
CURRENT PERSPECTIVES

Immunotherapies for Aging-Related Neurodegenerative
Diseases—Emerging Perspectives and New Targets

Somin Kwon1
& Michiyo Iba1 & Changyoun Kim1

& Eliezer Masliah1,2

# This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Abstract
Neurological disorders such as Alzheimer’s disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD), and
vascular dementia (VCID) have no disease-modifying treatments to date and now constitute a dementia crisis that affects 5
million in the USA and over 50 million worldwide. The most common pathological hallmark of these age-related neurodegen-
erative diseases is the accumulation of specific proteins, including amyloid beta (Aβ), tau, α-synuclein (α-syn), TAR DNA-
binding protein 43 (TDP43), and repeat-associated non-ATG (RAN) peptides, in the intra- and extracellular spaces of selected
brain regions.Whereas it remains controversial whether these accumulations are pathogenic or merely a byproduct of disease, the
majority of therapeutic research has focused on clearing protein aggregates. Immunotherapies have garnered particular attention
for their ability to target specific protein strains and conformations as well as promote clearance. Immunotherapies can also be
neuroprotective: by neutralizing extracellular protein aggregates, they reduce spread, synaptic damage, and neuroinflammation.
This review will briefly examine the current state of research in immunotherapies against the 3 most commonly targeted proteins
for age-related neurodegenerative disease: Aβ, tau, and α-syn. The discussion will then turn to combinatorial strategies that
enhance the effects of immunotherapy against aggregating protein, followed by new potential targets of immunotherapy such as
aging-related processes.
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Introduction

Age-related neurodegenerative diseases such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), dementia with Lewy
bodies (DLB), frontotemporal dementia (FTD), and vascular
dementia (VCID) are being increasingly classified as major
public health concerns [1]. In a rapidly aging world in which
people over the age of 65 are projected to make up a fifth of
the population in just 30 years, the prevalence of these

dementias is expected to triple within that same time frame
[1–3]. However, there are few, if any, disease-modifying treat-
ments to date, making dementia one of the costliest conditions
to society [4].

In response to this public health emergency, many coun-
tries have established national plans to address the lack of
therapies [5, 6]. In 2011, the USA enacted the National
Alzheimer’s Project Act (NAPA) (Public Law 111-375). The
Act defines “Alzheimer’s” as Alzheimer’s disease and related
dementias (ADRDs), including FTD, DLB, and VCID. The
law calls for the development of treatments to prevent or slow
the rate of AD progression by the year 2025, as well as a
national plan and coordination among international bodies to
fight AD on a global scale [7]. As a result, funding for AD
research via the National Institute on Aging (NIA) has in-
creased substantially within the last 5 years, jumping from
600 million dollars per year to approximately 2.8 billion.
The NIA and its sister institutes and centers at the National
Institutes of Health (NIH), including the National Institute of
Neurological Disorders and Stroke (NINDS), use milestones
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and recommendations from the AD Summits held at the NIH
Bethesda campus to prioritize areas of research.

The most common pathological hallmark of age-related
neurodegenerative diseases is the accumulation of proteina-
ceous deposits in the intra- and extracellular spaces of selected
brain regions [8–13]. These proteins have been shown to ac-
cumulate several years prior to clinically observable cognitive,
behavioral, and motor symptoms [14, 15]. Whereas there re-
mains some debate as to whether protein accumulation is path-
ogenic or merely a byproduct of disease [16] (Fig. 1), the
majority of therapeutic research has been focused on clearing
these aggregates [17–20]. AD, DLB, PD, and FTD are thus
often defined as proteinopathies of the aging population that
display selective degeneration of neuronal circuitries and pro-
gressive accumulation of specific proteins such as amyloid
beta (Aβ), tau, α-synuclein (α-syn), TAR DNA-binding pro-
tein 43 (TDP43), and repeat-associated non-ATG (RAN) [10,
21–25] among many others (Fig. 1). AD plaque and tangle
formation are most frequently associated with Aβ and tau,
whereas the primary protein component of Lewy bodies in
PD and DLB is α-syn [23–29] (Fig. 2). FTD aggregates are
generally comprised of tau, TDP-43, or Fused in sarcoma
(FUS) [30, 31], but cases with a GGGGCC expansion muta-
tion in intron 1 of the C9ORF72 gene also present with accu-
mulations of TDP43 and repeat-associated non-AUG-

dependent (RAN) translation proteins [32]. It must be pointed
out, however, that α-syn and TDP43 aggregates are also com-
monly found in AD, as well as Aβ, tau, and TDP43 in DLB
[33–39] (Fig. 2). Moreover, recent studies have shown signif-
icant overlap in AD and PD pathology in which a single indi-
vidual over the age of 80 can present with aggregates of sev-
eral of the above proteins [36] (Fig. 2). As such, simultaneous-
ly targeting multiple aggregating protein species may be more
effective at treating these disorders than monotherapy [36,
37].

