unbalanced education in China, indicating that the marginal effect of increasing education level
on FUE is different.

Therefore, in order to improve FUE and, at the same time, solve the problem of uneven education,
the government should focus on strengthening training for farmers on fertilizer use techniques, such as
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formula fertilizer, water, and fertilizer integration, etc., stressing the environmental awareness of
fertilizer use and encouraging the reduction of fertilizer use, improving the comparative advantage of
agriculture and reducing the substitution effect of chemical fertilizer on labor.

5.2. Non-Agricultural Employment Ratio

As shown in Figure 4, the non-agricultural employment ratio was the leading factor in improving
FUE in each year. The average regression coefficient of the non-agricultural employment ratio on FUE
in each province shows an N-shaped fluctuation characteristic from 2007 to 2017, with an average value
of 0.424 and a range from 0.109 in 2007 to 0.604 in 2017. In general, the non-agricultural employment
ratio had a great impact on FUE in the southeastern coastal provinces, for example, Fujian, Zhejiang,
and Jiangsu, and had a low impact on the western provinces, such as Xinjiang, Tibet, and Qinghai.
The degree of influence of the non-agricultural employment ratio on FUE shows a decreasing trend
from the southeastern to northwestern provinces in 2007 and 2014, while it shows a decreasing trend
from eastern to western provinces in 2010 and from northeastern to southwestern provinces in 2017.
Generally, the spatial difference of effect in different provinces was very small over the study years,
and the main difference was between the eastern, central, and western provinces, which is consistent
with the degree of economic development and economic situation in China.

Figure 4. Regression coefficients of the non-agricultural employment ratio over four years.

The major mechanisms for the non-agricultural employment ratio to increase FUE rely on three
aspects. As the non-agricultural employment ratio increases and the agricultural production labor
decreases, more machines, fewer and higher quality fertilizers are used to replace labor, which is
conducive to improving FUE. Additionally, increased non-agricultural employment tends to accelerate
land transfer. Subsequently, the scale economy induced by land transfer reduces the use of chemical
fertilizers, improving FUE. In addition, the higher the non-agricultural employment ratio, the higher
the income, the stronger the environmental awareness, and the less dependence on agriculture,
which results in less fertilizer used [12]; thus, it is conducive to the improvement in FUE. Therefore,
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the effect of the non-agricultural employment ratio on FUE in various regions shows a trend consistent
with the economic level of each region in general.

5.3. Disaster

Figure 5 reflects the effect of the disaster ratio on FUE in 31 provinces from 2007 to 2017. The greatest
regression coefficients of the disaster ratio were −0.065, 0.131, 0.015, and −0.471 in 2007, 2010, 2014,
and 2017, respectively. This finding suggests that the effect of the disaster ratio on FUE was unstable.
In 2007, the influence of the disaster ratio was negatively correlated with FUE, indicating that the
decrease in the disaster ratio was conducive to the improvement in FUE. The provinces most affected
by the disaster ratio were mainly located in the northeast of China, for example, Liaoning, Jilin,
and Heilongjiang, and the least affected provinces were Xinjiang, Qinghai, and Tibet. The impact had
an obvious declining trend from the east to the middle to the west.

Figure 5. Regression coefficients of the disaster ratio over four years.

However, in 2010, the influence of the disaster ratio on FUE was complicated. In some provinces,
such as Xinjiang, Tibet, Yunnan, and Hainan, the effect was negative, while in the other provinces,
the effect of the disaster ratio on FUE was positive, and the impact decreased from the northeastern
to the southwestern regions. The opposite impact of the disaster ratio on FUE may be related to the
severity of the disaster. On the one hand, if the disaster is too severe to recover from, farmers will
reduce the excessive fertilizer input to reduce the irreparable losses, which may improve FUE; on the
other hand, if the disaster is not serious, farmers increase fertilizer input to reduce the recoverable
losses [18], decreasing FUE [16]. The impact of the disaster ratio on FUE was positive in 2014, and the
regions most influenced were mainly concentrated in northeastern China, including Heilongjiang,
Jilin, and Liaoning. In 2017, the impact was negative and decreased from the northeastern to the
southwestern regions. Overall, the impact of the disaster ratio on FUE decreased from east to west in
2007 and 2014, and decreased from the northeastern to the southwestern region in 2010 and 2017.
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The different impacts of the disaster ratio on FUE may be related to the different resource
endowments and adaptability of farmers to different severities and types of natural disasters [16].
Therefore, to improve FUE and reduce the disaster ratio to a manageable range, it is necessary to
make the best of resource endowment advantages of various regions while using new technologies to
transform production methods, for example, strengthening infrastructure construction of irrigation
systems in arid and semi-arid areas and flood drainage facilities in southeastern regions that are usually
affected by typhoons, and establishing meteorological disaster forecasting systems to improve the
adaptive capacity to manage climate disasters.

