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Regulated necrosis is an emerging type of cell death independent of caspase. Recently,
with increasing findings of regulated necrosis in the field of biochemistry and genetics, the
underlying molecular mechanisms and signaling pathways of regulated necrosis are
gradually understood. Nowadays, there are several modes of regulated necrosis that
are tightly related to cancer initiation and development, including necroptosis, ferroptosis,
parthanatos, pyroptosis, and so on. What’s more, accumulating evidence shows that
various compounds can exhibit the anti-cancer effect via inducing regulated necrosis in
cancer cells, which indicates that caspase-independent regulated necrosis pathways are
potential targets in cancer management. In this review, we expand the molecular
mechanisms as well as signaling pathways of multiple modes of regulated necrosis. We
also elaborate on the roles they play in tumorigenesis and discuss how each of the
regulated necrosis pathways could be therapeutically targeted.

Keywords: regulated necrosis, necroptosis, ferroptosis, parthanatos, pyroptosis, cancer therapy
Abbreviations: AIF, apoptosis-inducing factor; AML, acute myeloid leukemia; ATP, adenosine triphosphate; ACSL4, acyl-
CoA synthetase long-chain family member 4; AIDS, Acquired Immune Deficiency Syndrome; BSO, Buthionine sulfoximine;
cIAP1/2, cellular inhibitor of apoptosis protein 1/2; CN-A, Cotylenin A; CRC, colorectal cancer; CYLD, cylindromatosis;
DAMPs, danger-associated molecular patterns; DAPE, 1, 2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine; DHA,
Docosahexaenoic acid; DPP4/8/9, dipeptidyl-peptidase-4/8/9; DPT, Deoxypodophyllotoxin; DSBs, double-strand DNA
breaks; EGFR, epidermal growth factor receptor; FADD, FAS associated death domain; FLIPL, FLICE-like inhibitory
protein long isoform; GPX4, GSH peroxidase 4; GSDMD, gasdermin D; GSH, glutathione; HCC, hepatocellular carcinoma;
HMGB1, high-mobility group box 1; IFN-g, interferon gamma; IL, interleukin; JNK, c-Jun NH2-terminal kinase; Keap1,
Kelch-like ECH-associated protein 1; LPCAT3, lysophosphatidylcholine acyltransferase 3; MIF, migration inhibitory factor;
MLKL, mixed lineage kinase domain-like; NAC, N-acetyl-L-cysteine; NAD+, oxidized nicotinamide adenine dinucleotide;
nano-DDS, nanoparticulate drug delivery systems; NEC1, necrostatin-1; NF-kB, nuclear factor-kB; NOXs, NADPH oxidases;
NRF2, nuclear factor erythroid 2-related factor 2; PAMPs, pathogen-associated molecular patterns; PAR, poly (ADP-ribose);
PARG, PAR glycohydrolase; PARP1, poly (ADP-ribose) polymerase 1; PDAC, pancreatic ductal adenocarcinoma; PEITC,
phenethyl isothiocyanate; PLK1, Polo-like Kinase 1; PUFA, polyunsaturated fatty acid; RCD, regulated cell death; RIPK1/3,
receptor-interacting protein kinase 1/3; ROS, reactive oxygen species; RSL3/5, Ras-selective lethal small molecule 3/5; SAT1,
spermidine/spermine N1-acetyltransferase; SMAC, second mitochondria-derived activator of caspase; STAT3, signal
transducer and activator of transcription 3; TFR1, transferrin receptor 1; TNF, tumor necrosis factor; TRADD, TNF-
receptor-associated death domain; TRAF2/5, TNF receptor-associated factor 2/5; 3-AB, 3-aminobenzamide.
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INTRODUCTION

As is known to all, the balance between cell survival and cell
death determines the homeostasis and growth of organisms.
In other words, cell death is an essential natural process of life.
Historically, there are two forms of cell death: apoptosis,
universally considered to be the regulated and standard cell
death form during growth, homeostasis, and pathogenesis
(1, 2); and necrosis, mostly considered to be the ‘accidental’
cell death and unregulated cell death form that occurs due to
physical or chemical damage (3, 4). Whereas, in the late 1980s,
it was suggested for the first time that necrosis might also be
genetically regulated. Indeed, Laster et al. reported that the
same trigger, tumor necrosis factor (TNF), can cause different
forms of cell lysis, either performing nuclear disintegration
and “boiling” morphology of cytoplasm (the characteristic of
apoptosis) or showing “balloon-like” morphology of
cytoplasm without nuclear disintegration (the characteristic
of necrosis) (5). Gradually, not only has more and more
genetic evidence been confirmed (6–8), but also numerous
chemical inhibitors of necrosis have been discovered (7, 9).
These findings have indicated the existence of multiple types
of regulated cell death (RCD) in addition to caspase-
mediated apoptosis. In this context, all of these cell death
types are collectively referred to as caspase-independent
regulated necrosis.

Cancer is a disease caused by a failure to balance cell
division and cell death (10). Nowadays, cancer is the leading
cause of death worldwide and causes more than twice the
number of deaths in the combination of AIDS (Acquired
Immune Deficiency Syndrome), malaria, and tuberculosis
(11, 12). Based on World Health Organization statistics in
2016, there were estimated 9.0 million out of 41 million people
surveyed died of cancer (13). Although the mortality of dying
from cancer between the ages of 30 and 70 had decreased by
19% lower globally between 2000 and 2016, cancer was still
the primary cause of premature death, especially in high-
income countries (14). Moreover, cancer has caused a
substantial social and economic burden to people and
eventually remarkably suppressed social and economic
development (15, 16). Although this is the case, there is
increasing evidence that a considerable proportion of such
cancer burden could be avoided with early detection, adequate
treatment (17).

Recently, accumulating evidence has demonstrated the
involvement of caspase-independent regulated necrosis in
cancer pathogenesis (18–22). Furthermore, based on the
pathways of caspase-independent regulated necrosis, there are
some compounds that have been reported to treat various
cancers, such as CD47 agonist peptides, geranylated 4-
phenylcoumarins, berberine, and so on (23–25). Therefore,
it is necessary to decipher caspase-independent regulated
necrosis in cancer conditions because it can provide a brand
new view into the pathogenesis of these conditions and
contribute to the development of unprecedented targeted anti-
cancer treatment.
Frontiers in Oncology | www.frontiersin.org 2
OVERVIEW OF CASPASE-INDEPENDENT
REGULATED NECROSIS

According to morphological differences, RCD can be divided
into three distinct forms: apoptosis, autophagy, and regulated
necrosis (26). Apoptosis, a best-defined type of RCD, is mediated
by caspases, members of the cysteine proteases family. And
morphological characteristic of apoptosis includes cell
shrinkage, chromatin condensation, and cell disintegration
into small fragments (27–30). Autophagic cell death,
namely autophagy, is mainly characterized by intracellular
autophagosomes (31). Compared with apoptosis and
autophagy, regulated necrosis induces cell death independent
of caspase activation and lysosome in a genetically controlled
manner (32, 33). And regulated necrosis is defined as a type of
cell death whose morphological characteristic includes the
granulation of cytoplasm and the swelling of organelle and/or
cell (4).