Abnormal protein accumulation reflects an imbalanced
proteostasis network [22, 40, 41]. How these protein aggre-
gates lead to neurodegeneration is unclear but may involve
synaptic dysfunction and neuroinflammation triggered by
the formation of neurotoxic oligomers and the cell-to-cell
propagation of oligomers, protofibrils, and fibrils [21, 22,
40, 42]. Given that age is the greatest risk factor for neurode-
generative disease, age-related alterations in proteostasis, in-
flammation, stem cell biogenesis, mitochondrial alterations,
cell senescence, and DNA damage/repair [43] might also play
critical roles in pathogenesis (Fig. 1). Understanding the role
of protein homeostasis as it relates to aging could identify new
drug targets and delineate reliable markers to accurately deter-
minate a patient’s prognosis and appropriate treatment options
[44].

Research on disease-modifying therapies has primarily fo-
cused on reducing the accumulation and propagation of pro-
tein aggregates by decreasing synthesis and aggregation or
enhancing the rate of clearance [22, 45] (Fig. 3), with less
emphasis on targeting aging-related processes. These include
gene therapy to bolster clearance and degradation (e.g., au-
tophagy, proteolysis, lysosomal degradation) [46], anti-sense
technology to block synthesis (e.g., tau and α-syn genes)
[47–49], small molecules to decrease aggregation (e.g.,

Fig. 1 Combined mechanisms of neurodegeneration in AD/ADRD in-
clude protein accumulation and aging-related pathways. In the neurode-
generative process of AD/ADRD, synaptic damage and neuroinflamma-
tion may lead to neuronal dysfunction which results in dementia and
motor deficits. The leading hypothesis is that progressive accumulation
of proteins such as amyloid beta (Aβ), tau, α-synuclein (α-syn), TAR
DNA-binding protein 43 (TDP43), and repeat-associated non-ATG
(RAN) is the primary culprit. However, aging is also likely to play a
critical role in pathogenesis, either in synergy with protein accumulation
or as an independent pathway. Aging processes relevant to neurodegen-
eration include inflammation, proteostasis, DNA damage, cell senes-
cence, and mitochondrial alterations

Fig. 2 Overlapping protein aggregate pathology in AD/ADRD. Although
Aβ and tau are classically associated with AD, α-syn with Lewy body
dementia, and TDP43 and tau with FTD and limbic associated TDP43
encephalopathy (LATE), it is becoming increasingly evident that older
individuals with dementia (+ 80 years old) display mixed pathology
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inhibitors of Aβ, tau, and α-syn oligomers and higher-order
aggregates) [50–53], and immunotherapy to enhance clear-
ance, degradation, and decrease aggregation (Fig. 3).
Immunotherapies have garnered particular attention for their
specificity [54, 55]. This review will discuss 2 types of immu-
notherapy: active vaccines, in which inactivated fragments of
the pathogenic protein are directly administered to produce a
long-lasting immune response, and passive immunization, in
which patients are infused with antibodies against the target
protein. Both strategies can modulate inflammation, prevent
future oligomerization and aggregation activity [56–66], and
promote clearance by phagocytic microglia or lysosomal deg-
radation via the endosomal sorting complexes required for
transport (ESCRT) pathway [67]. Other immunotherapy mo-
dalities, including T-cell modulation or harnessing cellular
immunity to target neurodegeneration pathways, are discussed
elsewhere [68, 69].

In addition to the various mechanisms above, immunother-
apy has many other advantages. Its inherent specificity allows
for selective targeting of specific strains and conformations
with less off-target effects [61, 70–72] (Fig. 4). Polyvalent
single-chain antibodies or combinations of antibodies and
vaccines may also allow for the simultaneous targeting of
multiple protein aggregate species [60, 73–76] (Fig. 4).
Furthermore, immunotherapies can be neuroprotective by
neutralizing extracellular protein aggregates and thereby re-
ducing subsequent spread, synaptic damage, and neuroinflam-
mation [77]. The very concept of immunotherapy for AD
originated from the observation that the amyloid-β (Aβ) pep-
tide accumulates extracellularly and is therefore accessible to
antibodies that can recruit microglia to clear such deposits [78]
(Fig. 4). It was accordingly considered unlikely that

intracellular protein aggregates such as those of tau, α-syn,
TDP43, and RAN would be good targets for immunotherapy.
However, the advent of new technology to facilitate intracel-
lular trafficking of antibodies [79–82] and the discovery that
these so-called intracellular proteins also exist in cell mem-
branes and extracellular spaces have driven immunotherapy
development forward for PD, DLB, and FTD [59, 62, 63, 83,
84].