5.4. Farmers’ Income

In Figure 6, the largest regression coefficients of per capita income of farmers were −0.087, −0.087,
−0.051, and −0.043 in 2007, 2010, 2014, and 2017, respectively, indicating that the per capita income of
farmers had a negative impact on FUE, and the degree of influence decreased by year. In addition,
the difference in the spatial effect of income on FUE was tiny among different regions and provinces in
the studied years, except in 2010, which had an influence degree with an obvious increasing trend
from the western to the eastern parts of China.

Figure 6. Regression coefficients of farmers’ income over four years.

The negative effect of income on FUE could be the result of two aspects. First, the increase
in farmers’ income will effectively alleviate their financial constraints, and farmers will invest in
more fertilizer, leading to low efficiency [33]. Provinces in Central and Eastern China are the main
agricultural production areas, and more income may lead to more fertilizer use and less efficiency,
which is also supported by Figure 1. Second, as a developing country, China’s per capita income is not
high. With the increase in income, the demand for food is increasing, which leads to an increase in the
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use of fertilizer in pursuit of food quantity safety, resulting in low FUE. Additionally, according to the
EKC, as farmers’ incomes increase, their environmental awareness increases, and farmers reduce the
overuse of fertilizers or apply higher-quality fertilizers that are easily absorbed or release nutrients
according to the growth cycle of crop, increasing FUE. However, the excessive use of fertilizers still
had a negative impact on FUE, whereas the degree of negative impact declined over time. This is
supported by Ma et al. [16], who found that fake fertilizer with fewer nutrients could not reduce the
yield, indicating that the fertilizer use was excessive. When income increases to the turning point of the
EKC, it will benefit the improvement in FUE, reducing agricultural non-point source pollution [12,50].
Thus, to improve the FUE, in addition to increasing machinery, modern technology, and management
practices, we should also focus on policy integration to increase the per capita income of farmers.

6. Conclusions

By calculating the FUE of agricultural production in 31 provinces from 2007 to 2017 using a
translog stochastic frontier function panel model considering the heteroscedasticity of error, the spatial
effects of FUE were analyzed. Based on the spatial data for 2007, 2010, 2014, and 2017, this study
explored the impacts of education level, the non-agricultural employment ratio, the disaster ratio,
and the per capita income of farmers on FUE, and revealed the spatial correlation using the GWR model.
The result indicates that FUE had a significant spatially positive correlation. The non-agricultural
employment ratio had the highest impact on FUE, and it was the leading factor for increasing FUE in
all provinces in years studied and should, therefore, be applied as the main means of increasing FUE
and achieving the goal of reducing fertilizer use. Farmers’ income negatively affected FUE, and its
degree of influence decreased year by year. The influence of education level on FUE was negative,
but relatively weak. In general, the disaster ratio had a different impact on FUE in different years.
The results have notable implications for policy decisions.

(1) Due to the strong and stable spatial agglomeration effect of FUE in different provinces, policies to
reduce fertilizer use and increase FUE must be formulated considering the spatial effects of provinces.
The Chinese government should formulate reasonable fertilizer reduction and efficiency increase
targets for all provinces, according to local conditions and natural resource endowment characteristics.
For example, in South China, where the livestock industry is concentrated, the government should
encourage the use of farmyard manure to replace chemical fertilizer input; in arid and semi-arid regions,
water−fertilizer integration and even drip fertigation systems should be extended and subsidized [51],
which can reduce fertilizer use and improve FUE. In addition, due to the difference of regional (farmer)
characteristics, the heteroscedasticity of error should be considered when estimating the FUE of
agriculture production, especially in regions (farmers) with high income and a high non-agricultural
employment ratio, which have significant positive impacts on the heteroscedasticity of error.