Recently, a growing number of research results have enriched
people’s understanding of the underlying molecular mechanisms
and signaling pathways of caspase-independent regulated
necrosis. With accumulating explorations of various modes of
regulated necrosis in biochemistry and genetics, the basis of their
classification has changed from morphological to more
molecular definitions. There are some proper terms to define
and classify multiple modes of regulated necrosis (4, 34):
necroptosis, ferroptosis, parthanatos, pyroptosis, NETosis, and
among others; each of these terms represents a unique concept of
cell death process respectively. Although NETosis has been
reported to play a role in cancer pathogenesis, NETosis has not
been well associated with targeted anti-cancer therapy and will
not be discussed in this context.
Necroptosis
There was a time when people thought that necrotic cell death
induced by TNF was negatively regulated by caspase (35).
However, this concept has changed by the realization that
receptor-interacting protein kinase 1 (RIPK1) (6, 36) and
RIPK3 (8, 37) are the key kinases for TNF-induced necrotic
cell death (6). Since then, a lot of attention has been attracted to
research on regulated necrosis. As further research proceeds, a
series of relative molecules have been observed, and regulated
necrosis has been proved to be genetically regulated (38, 39).
Nowadays, the term necroptosis defines regulated necrosis that is
dependent on RIPK1, RIPK3, and mixed lineage kinase domain-
like (MLKL) (40). To date, lots of molecules have been identified
as triggers of necroptosis, including (but not limited to) TNF (6),
CD95L (also known as FASL) (6), TNF-related apoptosis-
inducing ligand (6), TNF-related weak inducer of apoptosis
(41), CD3/CD28 (42), DNA-dependent activator of IFN-
regulatory factors (43), and anti-cancer drugs (such as
shikonin) (44). However, it is worth noting that necroptosis is
activated under certain circumstances, for instance, when the
cells are under severe stress, when some apoptotic signaling
pathways are dysfunctional, or when the cells suffer from
February 2021 | Volume 10 | Article 616952
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chemotherapy and they are incapable of performing the
apoptotic process (45). When it comes to the signaling
pathways, TNF-induced necroptosis is the most representative
(Figure 1). Under the stimulation of TNF, TNF receptor 1
facilitates the formation of RIPK1- and TNF-receptor-
associated death domain (TRADD)-dependent complex I,
which is composed of RIPK1, TRADD, cellular inhibitor of
apoptosis protein 1 (cIAP1), cIAP2, TNF receptor-associated
factor 2 (TRAF2) and TRAF5 (4). Then, complex I leads to the
activation of nuclear factor-kB (NF-kB) and resulting
upregulation of FLICE-like inhibitory protein long isoform
(FLIPL) (4). Subsequently, affected by different factors,
complex I facilitates the formation of two corresponding
different forms of complex II TRADD-dependent complex IIa
and RIPK1-dependent complex IIb, respectively (46–48).
Frontiers in Oncology | www.frontiersin.org 3
The deubiquitylation of RIPK1 by cylindromatosis (CYLD) in
complex I results in the dissociation of RIPK1 and the formation
of complex IIa (46). Besides, the second mitochondria-derived
activator of caspase (SMAC) mimetics can representatively cause
the auto-degradation of cIAPs (49). And the depletion of cIAPs
promotes the transition of complex I to complex IIb (47, 50).
Among two forms of complex II, complex IIa consists of RIPK3,
FAS associated death domain (FADD), TRADD and caspase-8,
while complex IIb contains RIPK1, RIPK3, FADD,and caspase-8
(47). Both complex IIa and complex IIb can induce either
apoptosis or necroptosis, which is dependent on whether the
caspase-8 activity is present or not, respectively (4, 48). In
general, when the activity of caspase-8 is present, FLIPL and
caspase-8 combine with each other to form a heterodimer to
cleave RIPK1, RIPK3 and CYLD, which prevents the initiation of
FIGURE 1 | An emerging mode of necroptosis induced by TNF. With the stimulation of tumor necrosis factor (TNF), TNF receptor 1 (TNFR1) recruits TNF-receptor-
associated death domain (TRADD). Then, TRADD attracts receptor-interacting protein kinase 1 (RIPK1), cellular inhibitor of apoptosis protein 1 (cIAP1), cIAP2, TNF
receptor-associated factor 2 (TRAF2) and TRAF5, and all of above components form the complex I. Complex I then activates the nuclear factor-kB (NF-kB) and
promotes the resulting upregulation of FLICE-like inhibitory protein long isoform (FLIPL). In complex I, the E3 ligase activity of cIAPs is responsible for the
polyubiquitination of RIPK1. On the one hand, cylindromatosis (CYLD) removes the polyubiquitins from RIPK1, which leads to the dissociation of RIPK1 from
complex I and the formation of complex IIa. Complex IIa consists of RIPK1, FAS associated death domain (FADD), TRADD, and caspase-8. FLIPL and caspase-8
form a heterodimer to cleave RIPK1, RIPK3 and CYLD, which inhibit the initiation of necroptosis. Then complex IIa leads to caspase-8 homodimerization and
activation, resulting in apoptosis. On the other hand, in the presence of second mitochondria-derived activator of caspase (SMAC) mimetics, cIAPs undergo auto-
degradation. The depletion of cIAPs facilitates the transition of complex I to complex IIb. Complex IIb contains RIPK1, RIPK3, FADD and caspase-8. Similar to
complex IIa, complex IIb leads to apoptosis. However, in the presence of caspase-8 inhibitors, both complex IIa and complex IIb fail to induce apoptosis and turn to
cause necroptosis, during which RIPK1 and RIPK3 combine with each other, auto- and trans-phosphorylate each other, and subsequently integrate in necrosomes
with FADD. Eventually, phosphorylated RIPK3 recruits and phosphorylates mixed lineage kinase domain-like (MLKL), which leads to the oligomerization of activated
MLKL, the translocation of oligomerized MLKL to cell membrane, the permeabilization of MLKL, and consequent necroptosis.
February 2021 | Volume 10 | Article 616952
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necroptosis (51). Then, caspase-8 activates a series of
downstream singling pathways to execute apoptosis (4).
However, under caspase-inhibitory conditions, both of the two
forms of complex II induce necroptosis (4), during which
RIPK1 and RIPK3 combine with each other and auto- and
trans-phosphorylate each other (8, 52). Subsequently,
phosphorylated RIPK1, phosphorylated RIPK3, and FADD
combine to form microfilament-like complexes, namely
necrosomes (50, 53, 54). Then, phosphorylated RIPK3
recruits and phosphorylates MLKL (7, 55). Consequently,
oligomerized MLKL binds to the cell membrane and exhibits
its permeabilization, which results in cell death (7, 8, 52, 54).
Recently, several other events have also been declared to induce
necroptosis. It has been reported that RIPK1 phosphorylates
signal transducer and activator of transcription 3 (STAT3),
which leads to the interaction of STAT3 with gene associated
with retinoic and interferon-induced mortality 19 and
subsequent translocation of STAT3 to the mitochondria to
promote reactive oxygen species (ROS) generation and cell
death (56). What’s more, mitochondria may promote the
translocation of necrosomes to mitochondria-associated
membranes, which probably induces ROS generation and
related necroptosis (57).

Ferroptosis
The term ferroptosis was firstly defined in an experimental
context by using a lethal small molecule, erastin, to treat Ras-
transformed tumor cells in 2012 (58). Nowadays, ferroptosis is
defined as a mode of caspase-independent regulated necrosis that
is dramatically characterized by iron-dependent lipid peroxide
accumulation (4, 59). So far, in addition to erastin, there are
other small molecule ferroptosis inducers, encompassing Ras-
selective lethal small molecule 3 (RSL3), RSL5, buthionine
sulfoximine, and ferroptosis-inducing agents (FINs) [including
DPI family members (DPI2, DPI7, DPI10, DPI12)] (60, 61).
Herein, we use the signaling pathway of ferroptosis induced by
erastin as an example (Figure 2A). Erastin directly inhibits the
cystine/glutamate antiporter (system X−

C), which results in the
lack of intracellular cystine (4). And the depletion of cystine
blocks the reduction of cystine to Cys, which leads to the
corresponding depletion of glutathione (GSH), an essential
intracellular antioxidant synthesized from Cys, and subsequent
dysfunction of GSH peroxidase 4 (GPX4) (4, 59, 62). Thus, GPX4
fails to eliminate lipid peroxides (oxidized polyunsaturated fatty
acid (PUFA)-containing phospholipids) (59, 60). In the meantime,
iron metabolism plays a crucial role in the process of ferroptosis
(59). Circulating ferric iron (Fe3+) is imported by transferrin
receptor 1 (TFR1). Then, Fe3+ is translocated into the
endosome. In the endosome, Fe3+ is reduced to ferrous iron
(Fe2+) by STEAP3. And Fe2+ is released from the endosome into
the cytoplasm, which is mediated by divalent metal transporter 1.
Commonly, excessive cytoplastic iron combines with
lipoxygenases ALOXs and NADPH oxidases (NOXs) to execute
Fenton-type reactions, which is the fundamental source of ROS
needed for ferroptosis (4, 59, 63). Meanwhile, Free PUFA is
esterified into cell membrane phospholipids, which is mainly
catalyzed by acyl-CoA synthetase long-chain family member 4
Frontiers in Oncology | www.frontiersin.org 4
(ACSL4) and lysophosphatidylcholine acyltransferase 3
(LPCAT3). And ROS produced by Fenton-type reactions
oxidizes PUFA-containing phospholipids and converts them to
oxidized PUFA-containing phospholipids (64–67). Under the
simultaneous action of loss-of-function of GPX4 and formation
of oxidized PUFA-containing phospholipids, lipid peroxides
accumulate and facilitate lysosomal membrane permeabilization,
which results in cell death (4, 59). Based on the signaling pathway
mentioned above, these ferroptosis inducers could be mainly
divided into two classes: one is to cause the depletion of GSH by
directly inhibiting system X−

C, and the other is to directly bind to
and inhibit GPX4 without reducing GSH. The former class
includes erastin, buthionine sulfoximine (BSO), DPI2, RSL5, and
the latter class involves RSL3, DPI7, DPI10, DPI12 (60, 61).
Moreover, ferroptosis is the exclusive mode of regulated necrosis
that can be repressed by iron chelators (such as deferoxamine)
(68), lipophilic antioxidants (such as a-tocopherol and
coenzyme Q10) (69, 70), and depletion of PUFA (59). What’s
more, ferroptosis demands the presence of glutamine and
products of glutaminolysis (such as a-ketoglutarate) (71).
Although both glutaminases GLS1 and GLS2 can catalyze
glutaminolysis, only glutaminases GLS2, a transcriptional target
of the tumor suppressor p53, can catalyze the ferroptosis-related
glutaminolysis. And upregulation of GLS2 contributes to p53-
dependent ferroptosis (71, 72). In addition, it has been indicated
that cysteine can also be synthesized from methionine through
transsulfuration in some cells, which leads to these cells’ resistance
to system X−

C inhibitors (73).

Parthanatos
Parthanatos is a kind of regulated necrosis initiated by the
overactivation of poly (ADP-ribose) polymerase (PARP)1 (34).
PARP proteins, such as PARP1, are ADP-ribosyl transferase
enzymes that can catalyze the translocation of ADP-ribose
groups from oxidized nicotinamide adenine dinucleotide
(NAD+) to their target proteins and the synthesis of poly
(ADP-ribose) (PAR) polymer (4, 74). And PARP1 plays a
fundamental role in the repair system of DNA damage and the
maintenance of cellular homeostasis (75). There are some
conditions that can cause DNA damage and activate PARP1,
such as ultraviolet light (76), alkylating agents (76), the Ca2+

signaling pathway (77), posttranslational modifications through
acetylation (77), ROS (74), hypoxia (78), hypoglycemia (78). In
general, when DNA damage is mild, PARP1 is moderately
activated and protects cells through facilitating the repair of
DNA damage (79). However, when DNA damage is too severe,
PARP1 is overactivated, and its overactivation leads to
parthanatos (80, 81).