In March 2019, 20 years after the original publication by
Schenk et al. that propelled the field of immunotherapy for
neurodegenerative diseases [78], clinical trials for the Aβ an-
tibody aducanumab were halted early for futility. One of the
most promising AD therapies had become yet another failed
drug to meet clinical endpoints after reaching phase III. Seven
months later, however, the company sponsoring the trial sur-
prised the world by announcing that the results of the futility
analysis were premature, and that they would seek US Food
and Drug Administration approval by using a larger dataset
with longer exposure times to a high dose [85].

The news, while providing renewed hope for AD patients
and families, should be received with cautious optimism [86].
Years of clinical trial failures for AD suggest that monothera-
py against aggregation-prone proteins may not be enough for
clinical efficacy [17]. Identifying an effective treatment for the
heterogeneous group of patients affected by neurodegenera-
tive disease may rest on an amalgamation of factors, including
developing accurate and early diagnostic techniques, pursuing
earlier preventive treatment, simultaneously targeting differ-
ent proteins, identifying novel targets and age-related patho-
genic cascades, and even reducing variability between clinical
trial populations such as ApoE4 carrier status [77, 87, 88].
This review will briefly examine the current state of research
in immunotherapies against the 3 most commonly targeted
proteins for age-related neurodegenerative disease, Aβ, tau,
and α-syn. The discussion will then turn to combinatorial
strategies and new potential targets for future immunotherapy
development.

Immunotherapies Targeting Aβ

Based on the amyloid cascade hypothesis, the transmembrane
amyloid precursor protein (APP) can undergo proteolytic
cleavage by β-secretase 1 (BACE1) to produce a soluble ex-
tracellular fragment and a cell membrane-bound fragment
[89–91]. With its catalytic subunit presenilin, γ-secretase fur-
ther cleaves the cell membrane fragment to release the
amyloid-β (Aβ) peptide. Mutations in the genes encoding
APP or presenilin carry the greatest incidence of familial AD
[92]. Under nonpathological conditions, there is evidence that
Aβ is involved in regulating synaptic function and even acting
as an antimicrobial peptide to protect against infection and
injury [93–95]. The Aβ peptide can be of varying lengths,
the most prevalent being Aβ40. Longer forms, such as

Fig. 3 Mechanisms of protein toxicity in AD/ADRD involve oligomer-
ization and propagation of protein aggregates. In neurodegeneration, an
imbalance in the synthesis, aggregation, and clearance of proteins results
in chronic accumulation, leading to further aggregation and propagation,
and eventually inflammation and neurodegeneration
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Aβ42, are less soluble and are prone to accumulate extracel-
lularly to form oligomers, protofibrils, fibrils, and ultimately,
plaques [90, 91, 96–98].

In 1999, Schenk et al. published the first immunotherapy
for AD: an active vaccine called AN-1792 and comprised of
synthetic full-length Aβ42 with QS-21 adjuvant [99]. The
vaccine produced long-lasting and nearly complete clearance
of Aβ deposits in many patients, but had no impact on the
prominent tau pathology and severe dementia [100, 101]. The
trial was halted after 4 patients developed meningoencephali-
tis related to T-cell infiltration. Successful mapping of the B-
cell epitope to the N-terminus of Aβ [102–104] and additional
work on Th2-biased adjuvants [103–107] were thus essential
to the future Aβ vaccine development, allowing for a robust
antibody response without the potentially harmful Th1 lym-
phocyte activation [108]. Vanutide cridificar (ACC-001) was
designed as such to include only the B-cell epitope of Aβ plus
QS-21 adjuvant [109]. Phase II trials for ACC-001, however,
did not reach efficacy endpoints for cognitive evaluations,
volumetric brainMRI, and CSF biomarkers, and development
was halted in 2013 [110, 111]. Another recent strategy has
been to use mimotopes, synthetic peptides that closely resem-
ble the target protein epitope, as active vaccines. AFFITOPE®
AD02 by Affiris (Wien, Austria), a 6-amino-acid peptide that
mimics the AβN-terminus, was regrettably also terminated in
phase II for lack of clinical efficacy [112].