(2) The influence of education level on FUE was negative, and the influence degree was increasing.
Therefore, the government should strengthen practical technical training for farmers on fertilizer use
while improving the level of education, such as chemical fertilizer use in furrows, water and fertilizer
integration, etc., and emphasize the negative impact of fertilizers on the environment for reducing
fertilizer use. In addition, due to the spatial effect of education on FUE, it was different in different
provinces, and an exploration of educational level improvement and a training mechanism for different
regions with local characteristics is necessary.

(3) The non-agricultural employment ratio was the leading factor increasing FUE, and should
be applied as the main means of increasing FUE and achieving the goal of reducing fertilizer use.
In addition, the degree of influence of the non-agricultural employment ratio had a decreasing trend
from the eastern to western provinces of China. Thus, different agricultural industry development
modes and policy incentive systems for increasing the non-agricultural employment ratio should
be developed for different regions. For the plains areas, such as North China, which is suitable
for large-scale production, the government should increase land transfer, appropriately increase
mechanization subsidies, and promote agricultural production services and large-scale agricultural
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production, which can release labors and increase the non-agricultural employment ratio, and thus
improve FUE [5,15]. Moreover, crop planting patterns should be adjusted according to the respective
natural resource endowments in each region, and the development path of characteristic agriculture
and green agriculture should be followed. For example, in Northeast China, the rotation of corn
and soybeans should be adopted and promoted to improve soil fertilizer and reduce fertilizer use.
In addition, conservation tillage technology should be promoted, which can save labor and fertilizer
use and may thereby improve FUE [18].

(4) The impact of the disaster ratio on FUE was roughly not the same from 2007 to 2017, and the
distribution of the degree of influence also differed. The influence of the disaster ratio on FUE was
mainly related to the type and severity of the disasters [16], such as heavy wind or drought. Therefore,
each region should adopt appropriate adaptive measures according to their resource endowments to
deal with different types of disasters and reduce the disaster severity. The government should increase
financial subsidies for regions or provinces with severe or frequent disasters, improve the agricultural
insurance system, strengthen the development of rural finance, and establish a sound agricultural
infrastructure, for example, irrigation and drainage facilities. Furthermore, the government should
provide a timely forecast and publicize weather and possible disasters, provide farmers with disaster
prevention technology, and guarantee agricultural production.

(5) The per capita income of farmers had a negative impact on FUE, but its degree of impact
decreased by year. Therefore, to improve FUE, all regions or provinces should do everything possible
to improve the per capita income of rural residents, such as improving non-agricultural employment
opportunities, developing e-commerce, accelerating land transfer to promote the scale benefit, etc.
At the same time, environmental awareness should also be strengthened.

The conclusions provide a policy reference for the government to implement fertilizer reduction
and FUE increase in China. However, there are still some limitations to the study. First, the agricultural
resource endowments and crop planting patterns in different provinces are usually different and will
affect the FUE, but this paper does not consider the effect of crop planting patterns on FUE for each
province based on the spatial effect. Second, the study reflects on the FUE of agricultural production on
the whole, ignoring the possible different responses of different crops. Due to the different production
characteristics of crops, e.g., cash crop and food crop, the different production methods and their
responses may lead to different FUE, thus, further studies should pay more attention to the analysis of
specific crops.
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Abbreviations

FUE fertilizer use efficiency
GWR geographical weighted regression
SFA stochastic frontier analysis
NUE nitrogen use efficiency
CS-PNM canopy sensor-based precision N management
DEA data envelopment analysis
EKC environmental Kuznets curve
PGDP per capita gross domestic product
TE technical efficiency
GNP gross national product
OLS ordinary least square
CO2 carbon dioxide
CV cross-validation
AIC Akaike information criterion
VIF variance inflation factor
C-D Cobb–Douglas
LR likelihood ratio
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