Typically, the signaling pathway of parthanatos is as follows
(Figure 2B). The overactivation of PARP1 results in the
excessive synthesis of PAR polymer and the depletion of
NAD+ and ensuing adenosine triphosphate (ATP) deficiency,
as NAD+ is the immediate substrate for PAR polymer synthesis.
Then, NAD+ and ATP depletion cause energy depletion, which
brings about cell death (77, 78, 82). However, the depletion of
NAD+ and correlated energy depletion have been reported to be
unnecessary for the initiation of parthanatos (83), which
February 2021 | Volume 10 | Article 616952
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indicates the existence of other mechanisms. For instance, PAR
polymer leads to the depolarization of the mitochondrial outer
membrane and the release of active apoptosis-inducing factor
(AIF) from the mitochondria into the nucleus, which results in
chromatin condensation and large-scale (about 50 kb) DNA
fragmentation, followed by regulated necrosis (74, 77, 78, 80, 84–
88). Besides, it has been reported that cytosolic AIF promotes the
translocation of macrophage migration inhibitory factor (MIF)
from the cytoplasm to the nucleus, and nuclear MIF causes DNA
Frontiers in Oncology | www.frontiersin.org 5
cleavage and consequent cell death (89). Moreover, reportedly
hexokinase 1 can combine with PAR polymer to inhibit
glycolysis, which causes the bioenergetic collapse and
subsequent parthanatos (90, 91). Notably, PAR glycohydrolase
(PARG) can reverse all of the above processes and protect cells
from PAR-mediated parthanatos via catalyzing the degradation
of PAR, and knockout of PARG can markedly increase the
toxicity of PAR and enhance the occurrence of parthanatos
(92, 93).
FIGURE 2 | Emerging modes of other types of regulated necrosis. (A). An emerging mode of ferroptosis induced by erastin. In the case of treatment with erastin,
the cystine/glutamate antiporter (system X−

C) is inhibited, which inhibits the exchange of extracellular cystine and intracellular glutamate across cell membrane and
results in the lack of intracellular cystine. Then the reduction of cystine to Cys is blocked, which leads to the depletion of glutathione (GSH) and subsequent
dysfunction of GSH peroxidase 4 (GPX4). Therefore, GPX4 fails to eliminate lipid peroxides (PL-PUFA-OOH). In the meantime, circulating ferric iron (Fe3+) is imported
by transferrin receptor 1 (TFR1) and then translocated into the endosome. In the endosome, Fe3+ is reduced to ferrous iron (Fe2+) by STEAP3. And then Fe2+ is
released from the endosome into cytoplasm, which is mediated by divalent metal transporter 1 (DMT1). Excess iron is stored in ferritin. And iron is also released from
ferritin mediated by cargo receptor NCOA4. Commonly, excessive cytoplastic iron combines with ALOXs and NADPH oxidases (NOXs) to generate reactive oxygen
species (ROS) by Fenton reaction. Meanwhile, Free polyunsaturated fatty acid (PUFA) is esterified into cell membrane phospholipids, which is mainly catalyzed by
acyl-CoA synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3). Then ROS, which is produced by Fenton-type
reactions, oxidizes PUFA-containing phospholipids (PL-PUFA-OH) and converts them to oxidized PUFA-containing phospholipids (PL-PUFA-OOH). And it has been
suggested that phospholipids containing arachidonic acid (C20:4) or adrenic acid (C22:4) are the key phospholipids in ferroptosis. Under the simultaneous action of
loss-of-function of GPX4 and formation of PL-PUFA-OOH, lipid peroxides accumulate and subsequently facilitate lysosomal membrane permeabilization (LMP), which
results in ferroptosis. (B) An emerging mode of parthanatos. Under the stimulation of severe DNA damage caused by various factors, poly (ADP-ribose) polymerase
1 (PARP1) is overactivated. The overactivation of PARP1 induces excessive transfer of ADP-ribose groups from oxidized nicotinamide adenine dinucleotide (NAD+),
which results in the depletion of NAD+ and adenosine triphosphate (ATP), subsequent energy depletion, and consequent parthanatos. Moreover, poly (ADP-ribose)
(PAR) polymer facilitates the depolarization of mitochondrial outer membrane and the release of active apoptosis-inducing factor (AIF) from mitochondria into nucleus,
which leads to chromatin condensations and DNA fragmentation, followed by parthanatos. In addition, macrophage migration inhibitory factor (MIF) is promoted to
translocate into nucleus by cytosolic AIF and leads to parthanatos via inducing DNA cleavage. Moreover, hexokinase 1 (HK1) can combine with PAR polymer to
inhibit glycolysis, which causes the bioenergetic collapse and parthanatos. (C) An emerging mode of pyroptosis. Under the stimulation of pathogen-associated
molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs), inflammasomes are activated, which leads to the recruitment and activation of
caspase-1. On the one hand, activated caspase-1 induces the maturation and release of interleukin (IL)-1b and IL-18. On the other hand, the activated caspase-1
catalyzes the cleavage of gasdermin D (GSDMD) to promote the formation of N-terminal cleavage product (GSDMD-NT), which targets and binds to the selected
plasma membrane phosphoinositide. Consequently, the interaction of oligomerized GSDMD-NT and plasma membrane phosphoinositide accelerates the formation
of permeability transition pore and the perforation of cell membranes, which results in cell lysis, release of proinflammatory cytokines, and pyroptosis.
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Pyroptosis
Initially, Cookson and Brennan coined the term pyroptosis to
describe a form of caspase-1-dependent RCD partially similar
to apoptosis. This concept was initially introduced as the non-
classical cell death of macrophages in the case of bacterial
infection (94–98). Thus far, a new definition of pyroptosis has
been proposed as a type of regulated necrosis that mainly
depends on the activation of caspase-1 and the cleavage of
gasdermin D (GSDMD) (99). The pathological stimuli that
can trigger pyroptosis include bacterial infection (mainly
induced by Gram-negative bacteria), heart attack, and cancer
progression (34, 97). Morphologically, pyroptosis is
characterized by chromatin condensation, cell swelling, cell
membrane lysis, and the intracellular proinflammatory
molecule release, including interleukin (IL)-1b and IL18 (75,
99–104).

The canonical process of pyroptosis is as follows (Figure 2C).
Firstly, pyroptosis can be triggered by numerous pathogen-
associated molecular patterns (PAMPs) or danger-associated
molecular patterns (DAMPs), such as bacterial peptidoglycans
(105), cryopyrin (106), ATP (106), gout-associated uric acid
crystals (107), viral double-stranded RNA (108), and the
increased intracellular ROS level (109). Secondly, these PAMPs
and DAMPs activate intracellular inflammasomes, which leads
to the recruitment and activation of inflammatory caspase-1 (96,
104). On the one hand, activated caspase-1 induces the
maturation of pro-IL-1b and pro-IL-18, and the release of IL-
1b and IL-18 (110). On the other hand, the activated caspase-1
catalyzes the proteolytic cleavage of GSDMD and promotes the
formation of the N-terminal cleavage product (GSDMD-NT),
which activates the pore-forming activity of GSDMD (102, 111–
115). Commonly, GSDMD is usually auto-inhibited by the
interaction of its C-terminal repressor domain with its N-
terminal pore-forming domain with a loop-like structure (111,
114). Thirdly, GSDMD-NT undergoes oligomerization and
binds to the selected plasma membrane phosphoinositide (or
cardiolipin), which accelerates the formation of permeability
transition pore and the perforation of the cell membrane,
followed by cell lysis and release of proinflammatory cytokines
and cytosolic contents (102, 104, 114–117).

Recent studies have further enriched the content of
pyroptosis. In addition to the most common caspase-1, there
are many other caspases reported to be involved in the general
process of pyroptosis, such as caspase-3, caspase-4, caspase-5,
caspase-8, and caspase-11, relying on corresponding initiating
stimuli respectively (101, 118, 119). Besides GSDMD, recent
evidence has indicated that other members of the gasdermin
family also have the same ability to form permeability transition
pore and induce pyroptosis, including GSDMA, GSDMB,
GSDMC, and GSDME (101, 112, 114, 120). Moreover,
GSDME, the most ancient gasdermin, is specifically cleaved by
caspase-3, and the corresponding cleavage product (GSDME-
NT) induces the release of lactate dehydrogenase and the
perforation of the plasma membrane, which converts
chemotherapy drugs- or TNF-induced apoptosis to pyroptosis
(121, 122).
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THE ROLE OF CASPASE-INDEPENDENT
REGULATED NECROSIS IN CANCER
AND CORRESPONDING
CANCER MANAGEMENT

Traditionally, cancer therapy, based on the signaling pathways of
RCD, mainly relies on the induction of apoptosis. However, the
application of apoptosis inducers in clinical practice shows its
limitations and is far from satisfactory for cancer treatment. It is
well established that cancer cells often exhibit resistance to
therapeutic drugs when treated with apoptosis inducers.
Recently, accumulating evidence has suggested that caspase-
independent regulated necrosis is involved in cancer initiation
and development. Fortunately, a large body of studies on
regulated necrosis in cancer have been implemented and
gradually revealed a series of intrinsic molecular mechanisms
and signaling pathways of regulated necrosis in cancer. Based on
these considerable research results, people have had a brand-new
perspective about regulated necrosis on the initiation and
development of cancer and the development of the anti-cancer
drug, which provides new ideas for cancer therapy and brings the
gospel to cancer patients. Herein, we will introduce the role of
various regulated necrosis modes in the initiation and
development of cancer and their potential therapeutic
value, respectively.

Necroptosis
Necroptosis plays a vital role in cancer, while controversy remains.

Most studies have shown that the induction of necroptosis in
cancer cells has a potential anti-cancer effect (123). For instance,
induction of necroptosis could be an approach to overcome cell
death resistance against caspase-8-deficient colorectal cancer
(CRC) in a xenograft mouse model (124). Interestingly, it has
been reported necroptotic factors are significantly reduced in
numerous cancers, such as RIPK1 in neck squamous cell
carcinoma (125), RIPK3 in leukemia, breast cancer, melanoma,
and CRC (126, 127), and MLKL in gastric cancer, cervical
squamous cell carcinoma, pancreatic adenocarcinoma and
ovarian cancer (33, 128, 129), and CYLD in chronic
lymphocytic leukemia, malignant melanoma and non-Hodgkin
lymphoma (130–132). Overall, the downregulation of these
crucial factors might prevent cancer cells from undergoing
necroptosis pathways and promote the survival of cancer cells,
which indicates that these necroptosis-related factors would be
the barrier to cancer development. What’s more, necroptosis
plays a role in cancer immunosurveillance. Recent research has
suggested that RIPK3 promotes anti-cancer immune response by
regulating natural killer T cells, as RIPK3(−/−) mice show
reduced natural killer T cell responses to metastatic tumor
cells (133).