There are currently 4 active immunizations being tested in
phase II trials. CAD106 from Novartis (Basel, Switzerland)
fuses a Qβ virus-like particle to multiple copies of the Aβ N-
terminus (a.a. 1-6) [113, 114], and is being tested in homozy-
gous ApoE4 carriers as part of the Alzheimer’s Prevention
Initiative (API) program (NCT02565511) [115]. Similarly,
ACI-24 by AC Immune (Lausanne, Switzerland) uses Aβ1-

15 peptides anchored to the surface of a liposome and is being
tested for mild-to-moderate Alzheimer’s disease and Down’s
syndrome [116]. Another N-terminus vaccine, UB-311, is
comprised of 2 synthetic Aβ1-14-targeting peptides linked
to helper T-cell peptide epitopes contained in a Th2-biased
formula [117]. After completing phase IIa trials for UB-311,
United Neuroscience (Dublin, Ireland) is now assessing long-
term safety, tolerability, and immunogenicity in an extension
study (NCT03531710). ABVac40 by Araclon Biotech S.L.
(Zaragoza, Spain) began phase II trials (NCT03461276) in
mild cognitive impairment (MCI) last year and is the only
vaccine to use the C-terminal end of Aβ40 [118].

The first passive immunotherapy to reach phase III trials
was bapineuzumab, the humanized murine monoclonal anti-
body 3D6 [119–121] (Table 1). Bapineuzumab targets the Aβ
N-terminus to mediate clearance of both soluble and fibrillar
forms, but did not meet clinical endpoints in phase III and,
moreover, produced amyloid-related imaging abnormalities
(ARIA) with edema in patients that received a high dose
[122]. Solanezumab, humanized murine antibody m266, is
specific for soluble monomeric Aβ and is proposed to operate
by the peripheral sink hypothesis, in which removal of Aβ in
the periphery also leads to a reduction in the brain by passive
diffusion [123]. Multiple phase III trials, including one in
early AD patients, either failed to meet clinical efficacy or
were terminated early for futility [124, 125] (Table 1).
Similarly, phase III trials for crenezumab, human monoclonal
IgG4 against oligomeric, fibrillar, and plaque conformations
of Aβ, were stopped early in Jan 2019 for futility [126].
However, a phase II prevention trial with crenezumab in
Presen i l i n1 (PSEN1) E280A muta t ion ca r r i e r s
(NCT01998841) is still underway as part of the API-
Autosomal-Dominant Alzheimer’s Disease (ADAD) trial in

Fig. 4 Multiple mechanisms of
action of immunotherapy in AD/
ADRD. Immunotherapy involves
various mechanisms of action to
target protein aggregates in the
membrane and the intra- and ex-
tracellular spaces. Antibodies can
block propagation, trigger lyso-
somal clearance of proteins, re-
duce inflammation, and promote
neuroprotection
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Medellin, Colombia [127] (Table 1). The study is expected to
be completed in February 2022 with the primary outcome
being change in API ADAD Composite Cognitive Test Total
Score at 260 weeks after baseline. Secondary outcomes in-
clude time to MCI or dementia progression because of AD,
PETassessment of fibrillar amyloid accumulation, volumetric
measurements byMRI, CSF tau biomarker levels, and various
measures of memory and neurocognitive function.

Aducanumab was originally slated to take its place among
the failed phase III immunotherapy candidates despite being
shown to selectively reduce Aβ plaques and slow cognitive
decline in earlier trials [128, 129]. Although phase III was
halted earlier this year, the company that developed this anti-
body is now seeking FDA approval with new analysis of a
larger data set [85, 130] (Table 1). Similarly, although devel-
opment of human IgG1 gantenerumab was halted in 2014 for
futility, a new phase III trial was initiated at a higher dose
(NCT03444870) after the open label extension demonstrated
a dramatic decline in Aβ deposition in participants [131].
Both gantenerumab and solanezumab are also being revived
as potential preventative therapies by the Dominantly
Inherited Alzheimer Network Trials Unit (DIAN-TU) in pa-
tients with AD-causing mutations (NCT01760005) [132].
Unfortunately, topline analyses in February 2020 showed that
both drugs failed to meet primary endpoints [133].
Preventative trials for sporadic AD are also underway, in
which the so-called A4 phase III trial (NCT02008357) tests
solanezumab at higher doses and for longer durations in
asymptomatic patients with preclinical AD as defined by pos-
itive amyloid PET scans [134]. This phase III trial recruited
over 1200 participants and will be reporting in the next couple

of years . Humanized murine mAb158 BAN2401
(NCT03887455) is the only other passive immunotherapy
currently in phase III, but has already produced very promis-
ing results in phase II. Specifically, the 18-month study dem-
onstrated a statistically significant slowing in cognitive de-
cline at the highest dose with less than 10% of subjects
experiencing ARIA [135]. The antibody is specific to soluble
Aβ protofibrils, which have been proposed to be the toxic
species rather than the plaques themselves [136] (Table 1).