However, necroptosis is a double-edged sword in cancer. The
necroptosis-recruited immune inflammatory cells can enhance
cancer development via inducing angiogenesis, promoting
cancer cell proliferation, and accelerating cancer metastasis
(134, 135). What’s more, tumor cells can induce endothelial
cells to undergo necroptosis, which promotes tumor cells to pass
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the endothelial barrier from blood vessels and consequently
enhances metastasis (136). And these metastasis-promoting
effect can be reduced by necrostatin-1 (NEC1), a potent
inhibitor of necroptosis through blocking the RIPK1 activity,
or endothelial-cell-specific deletion of RIPK3 (136). Accordingly,
both loss of RIPK3 in the tumor microenvironment and loss of
the kinase activity in RIPK1 have been reported to reduce tumor
nodules in the lung in murine B16.F10 primary melanoma
tumors, which further implies that RIPK3 and RIPK1 are
fundamental for cancer growth and metastasis (137).
Moreover, necroptosis contributes to establishing the immune-
suppressive tumor microenvironment. It has been observed that
RIPK1 and RIPK3 highly express in pancreatic ductal
adenocarcinoma (PDAC), and they will be further upregulated
through treatment with gemcitabine, a chemotherapy drug
(138). Further studies have shown that the necroptosis-induced
chemokine attractant CXCL1recruits inhibitory macrophages in
a RIPK1/RIPK3-dependent manner, which induces the immune-
suppressive microenvironment and promotes PDAC
progression. And this signaling pathway can be reversed by the
deletion of RIPK3 (138). In addition, necroptosis plays a role in
promoting cancer growth. RIPK1, RIPK3, and MLKL have been
found to promote tumorigenesis in several breast cancer cell
lines, and the suppression of these factors can significantly
weaken the tumorigenicity and sensitize therapeutic response
to radiotherapy (139). And higher phosphorylation level of
MLKL leads to shorter survival and poorer prognosis in
patients with colon and esophageal cancer (139).

Taken together, caspase-8-mediated necroptosis has
exhibited a dual effect, either suppressing cancer or promoting
cancer, on cancer development in different tissues. Therefore, it
is believed that the underlying mechanism of necroptosis in
different tissues is not yet fully clear. One explanation is that this
seemingly paradoxical phenomenon may be interpreted by the
different objects of necroptosis. When necroptosis directly causes
cancer cells to die, caspase-8-mediated necroptosis often exhibits
anti-cancer effect. And when necroptosis triggers inflammatory
response in cancer microenvironment, it often exhibits cancer-
promoting effects (140).

Notably, despite the Janus-faced intrinsic mechanisms of
necroptosis in cancer cells, only natural products and reagents
that mainly trigger necroptosis have been generated thus far
(Table 1).

Natural Products
Shikonin, an effective naphthoquinone derivative extracted from
Lithospermum erythrorhizon, has been indicated to induce
necroptosis in some kind of cancers (141, 156). Shikonin
exhibited its anti-tumor effect in osteosarcoma, glioma,
pancreatic cancer, triple-negative breast cancer cells, and
multiple myeloma in a dose- and time-dependent manner
(141–145). It was suggested that shikonin might increase the
expression level of RIPK1 in shikonin-treated glioma cells and
the expression level of RIPK1/RIPK3 in shikonin-treated
osteosarcoma cells and pancreatic cancer cells, which resulted
in the initiation of necroptosis and could be rescued by NEC1
(141, 142, 144) What’s more, it has been reported that the anti-
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cancer drug resistance of drug-sensitive cancer cell lines,
including MCF-7 and HEK293, can be overcome, and these
cells show the typical morphologic characteristics of necroptosis
when treated with shikonin (44).

Artemisinin, an effective sesquiterpene lactone extracted from
Artemisia annua L., has been commonly used to treat malaria
(145), and recently it has been discovered to exhibit anti-tumor
effect (146). It has been revealed that the artemisinin analog
artesunate effectively induces necroptosis in RT4 schwannoma
cells and human primary schwannoma cells by facilitating MLKL
phosphorylation (146).

Neoalbaconol, a kind of natural compound extracted from
Albatrellus confluens, has been reported to induce necroptosis in
some cancer cell lines, such as human nasopharyngeal carcinoma
cell lines (C666-1 and HK1), human breast cancer cell line
(MX-1), and human gastric cancer cell line (AGS-EBV). In
detail, Neoalbaconol may downregulate E3 ubiquitin ligases,
cIAP1/2, and TRAFs to eliminate the ubiquitination of RIPK1
and thus induce necroptosis. Besides, Neoalbaconol may
also cause necroptosis by boosting RIPK3-mediated ROS
production (147).

Staurosporine, an alkaloid extracted from the bacterium
Streptomyces staurosporeus (157), has been commonly used to
induce apoptosis in vitro in some cell types. Recently,
Staurosporine has been found to trigger RIPK1- and MLKL-
dependent necroptosis in leukemia under caspase-compromised
conditions (148, 158).

Resibufogenin, a kind of bioactive compound of
bufadienolide family extracted from toad venom (159), has
been reported to upregulate RIPK3 to induce necroptosis in
CRC cells in vivo, which significantly suppresses the growth and
metastasis of CRC (149).

Reagents
In addition to the above natural products, there are many
necroptosis-targeted reagents found in cancer treatment
research. Reportedly, the small-molecule SMAC mimetic BV6
could antagonize cIAPs to overcome apoptosis resistance by
inducing necroptosis upon caspase inhibition and sensitize acute
myeloid leukemia (AML) cells to cytarabine-induced cell death,
which could be significantly inhibited by NEC1 or MLKL
inhibitor necrosulfonamide but not by caspases inhibitor Z-
VAD-FMK (150). Moreover, BV6 alone or combined with
TNFa can exhibit the same anti-cancer effect in pancreatic
cancer cells (151). Besides, 1, 2-Diarachidonoyl-sn-glycero-3-
phosphoethanolamine (DAPE) has been found to induce RIPK1-
dependent necroptosis in malignant pleural mesothelioma cells,
mainly in NCI-H28 cell line, in a concentration (1–100 mM)-
dependent manner (152). What’s more, BI2536, an inhibitor of
serine/threonine protein kinase Polo-like Kinase 1 (PLK1), has
been reported to induce necroptosis in androgen-insensitive
prostate cancer cells (LNCaP-AI) to overcome castration-
resistance (153). Moreover, a multicentric parallel phase II trial
has demonstrated that intravenous BI2536 has limited anti-
cancer activity in five different cancer types, including
advanced head and neck, breast, and ovarian cancer, soft tissue
sarcoma and melanoma (160). In addition, intravenous BI2536
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also exhibited modest efficacy in relapsed non-small-cell lung
cancer in an open-label, randomized phase II clinical trial (161),
while BI2536 failed to inhibit the progression of relapsed small-
cell lung cancer (162). And, the intravenous method of
administration of BI2536 has been proven to be safe (163).
Also, Compound C (also called dorsomorphin) has been found
to induce glioma cell death via necroptosis (152). Last but not
least, aurora kinase inhibitor CCT137690 can indirectly activate
RIPK1, RIPK3, and MLKL in PDAC in vivo, which leads to the
initiation of necroptosis and the inhibition of cancer growth and
metastasis. Indeed, aurora kinase A directly inhibits the
activation of RIPK1/RIPK3 and indirectly inhibits the
activation of RIPK3/MLKL (155). Nowadays, alisertib is a
representative oral aurora kinase A inhibitor. Further clinical
research has shown that only a small number of patients with
advanced prostate cancer, breast cancer, or small-cell lung cancer
can benefit from alisertib monotherapy (164, 165). In addition to
single-agent alisertib, a combination of alisertib with irinotecan
and temozolomide has shown promising response and
progression-free survival rates in patients with relapsed or
refractory neuroblastoma (166). And a combination of alisertib
with cytarabine and idarubicin also exhibits the same anti-cancer
efficacy (167).

Overall, the induction of necroptosis in cancer cells by natural
products and reagents is considered a promising therapeutic
strategy, especially for apoptosis resistance. Further researches
show that these natural products and reagents, which induce
necroptosis, have been verified to be not injurious to normal cells
(168). However, the underlying mechanism of induced
necroptosis still needs further exploration of necroptosis-
targeted and cancer-guiding drug research.

Ferroptosis
A considerable body of evidence has shown that ferroptosis links
to cancer pathogenesis and anti-cancer therapy (169). Overall, the
induction of ferroptosis inhibits the initiation and development of
cancer. However, various regulators of ferroptosis, including some
Frontiers in Oncology | www.frontiersin.org 8
newly identified molecules and genes, exhibit different cancer
progression influences. Some of them inhibit ferroptosis to
protect cancer cells from cell death, such as GPX4, nuclear
factor erythroid 2-related factor 2 (NRF2), CD44v. Others,
including BAP1 and iron, induce ferroptosis to kill cancer cells.
In addition, p53 and spermidine/spermine N1-acetyltransferase
(SAT1) exhibit both cancer-promoting and anti-cancer effects.
Because of their differences in their roles, we will explain from the
perspective of each molecule in this section.

It has been reported that some kinds of cancers strongly
depend on the GPX4 during their pathogenesis and
development, such as renal cell carcinomas, diffuse large B cell
lymphomas, pancreatic cancer, prostate cancer, melanoma, and a
subset of triple-negative breast cancer cell lines with glutamine
deficiency (60). And a gene expression analysis has revealed that
the expression of GPX4 is higher in malignant pancreatic
samples than that in normal tissue samples (170). Besides, a
high-mesenchymal cell state has been considered as an essential
factor of resistance to chemotherapy drugs in various cancer cell
lines, such as the epithelial-mesenchymal transition in epithelial-
derived carcinomas, treatment-induced neuroendocrine
transition in prostate cancer, and TGFb-mediated therapy-
resistance in melanoma (171). Further study has demonstrated
that this therapy-resistant cell state depends on the activity of
GPX4 and inhibition of ferroptosis (171). Therefore, GPX4 is a
promising target for drug development to eliminate
chemotherapy resistance. The recognition that GPX4 plays
such an important role in ferroptosis in various cancers
suggests that the inhibitors of GPX4 could point the way for
cancer treatment.

NRF2 has been found to prevent hepatocellular carcinoma
(HCC) cells from ferroptosis and enhance their therapeutic
resistance to erastin, sorafenib, and buthionine sulfoximine. It
has been revealed that the interaction of p62 and Kelch-like
ECH-associated protein 1 (Keap1) prevents the degradation of
NRF2 and promotes its nuclear accumulation (172).
Accumulation of NRF2 inhibits ferroptosis by promoting
TABLE 1 | Summary of compounds targeting necroptosis in related cancers.

Classification Compounds Cancers/Cancer cell lines Mechanisms References

Natural
products

Shikonin Osteosarcoma; Pancreatic cancer; Triple negative breast cancer cells RIPK1/RIPK3↑ (141–143)
Glioma RIPK1↑ (144)
Multiple myeloma; Drug-sensitive cancer cell lines (MCF-7 and HEK293) Unknown (44, 145)

Artesunate RT4 schwannoma cells; Human primary schwannoma cells MLKL↑ (146)
Neoalbaconol Human nasopharyngeal carcinoma cell lines (C666-1 and HK1); Human breast cancer

cell line (MX-1); Human gastric cancer cell line (AGS-EBV)
E3 ubiquitin ligases/
cIAP1/cIAP2/TRAFs↓
RIPK1↑
ROS/RIPK3↑

(147)

Staurosporine Leukemia U937 cell line RIPK1/MLKL↑ (148)
Resibufogenin Colorectal cancer cells RIPK3↑ (149)

Reagents SMAC mimetic BV6 Acute myeloid leukemia cells; Pancreatic cancer cells cIAP1/2↓
RIPK1/MLKL↑

(150, 151)

DAPE Malignant pleural mesothelioma cells (NCI-H28) RIPK1↑ (152)
BI2536 Androgen-insensitive prostate cancer cells (LNCaP-AI) PLK1↓ (153)
Dorsomorphin Glioma Unknown (154)
Aurora kinase
inhibitor CCT137690

Pancreatic ductal adenocarcinoma cancer RIPK1/RIPK3/MLKL↑ (155)
Febru
ary 2021 | Volume 10 | A
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ROS, reactive oxygen species; SMAC, second mitochondrial-derived activator of caspases; DAPE, 1,2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine; PLK1, Polo-like Kinase 1.
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the expression of antioxidant proteins, such as quinone
oxidoreductase 1 and heme oxygenase-1, and ferritin heavy
chain 1, while knockdown of NRF2 enhances ferroptosis in
HCC cells (172).

CD44v, a cancer stem cell marker, is associated with tumor
progression (173). Further studies have revealed that CD44v can
stabilize system X−

C, which increases GSH levels and inhibits
ferroptosis in cancer cells. Therefore, CD44v expression is
responsible for the tumor progression and chemoresistance of
various types of cancer cells, including pancreatic cancer, bladder
cancer, colon cancer, and head and neck squamous cell
carcinoma. Thus, CD44v may be a biomarker for cancers that
can be effectively treated with system X−

C inhibitors (173).
BAP1hasbeen found toplay an essential role in cancer cell death

via inducing ferroptosis. BAP1 is a tumor suppressor gene that
encodes a nuclear deubiquitinating enzyme, which regulates
various cellular signaling pathways in nucleosomes by eliminating
histone 2A ubiquitination (174). Recently, it has been found that
BAP1 can inhibit the expressionof SLC7A11 to suppress the uptake
of cystine by deubiquitinating histone 2A on the SLC7A11
promoter (175). Furthermore, both xenograft model studies and
human population studies have confirmed that BAP1 shows its
anti-cancer effect by inducing ferroptosis (175).

Iron metabolism plays an essential role in the process of
ferroptosis as mentioned above. Interestingly, recent studies have
indicated that iron is vital for maintaining the tumor
microenvironment due to its prooxidant activity, and its
homeostasis is perturbed in various types of cancers, such as
bladder cancer, breast cancer, CRC, and so on (176–178). It has
been found that iron metabolism disorder is associated with
tumorigenesis and tumor growth, for instance, the level of dietary
iron is proportional to the formation and development of tumor
xenografts in rats (177). However, different results have been
observed in the population regarding the relationship between the
level of iron and tumorigenesis (176). Some results indicate that the
level of iron and tumorigenesis are positively correlated in breast
cancer, but negatively correlated results and irrelevant results are
also observed (177).What’s more, a recent study has indicated that
breast cancer stem cells are more sensitive to ferroptosis than non-
cancer stem cells because cancer stem cells have a higher level of
TFR1 and iron (179).

The activation of p53, a common tumor suppressor gene, can
trigger ferroptosis in certain cancer cells (180), as p53 directly
inhibits the transcription of SLC7A11, an essential component of
the system X−

C (181). P533KR, an acetylation-defective mutant, is
a representative case because it specifically inhibits the
expression of SLC7A11 rather than other target genes related
to anti-proliferative and pro-apoptotic activity (180). Moreover,
p533KR fails to trigger cell-cycle arrest, senescence, and apoptosis
but retains the tumor suppression function by inducing
ferroptosis in vivo (180, 182). However, p53 has been found to
limit erastin-induced ferroptosis and protect CRC cells from cell
death in a transcription-independent manner (183). Further
research has indicated that p53 blocks dipeptidyl-peptidase-4
(DPP4) activity by inducing nuclear accumulation of DPP4,
which inhibits DPP4-dependent lipid peroxidation and
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consequent ferroptosis (183). What’s more, it has been
reported that the African-restricted polymorphism S47 in the
p53 (p53S47) could also inhibit ferroptosis via protecting the
transcription of SLC7A11 from p53 (184). In addition to direct
regulation by p53, p53-targeted downstream SAT1 has also been
found to be involved in the regulation of ferroptosis (185). SAT1
could inhibit p53-mediated ferroptosis on the condition when it
is knocked out (185). However, when the level of SAT1 elevates,
it markedly sensitizes cells to ferroptosis (185).

Accumulating evidence has shown that pharmacological
regulation of ferroptosis is feasible for anti-cancer therapy.
However, most newly identified regulators of ferroptosis
mentioned above have not been targeted yet. Here we list
numerous cancer treatment types that have been studied,
including natural products, various reagents, chemotherapy
drugs, immunotherapy, and nanomedicine (Table 2).

Natural Products
Baicalein, a natural compound extracted from Scutellaria
baicalensis and Scutellaria lateriflora, has been found to inhibit
the proliferation of BxPC-3 human pancreatic cancer cells, which
is mediated by its interaction with the lipoxygenase pathway
(186). However, recent researches have revealed that baicalein
can inhibit erastin-induced ferroptosis in PANC1 and BxPc3
cells, and RSL3-induced ferroptosis in acute lymphoblastic
leukemia cells via suppressing various lipid peroxidation
pathways (203, 204). What’s more, baicalein may activate the
Keap1/NRF2 pathway mentioned above to inhibit ferroptosis in
HCC cells (172). Therefore, whether baicalein can be used for
anti-cancer therapy still needs further research.

Artenimol and artesunate are two kinds of derivatives of
artemisinin. Artenimol shows anti-cancer activity partly in a
ferroptotic cell death manner but not necroptotic in CCRF-CEM
leukemia cells (187). Similarly, artesunate-induced ferroptosis
has been observed only in K-Ras-mutant PDAC cell lines, but
not in human pancreatic ductal epithelial cells or wild-type K-
Ras PDAC cells, which indicates that the anti-cancer activity of
artesunate depends on K-Ras mutation (188). However, the
artesunate has also been found to induce ferroptosis in
leukemia cells in a Ras-independent manner (205). Moreover,
a rigorous randomized, double-blind clinical trial has suggested
that oral artesunate has anti-cancer properties in CRC (206).
Furthermore, both oral artesunate and self-administered vaginal
artesunate inserts have proven to be safe methods of
administration in two independent phase I clinical trials (207,
208).What’s more, artenimol, artesunate, and other eight
artemisinin derivatives have been identified to kill cancer cells
via altering iron-related gene mRNA levels (187).

Cotylenin A (CN-A), a kind of fucicoccan-diterpene glycoside
isolated from the metabolites of a Cladosporium sp., has been
considered as a differentiation inducer of myeloid leukemia cell,
and the anti-cancer substance in certain cancer cell lines (189,
209). In addition, phenethyl isothiocyanate (PEITC) has been
identified as a dietary anti-cancer compound by inducing ROS
production (210). Interestingly, it has been demonstrated that a
combined treatment of CN-A and PEITC synergistically
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promotes the generation of ROS and consequently inhibits cell
growth of MIAPaCa-2, PANC-1, and gemcitabine-resistant
PANC-1 cell lines, while synthetic CN-A derivatives, including
ISIR-005, ISIR-042, and fusicoccin J (a CN-A-related natural
product), cannot exhibit this synergy with PEITC (189). And this
anti-cancer effect can be inhibited by various antioxidants, such
as N-acetylcysteine, ferroptosis inhibitors (such as ferrostatin-1),
and the lysosomal iron chelator (such as deferoxamine), but not
by apoptosis inhibitors or necroptosis inhibitors, which indicates
that CN-A plus PEITC induces ferroptosis in pancreatic cancer
cells (189).
Frontiers in Oncology | www.frontiersin.org 10
Reagents
As the pioneer of the discovery of ferroptosis, erastin has been
reported to trigger ferroptosis in various cancer cells, which
mainly depends on the direct regulation of system X−

C and
indirect regulation of GPX4 (190, 191). Indeed, leukemia cells
and renal cancer cells are more sensitive to erastin than other
cancer cells (60). And two members of the mammalian family of
mitogen-activated protein kinase, including c-Jun NH2-terminal
kinase (JNK) and p38, have been identified to be essential for
erastin-induced ferroptosis in leukemia cells (205). Moreover,
the anti-cancer activity of erastin has been determined to not
TABLE 2 | Summary of compounds targeting ferroptosis in related cancers.

Classification Compounds Cancers/Cancer cell lines Mechanisms References

Natural
products

Baicalein Human pancreatic cancer cells (BxPC-3) Interaction with
lipoxygenase
pathway

(186)

Artenimol Leukemia cells (CCRF-CEM) Altering iron-related
gene mRNA levels

(187)

Artesunate K-Ras-mutant PDAC cell lines; Leukemia cells Altering iron-related
gene mRNA levels

(187, 188)

Cotylenin A plus PEITC Pancreatic cancer cell lines (MIAPaCa-2, PANC-1,
gemcitabine-resistant PANC-1)

ROS↑ (189)

Reagents Erastin and its derivative (piperazine erastin) Leukemia; Renal cancer cells; N-Ras-mutant HT1080
human fibrosarcoma cells; K-Ras-mutant Calu-1 non-small
cell lung cancer cells

system X−
C↓

GPX4↓
(60, 190,
191)

RSL3 Subcutaneous xenograft tumors derived from BJeLR cells GPX4↓ (60)
BSO BJ cells with oncogenic Ras mutation GSH/GPX4↓

ROS↑
(60)

Sulfasalazine Triple-negative breast cancer cells; BJeLR cancer cells;
HT1080 cancer cells

System X−
C↓

GPX4↓
(192)

APR246 Esophageal cancer GSH↓ (193)
Lanperisone Lung cancer ROS↑ (194)
Salinomycin Breast cancer stem cells Iron in lysosomes↑

Iron in cytoplasm↓
Ferritin degradation↑
ROS↑

(179)

Statin drugs HT-1080 fibrosarcoma cells coenzyme Q10/tRNA
isopentenylation/
GPX4↓

(171)

Chemotherapy
drugs

Sorafenib Advanced hepatocellular carcinoma; Primary kidney cancer;
Radioactive iodine-resistant advanced thyroid carcinoma

System X−
C↓ (195, 196)

Immunotherapy Nivolumab Human fibrosarcoma cell line (HT-1080); Melanoma cell line
(A375)

Activated CD8+ T
cell↑
IFN-g↑
System X−

C (SLC3A2
and SLC7A11) ↓

(197)

Nanomedicine Combination of MCN, DOX and FeCO Breast cancer Local DOX↑ (198)
Co-assembled nanosystem of photosensitizer
Ce6 and erastin

Oral tongue squamous cell carcinoma Intracellular O2↑
ROS↑

(199)

Combination of iron-oxide nanocarriers with
cisplatin(IV) prodrugs

Human ovarian carcinoma (A2780) Cisplatin(IV) prodrugs
in tumor cell
cytoplasm↑
ROS↑

(200)

Combination of erastin, rapamycin and iron-
abundant ferritin

Breast cancer GPX4↓
ferritin degradation↑

(201)

Combination of Fe3O4 magnetic nanoparticles,
leukocyte membranes, TGF-b inhibitor and PD-1
antibody

Non-small cell lung cancer H2O2 level↑
Fenton reaction↑
Microenvironment
immunogenicity↑

(202)
February
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PDAC, pancreatic ductal adenocarcinoma; PEITC, phenethyl isothiocyanate; ROS, reactive oxygen species; GPX4, glutathione peroxidase 4; RSL3, Ras-selective lethal small molecule 3;
BSO, buthionine sulfoximine; GSH, glutathione; IFN-g, interferon gamma; MCN, mesoporous carbon nanoparticles; DOX, doxorubicin; FeCO, triiron dodecacarbonyl; Ce6, chlorin e6;
TGF-b, transforming growth factor-b; PD-1, programmed cell death protein-1.
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correlate with Ras mutation (60). However, another study has
found that erastin selectively targets certain genotypes in Ras-
mutant cell lines, including H-Ras-mutant-engineered cells, N-
Ras-mutant HT1080 human fibrosarcoma cells, and K-Ras-
mutant Calu-1 non-small-cell lung cancer cells (190). In
addition to working alone, erastin has been reported to
promote the anti-cancer effect of common chemotherapy
drugs, including temozolomide, cisplatin, cytarabine, and
doxorubicin in certain cancer cells (205, 211, 212).
Furthermore, derivatives of erastin, such as piperazine erastin,
have been found to have the same anti-cancer ability in tumor
xenograft models (60).

Compared with erastin, RSL3 has been found to reprograms
cancer cell metabolism by regulating GPX4 without modulating
system X−

C, but its downstream signaling pathways are similar to
those of erastin (213). And overexpression of GPX4 results in
ferroptotic resistance to RSL3 (213). Indeed, RSL3 can prevent
tumor growth of subcutaneous xenograft tumors derived from
BJeLR cells (60). And it has been demonstrated that RSL3 can
enhance the sensitivity of resistant cancer cells to chemotherapeutic
drugs in certain types of cancers (214).

Buthionine sulfoximine (BSO), an irreversible inhibitor of
g-glutamyl cysteine synthetase, has been found to reduce GPX4
activity by inhibiting GSH synthesis, and subsequently increase
ROS levels, which selectively triggers ferroptosis in BJ cells with
oncogenic Ras mutation (60). Furthermore, in a phase I clinical
trial, BSO infusion has been utilized to enhance the activity of
melphalan in patients with high-risk neuroblastoma, as
melphalan resistance is induced by increased cellular GSH.
And the result of the trial has indicated that BSO may
promote the treatment effect of melphalan (215).

Sulfasalazine, an efficient drug for various chronic
inflammations, has been found to share the same ability and
downstream signaling as erastin and BSO in triple-negative
breast cancer cells, BJeLR cancer cells, and HT1080 cancer cells
(58, 192, 195). As a common anti-inflammatory drug, oral
sulfasalazine has been tested to overcome cisplatin resistance in
patients with advanced gastric cancer, but no objective response
has been observed (216).

APR246, a mutant-p53 reactivator, has been found to directly
bind to and deplete GSH in oesophageal cancer cells, which
results in the accumulation of lipid peroxidation and consequent
ferroptosis (193).

Lanperisone, which is commonly used as a muscle relaxant,
can induce ROS generation to selectively kill K-Ras-mutant
mouse embryonic fibroblasts via ferroptosis signaling in vitro,
and it can also inhibit tumor growth through inducing
ferroptosis in a K-Ras-driven mouse model of lung cancer in
vivo (194, 217). However, the underlying mechanism of
lanperisone-induced ROS generation is still unknown.

Salinomycin, a selective agent against cancer stem cells, is a
potent ferroptosis inducer in breast cancer stem cells in vivo and
in vitro (179). Salinomycin promotes the accumulation of iron in
lysosomes, which subsequently leads to cytoplasmic depletion of
iron, degradation of ferritin, and further iron loading in
lysosomes. As a result, iron loading causes the excessive
Frontiers in Oncology | www.frontiersin.org 11
generation of ROS via Fenton reaction, which enhances
lysosomal membrane permeabilization and ferroptosis.

Statin drugs, inhibitors of HMG CoA reductase, may
selectively induce ferroptosis in high-mesenchymal state cancer
cells (171). Recent studies have revealed that statin drugs
sensitize cells to ferroptosis by causing the depletion of
coenzyme Q10 and the inhibition of downstream tRNA
isopentenylation, which is required for the biosynthesis of
GPX4 (70, 171, 218). However, a prospective cohort study has
indicated that the use of statin drugs is not associated with the
risk of prostate cancer (219). This result may be interpreted by
the fact that prostate cancer is not in a high-mesenchymal state.

Chemotherapy Drugs
The multikinase inhibitor sorafenib has been reported to directly
inhibit System X−

C rather than GPX4 activity to induce
ferroptosis in advanced HCC similar to erastin (196). In
addition to advanced HCC, sorafenib can also cause ferroptosis
via blocking system X−

C in other cancers, including primary
kidney cancer and radioactive iodine-resistant advanced
thyroid carcinoma (195). The cytotoxic effects of sorafenib can
be blocked by pharmacological inhibitors (ferrostatin-1), iron
chelator deferoxamine, and NRF2 (172, 196).

Immunotherapy
Ferroptosis is involved in cancer immunotherapy, for instance,
during nivolumab therapy (197). It has been demonstrated that
immunotherapy-induced activated CD8+ T cells could
downregulate the expression of two essential subunits of
system X−

C, SLC3A2, and SLC7A11, to inhibit the uptake of
cystine via releasing interferon-gamma (IFN-g), which promotes
the accumulation of lipid peroxidation and consequent
ferroptosis in cancer cells. In turn, artificial depletion of cystine
or cysteine by cyst(e)inase can enhance the anti-cancer efficiency
of cancer immunotherapy in mice models. Furthermore, system
X−
C expression has been found to be negatively associated with

activated CD8+ T cell level, IFN-g expression, and patient
outcome in cancer patients.

Nanomedicine
In addition to the above various compounds, a brand-new mode
of drug delivery, called nanoparticulate drug delivery system
(nano-DDS), has been created to achieve more efficient anti-
cancer treatment. Thus far, the application of nano-DDS in
ferroptosis has been studied much more than that in other
modes of regulated necrosis, so we mainly explain nano-DDS
in this section. Compared with traditional administration
methods, nano-DDS has the advantages of promoted drug
availability and targeting ability, high solubility, and enhanced
permeability and retention effect, especially in early-stage solid
tumors (220, 221). There are two representative nanomedicines
that have been applied in cancer management in clinical practice,
involving Doxil and Abraxane (222). And recent studies have
shown that ferroptosis-driven nanotherapeutics is a promising
anti-cancer therapy strategy because the combination of
ferroptosis with bionanotechnology can facilitate targeted
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delivery of ferroptosis inducers or promoters into cancer cells
(220). Indeed, the combination of various therapeutic agents or
approaches has been demonstrated to significantly promote anti-
cancer efficiency in clinical cancer treatments (223). So far, there
are numerous cancer therapeutic combos based on ferroptosis
and nano-DDS that have been proven to kill cancer cells in
animal models, and these therapeutic combos and their
corresponding pharmacological effects are briefly listed in
Table 2. A more detailed and comprehensive introduction to
ferroptosis-driven nanotherapeutics for cancer treatment has
been well reviewed (220).

In short, the anti-cancer therapy based on ferroptosis has
been well studied until now, and drug researches based on
ferroptosis pathways and regulatory factors have gradually
emerged. Nowadays, most therapies achieve the effect of
eliminating cancer cells by directly or indirectly inhibiting
GPX4 and system X−

C or promoting ROS generation. These
drug studies provide new ideas for cancer treatment, but there
is still a long way to go before patients’ actual benefit. Therefore,
it is necessary to continue to study related mechanisms and drugs
to develop drugs with better curative effects, fewer side effects,
and more resistance to drug resistance.

Parthanatos
The role of PARP1 in cancer management seems to be much more
associated with its ability to mediate DNA repair than its ability to
induce parthanatos. Indeed, inhibition of PARP1 can induce
accumulation of unrepaired single-strand DNA breaks, which
results in the collapse of replication forks and consequent
generation of double-strand DNA breaks (DSBs) (224–226).
Normally, BRCA1 and BRCA2, downstream molecules of
PARP1, can execute homologous recombination, an error-free
form of DSB repair, which leads to the repair of DSBs (227).
When inhibitions of PARP1 and BRCA1/2 coexist, the persistent
DNA breaks can induce cell cycle arrest and apoptosis (227).
Indeed, increased expression of PARP1 has been found to be a
strategy for tumor cells treated by radiation and chemotherapeutic
drugs to avoid apoptosis induced byDNAdamage, which results in
apoptosis resistance (228, 229). In addition, as angiogenesis is a
fundamental characteristic of carcinogenesis, it has been found that
PARP1 regulates tumor-related gene expression involved in
angiogenesis in skin carcinogenesis, such as HIF-1 a, Pecam-1,
andOPN (230).AndPARP1 inhibition-induced inhibitionofHIF-1
amight contribute to cancer cell death (231).

Parthanatos is also considered a promising strategy to kill
cancer cells when it comes to cancer treatment. Interestingly,
unlike other modes of regulated necrosis, both inducers and
Frontiers in Oncology | www.frontiersin.org 12
inhibitors of parthanatos have been found to play an important
role in the management of cancer. One of the views is that
inhibitors of parthanatos, such as PARP1 inhibitors, could
facilitate cancer cell death via inhibiting the DNA repair
needed for cell survival, while other ideas are that inducers of
parthanatos could directly promote cancer cell death (74)
(Table 3).

PARP1 Inhibitors
It has been found that inhibition of PARP1 and deficiency of
BRCA1/2 synergistically kill BRCA1/2-deficient breast and other
cancer cells via inhibiting DNA repair (224, 225, 234). So
far, numerous PARP1 inhibitors have been experimentally
utilized for BRCA1/2-deficient cancer treatment, such as
3-aminobenzamide (3-AB), 1,5-dihydroxyisoquinoline (ISQ),
8-hydroxy-2-methylquinazol inone (NU1025) or 1-
(4-dimethylaminomethyl-phenyl)-8,9-dihydro-7H-2,7,9a-benzo
[cd]azulen-6-one (AG14361) (224). What’s more, as it is
mentioned above that PARP1 can protect tumor cells from
radiation and chemotherapeutic drugs, PARP1 inhibitors, such
as 3-AB, GPI 15427, and nicotinamide, have been utilized as
radiosensitizers or chemosensitizer (235–237).

PARP1 Inducers
Deoxypodophyllotoxin (DPT), a natural chemical, has been
reported to induce parthanatos in glioma cell lines and mice
models of xenograft glioma, which can be inhibited by
antioxidant N-acetyl-L-cysteine (NAC) and PARP1 inhibitor
3AB. DPT-treated glioma cells demonstrated characteristics
that fully comply with those of parthanatos, with the
upregulation of PARP1, cytoplasmic accumulation of PAR
polymer, and nuclear translocation of AIF (232).

Sepantronium bromide (YM155), a survivin suppressant, has
been found to induce parthanatos in cultured KYSE410 and
KYSE150 esophageal carcinoma cell lines in vitro and relatedly
inhibit esophageal squamous-cell carcinoma growth in mice,
which can be abrogated by genetic knockdown of PARP1 or
AIF (233). Furthermore, sepantronium bromide in combination
with rituximab has been suggested to have anti-cancer efficacy in
patients with relapsed aggressive B-cell non-Hodgkin
lymphoma (238).

In general, researches regarding the signaling pathway of
parthanatos are more biased towards neurodegenerative lesions
and nerve damage after ischemia. So far, the molecule
mechanism of parthanatos has not been widely studied in
cancer treatment, and we need to pay more attention to this
field for further anti-cancer treatment.
TABLE 3 | Summary of compounds targeting parthanatos in related cancers.

Classification Compounds Cancers/Cancer cell lines Mechanisms References

PARP1 inhibitors 3-AB; ISQ; NU1025; AG14361 BRCA1/2-deficient breast cancer cells Inhibiting DNA repair (224)
PARP1 inducers DPT Glioma cell lines PARP-1/PAR polymer/AIF↑ (232)

YM155 Esophageal carcinoma cell lines (KYSE410 and KYSE150) PARP-1/AIF↑ (233)
February 2021 | Volume 10 | A
3-AB, 3-aminobenzamide; ISQ, 1,5-dihydroxyisoquinoline; NU1025, 8-hydroxy-2-methylquinazolinone; AG14361, 1-(4-dimethylaminomethyl-phenyl)-8,9-dihydro-7H-2,7,9a-benzo[cd]
azulen-6-one; DPT, deoxypodophyllotoxin; PARP, poly (ADP-ribose) polymerase; PAR, poly (ADP-ribose); AIF, apoptosis-inducing factor; YM155, sepantronium bromide.
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Pyroptosis
Pyroptosis is mainly observed in macrophages as a vital part of
the antibacterial immune defense, but accumulating evidence
shows that pyroptosis plays an essential role in some cancer
without any bacterial infection, and it is promising to develop an
anti-cancer treatment based on pyroptosis (95). Overall, the
induction of pyroptosis inhibits the initiation and development
of cancer. As GSDMD and GSDME are crucial executors of
pyroptosis, here we explain the anti-cancer effects of pyroptosis
by introducing the role of GSDMD and GSDME.

GSDMD exerts an essential but distinct role in different
cancers, and it exhibits anti-cancer effects. It has been observed
thatGSDMDisdownregulated ingastric cancer,which significantly
promotes the proliferation of cancer cells in vivo and in vitro by
enhancing extracellular signal-regulated kinase, STAT3, and
phosphatidylinositol 3 kinase/protein kinase B signaling
pathways, and regulating cell cycle-related proteins (239).

GSDME, another pyroptosis inducer, also has a substantial
impact on the regulation of carcinogenesis. As mentioned earlier,
activation of GSDME by caspase-3 can induce pyroptosis. In fact,
the expression of GSDME is commonly inhibited due to DNA
methyltransferase in most cancer cells (101, 240). Indeed,
cleavage of GSDME by caspase-3 has been observed only in
Frontiers in Oncology | www.frontiersin.org 13
certain GSDME-expressing cancer cells, such as SH-SY5Y
neuroblastoma cells and MeWo cells (101). Furthermore,
experiments concerning human primary cells and GSDME−/−

mice indicate that GSDME and its cleavage play a fundamental
role in the pyroptosis induced by chemotherapy drugs (101).

Correspondingly, numerous agents and drugs yielding
antitumor effects by (at least partially) inducing the activation
of GSDMD or GSDME have been proposed hitherto. Moreover,
the combination of pyroptosis-targeted therapy and
conventional remedies seems to enhance therapeutic efficacy,
reduce off-target toxicity, and promote patient outcomes
(Table 4).

Natural Products
Galangin and anthocyanin, two members of natural pigment
belonging to flavonoids, have been reported to promote the cell
death of glioblastoma cells and oral squamous cell carcinoma
cells, respectively (241, 242). Further studies have revealed that
galangin can induce pyroptosis through the caspase-3/GSDME
pathway in glioblastoma cells (241). And anthocyanin can kill
cancer cells and inhibit the migration and invasion abilities of
these cells by inducing pyroptosis, which can be suppressed by
caspase-1 inhibitors (242). What’s more, the activated pyroptosis
TABLE 4 | Summary of compounds targeting pyroptosis in related cancers.

Classification Compounds Cancers/Cancer cell lines Mechanisms References

Natural products Galangin Glioblastoma Caspase-3/GSDME↑ (241)
Anthocyanin Oral squamous cell carcinoma NLRP3/Caspase-1/IL-1b↑ (242)
Dioscin Osteosarcoma Caspase-3/GSDME↑ (243)
Berberine Hepatocellular carcinoma Caspase-1/GSDMD↑ (244)
Huaier extract Non-small-cell lung cancer Caspase-1/GSDMD↑ (245)
Curcumin Malignant mesothelioma cells Caspase-1/GSDMD/

HMGB1↑
(246)

Reagents L61H10 Lung cancer cell lines Caspase-3/GSDME↑ (247)
Metformin Esophageal squamous cell carcinoma miR497/PELP1/GSDMD↑ (248)
DHA Breast cancer cells Caspase-1/GSDMD/

HMGB1↑
(249)

DPP8/9 inhibitors Human acute myeloid leukemia cell lines Caspase-1/GSDMD↑ (250)
a-NETA Epithelial ovarian cancer cells Caspase-4/GSDMD↑ (251)
Iron Melanoma ROS/GSDME↑ (252)

Chemotherapy drugs Doxorubicin; Actinomycin-D; Bleomycin;
Topotecan;
Paclitaxel; Cisplatin

Lung cancer Caspase-3/GSDME↑ (101, 253)

Doxorubicin Melanoma Caspase-3/GSDME↑ (254)
5-fluorouracil Gastric cancer cell lines (SGC-7901 and

MKN-45)
Caspase-3/GSDME↑ (255)

Topotecan; Etoposide; Cisplatin SH-SY5Y neuroblastoma cells; MeWo cells Caspase-3/GSDME↑ (101)
Lobaplatin Colon cancer cells Caspase-3/GSDME↑

ROS/JNK/Bax/cytochrome
c↑

(256)

Chemo sensitizer BI2536 Esophageal squamous cell carcinoma cells Caspase-3/GSDME↑
Inhibiting DNA damage
repair

(257)

Molecular targeted
therapy

Trametinib; Erlotinib; Ceritinib K-Ras-, EGFR-, or ALK-driven lung cancer Caspase-3/GSDME↑ (258)
Combinations of BRAF inhibitors and MEK
inhibitors

Melanoma GSDME/HMGB1↑ (259)

Nanomedicine As2O3-NPs Hepatocellular carcinoma GSDME↑ (260)
Fe
bruary 2021 | Volume 10 | A
GSDME, gasdermin E; NLRP3, nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3; IL, interleukin; GSDMD, gasdermin D; HMGB1, high-mobility group
box 1; PELP1, proline-, glutamic acid- and leucine-rich protein-1; DHA, docosahexaenoic acid; DPP8/9, dipeptidyl peptidase 8/9; a-NETA, 2-(anaphthoyl)ethyltrimethylammonium iodide;
ROS, reactive oxygen species; JNK, c-Jun NH2-terminal kinase; Bax, BCL-2 associated X; EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; BRAF, B-Raf
proto-oncogene; MEK, mitogen-activated protein kinase; As2O3-NPs, arsenic trioxide nanoparticles.
rticle 616952

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lou et al. Cancer Therapy Targets Regulated Necrosis
by anthocyanin is associated with increased expression of
NLRP3, caspase-1, and IL-1b (242).

Dioscin, a steroidal saponin extracted from Polygonatum
zanlanscianense, Dioscorea nipponica Makino, and Dioscorea
zingiberensis Wright, has been observed to inhibit the growth
of osteosarcoma cells in vivo and in vitro by inducing pyroptosis
(243). Furthermore, mechanistic studies have revealed that
dioscin can induce pyroptosis through the caspase-3/GSDME
pathway (243).

Berberine, a natural isoquinoline alkaloid with antimicrobial
ability, has been found to inhibit the growth, migration, and
invasion capacity of HCC in vivo and in vitro by inducing
caspase-1/GSDMD-dependent pyroptosis (244).

Huaier extract, a type of fungus from Trametes robiniophila,
has shown its anti-cancer ability in non-small-cell lung cancer
through caspase-1/GSDMD-dependent pyroptosis in vitro and
in vivo (245). Moreover, a multicentre, randomised clinical trial
has indicated that patients with HCC after curative liver
resection may benefit a lot from oral Huaier granule (261).

Curcumin, a natural polyphenol extracted from Turmeric, has
the potential to activate caspase-1 to induce pyroptosis and
simultaneously increase the release of proinflammatory factor,
high-mobility group box 1 (HMGB1), without processing of pro-
IL-1b and pro-IL-18 in malignant mesothelioma cells, which can
be inhibited by caspase-1 inhibitor or antioxidant NAC (246).
Interestingly, curcumin-induced pyroptosis protects these cancer
cells against inflammation (246).

Reagents
Compound L61H10, a heterocyclic ketone derivative, has been
observed to kill cancer cells without apparent side effects in lung
cancer cell lines andmice bearing lung cancer xenografts by inducing
pyroptosis (247). Further studies have revealed that compound
L61H10 can arrest the cell cycle in the G2/M phase and switch
apoptosis to caspase-3/GSDME-mediated pyroptosis (247).

Metformin is a common hypoglycemic agent, and it has been
found to induce GSDMD-mediated pyroptosis in esophageal
squamous cell carcinoma, a kind of chemo-refractory cancer, in
vivo and in vitro (248). Further studies have revealed that
metformin can trigger pyroptosis via targeting miR497/
Proline-, glutamic acid- and leucine-rich protein-1 axis, which
indicates a new therapeutic target for treating esophageal
squamous cell carcinoma (248). In addition, a phase 1 dose-
finding study of metformin has demonstrated that metformin
can promote the efficiency of chemoradiotherapy and elevate the
rates of overall survival and progression-free survival in patients
with locally advanced head and neck squamous cell carcinoma
(262). Similarly, metformin plays an active anti-cancer effect in
breast cancer patients (263).

Docosahexaenoic acid (DHA), a kind of omega-3 fatty acid, has
been considered a pyroptosis inducer in breast cancer cells (249).
Mechanistic studies have revealed thatDHA can inhibit the growth
of breast cancer cells and kill cancer cells by increasing caspase-1,
activatingGSDMD,promoting the secretion of IL-1b, translocating
HMGB1 towards the cytoplasm, and forming membrane pore
(249). And all of these events can be inhibited by caspase-1
inhibitors (249).
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Dipeptidyl peptidase 8 and dipeptidyl peptidase 9 (DPP8/9)
are two members of the dipeptidyl peptidase IV family (250).
Recent studies have found that small-molecule DPP8/9
inhibitors can induce pyroptosis in human AML cell lines and
primary AML samples by activating the caspase-1/GSDMD
pathway, which represents a brand-new therapeutic strategy
for AML (250).

2-(anaphthoyl)ethyltrimethylammonium iodide (a-NETA), a
reversible choline acetylcholine transferase inhibitor, has been
reported to induce pyroptosis and inhibit the proliferation of
epithelial ovarian cancer cells in vitro and in vivo via activating
caspase-4/GSDMD pathway (251).

In addition to inducing ferroptosis, iron, an essential factor in
ROS modulation, can enhance melanoma cell pyroptosis by
promoting the cleavage of GSDME, which suggests that iron
may be a promising sensitizer for ROS-induced melanoma
treatment (252).

Chemotherapy Drugs
There are a variety of chemotherapy drugs that have been found to
induce pyroptosis by activatingGSDME in lung cancer cells, gastric
cancer cells, melanoma cell lines, SH-SY5Y neuroblastoma cells,
and MeWo cells, including doxorubicin, actinomycin-D,
bleomycin, 5-fluorouracil, cisplatin, paclitaxel, topotecan, and
etoposide (101, 253–255). What’s more, lobaplatin has been
observed to induce pyroptosis in colon cancer cells in a dose-
dependent manner by the caspase-3/GSDME pathway (256).
Further studies have revealed that lobaplatin induces the elevation
of ROS and the phosphorylation of JNK, and activated JNK recruits
BCL-2 associated X to the mitochondria and subsequently
promotes the release of cytochrome c from the mitochondria to
cytosol, being followed by the activation of caspase-3/GSDME-
depended pyroptosis (256).

In addition, some chemosensitizers that significantly promote
the anti-cancer efficacy of chemotherapy drugs have been
implicated in pyroptosis. Recent studies have shown that, in
addition to inducing necroptosis in prostate cancer cells, the
PLK1 inhibitor BI2536 sensitizes esophageal squamous cell
carcinoma cells to cisplatin in vivo and in vitro by inhibiting
the DNA damage repair and promoting pyroptosis (257).
Mechanistic studies have demonstrated that the combination
of BI2536 and cisplatin can significantly increase the expression
of caspase-3 and ensuing cleaved GSDME, which results in the
pyroptosis of esophageal squamous cell carcinoma cells (257).
What’s more, the silence of GSDME in certain cancer cell types is
relieved by decitabine, a kind of DNA methyltransferase
inhibitor, which leads to the elevated expression of GSDME
and the enhanced sensitivity of GSDME-silenced cancer cells to
doxorubicin (101).

Molecular Targeted Therapy
Molecular targeted therapy has been applied in cancer
management for several decades. Recent studies have revealed
that pyroptosis of cancer cells can be induced by molecular
targeted agents specifically targeting K-Ras-, epidermal growth
factor receptor (EGFR)- or anaplastic lymphoma kinase-driven
lung cancer (258). Upon molecular targeted agents, such as
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trametinib, erlotinib, and ceritinib, caspase-3 can be activated
and subsequently cleave GSDME, followed by the permeabilized
cytoplasmic membrane and pyroptosis induction (258).
Similarly, a combination of B-Raf proto-oncogene inhibitors
and mitogen-activated protein kinase inhibitors also can
induce pyroptosis in melanoma cells by increasing the cleavage
of GSDME and the release of HMGB1 (259).

Nanomedicine
In addition to the above various compounds, nano-DDS has also
been applied to induce pyroptosis in cancer cells, which is similar to
its application in ferroptosis mentioned above. Arsenic trioxide
nanoparticles have been reported to cause higher expression of
GSDME-NT and stronger pyroptosis than free arsenic trioxide in
HCC and mice bearing Huh7 xenografts (260).

In general, pyroptosis is emerging as a potent therapeutic
target for various cancers. So far, numerous agents have been
declared to be associated with pyroptosis in various cancer cells.
And all of these agents collectively regulate the cleavage of
GSDMD or GSDME, inducing pyroptosis in different
pathways. However, there are still a few clinical trials on anti-
cancer drugs related to pyroptosis. More efforts still need to be
spared in the anti-cancer drug development based on pyroptosis.
CONCLUSION AND PERSPECTIVES

Over several decades, there are four main types of regulated
necrosis that have been well studied and involved in various
cancers, including necroptosis, ferroptosis, parthanatos, and
pyroptosis. So far, several precise cell death signaling pathways
have been revealed, and numerous crucial regulators have been
found, which form a complex regulatory network in regulated
necrosis. Accordingly, diverse novel agents and drugs have been
generated to target related molecules and signaling pathways.
Interestingly, many existing agents or drugs, for instance,
metformin, also exert their anti-cancer effects through or
partially through regulating these various modes of regulated
necrosis. Specifically, necroptosis-targeted compounds can
bypass the signal pathways of apoptosis and induce cell death,
which exhibits a remarkable effect on overcoming apoptosis
resistance. Furthermore, the development of anti-cancer drugs
based on ferroptosis is the most in-depth, while the research of
pyroptosis-targeted pharmacotherapy has just emerged recently.
Notably, some of these drugs even simultaneously induce two
types of regulated necrosis, which indicates the great promise for
further research into the crosstalk of different types of regulated
necrosis to develop better anti-cancer strategies. What’s more,
the clinical transformation of drugs is also an important part of
Frontiers in Oncology | www.frontiersin.org 15
drug development. At present, oral and intravenous injection are
commonly used methods of administration and are considered
safe. And many clinical trials have evaluated the safety and anti-
cancer efficacy of some novel drugs, but studies involving the
metabolism and targeting effects of these drugs in vivo are
still lacking.

Even though the precise underlying mechanisms have not
been entirely revealed due to their high complexity, the
numerous findings accumulated in the last decade point to
clear directions for the next decade. Currently, increasing
newly identified regulators of regulated necrosis have been
found, such as CXCL1, NRF2, BAP1, and BRCA1/2. However,
these molecules have not been well studied in anti-cancer
therapy. Thus, it is very promising to develop new anti-cancer
drugs by targeting these molecules. Moreover, nano-DDS, an
emerging administration method that can greatly enhance the
drug targeting property and anti-cancer efficacy, has only been
applied to deliver ferroptosis and pyroptosis inducers. Given its
superior advantages of targeting ability and permeability effect, it
is meaningful to extend this technique to other modes of
regulated necrosis. Taken together, the current limitations of
cancer therapy are obvious side effects, low targeting efficacy,
anti-apoptotic resistance, etc. Therefore, we highlight the
necessity to reveal the more detailed signal pathways of
regulated necrosis induced by various anti-cancer compounds,
and metabolism and targeting effects of these compounds in vivo.
And these anti-cancer compounds still need further clinical trials
for extrapolating to the clinical application. On this basis, the use
of regulated necrosis targeted therapy can reduce the burden of
drug management, improve the therapeutic effect, and reduce
off-target side reactions and drug resistance. A better
understanding of regulated necrosis in cancer will pave a broad
road for developing new anti-cancer therapies.
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227. Peralta-Leal A, Rodrıǵuez-Vargas JM, Aguilar-Quesada R, Rodrıǵuez MI,
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