In conclusion, despite previous failures in phase III immu-
notherapy trials targeting Aβ, interest has resurged following
the recent glimmer of promising results coupled to advances
in the early diagnosis and biomarker accessibility of AD. The
antibodies currently being tested in clinical trials target a va-
riety of Aβ species, including soluble, oligomeric, and fibril-
lar Aβ. Mechanisms of action include microglia-facilitated
removal of extracellular amyloid oligomers and fibrils,
blocking primary and secondary Aβ nucleation, and targeting
monomers and soluble Aβ in the periphery that could other-
wise trigger Aβ accumulation in the CNS. Rather than for
late-stage disease reversal, immunotherapy against Aβ aggre-
gates appears to be more appropriate for prevention initiatives
with prolonged treatments past 78 weeks at high doses guided
by reliable biomarkers. ApoE4 carriers exposed to high doses,
however, are susceptible to complications such as ARIA-E
and may need to be closely monitored by MRI [137].

Immunotherapies Targeting α-Synuclein

Diseases characterized by progressive α-syn accumulation in
neuronal and non-neuronal cells of cortical and subcortical

Table 1 Examples of antibodies
against Aβ in late clinical
development

Antibody Phase Binding Epitope Isotype ARIA-E safety

Bapineuzumab

(Elan/Pfizer/J&J)

III Monomers ++

Oligomers +++

Fibrils +++

N-term

aa 1-5

IgG1 10%

Solanezumab

(Eli Lilly)

III Monomers +++

Oligomers 0

Fibrils 0

Soluble

aa 16-24

IgG1 0.9%

Crenezumab

(Roche/AC Immune)

III Monomers +

Oligomers +++

Fibrils ++

Conformational

aa 12-24

IgG4 0.3%

Gantenerumab

(Roche)

III Monomers 0

Oligomers ++

Fibrils +++

aa 3-11 and 19-25 IgG1 10%

Aducanumab

(Biogen)

III Monomers 0

Oligomers +++

Fibrils +++

Conformational

aa 3-6

IgG1 37-41%

BAN2401

(Eisai/Biogen)

III Monomers 0

Oligomers ++

Fibrils +++

Conformational

Artic mutation

IgG1 < 1%
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regions are collectively termed synucleinopathies, and include
PD, DLB, multiple system atrophy (MSA), and a subset of
AD [22, 26, 138, 139]. DLB/PD is the second most common
cause of dementia and parkinsonism in the aging population
after AD, affecting about 1 million in the USA [140]. α-syn is
a presynaptic protein reported to be involved in endosomal
formation and vesicle release at the synapse [141, 142]. The
pathological hallmarks of PD and DLB are intraneuronal oc-
clusions called Lewy bodies and Lewy neurites that are com-
posed of fibrillar α-syn along with cytoskeletal and other syn-
aptic proteins [143]. α-syn accumulation can also occur in
glia, such as glial cytoplasmic inclusion (GCIs) in MSA pa-
tient oligodendrocytes or Lewy body-like structures in the
amygdala, hippocampus, and neocortex of AD and Down
syndrome patients [143–145]. Although astrocytes and mi-
croglia do not constitutively express α-syn, they actively up-
take extracellular α-syn which can lead to glial aggregates in
conditions of impaired clearance [146–148]. This is supported
by increasing evidence that small amounts of α-syn aggre-
gates are released from neurons into the extracellular space
and subsequently interact with glial receptors such as Toll-
like receptor 2 to trigger a pro-inflammatory response [40,
146, 149–152].

The original approach to use antibodies to target and re-
move amyloid plaques from the brain made intuitive sense
given that Aβ aggregates are found in the extracellular space
[99]. It was unclear how this methodmight be applied to DLB,
PD, and other synucleinopathies, as the majority of the pro-
teinaceous aggregates were thought to form within neurons of
the striatonigral system, limbic areas, and deep layers of the
neocortex. In the early 2000s, however, we showed that im-
munization of a newly developed α-syn transgenic model
(Line D, PDGF-α-syn wt) with recombinant human α-syn
mixed with Freund adjuvant resulted in the production of high
titer antibodies against C-terminal α-syn that were capable of
removing α-syn aggregates in neurons and ameliorating neu-
rodegeneration and functional deficits [153]. Through addi-
tional active and passive immunization experiments in trans-
genic, viral, and preformed fibril injection models [154, 155],
we learned that these antibodies had multiple mechanisms of
action, such as recognizingα-syn aggregates in the membrane
and triggering endocytosis and clearance via autophagy, lyso-
somal activity, or proteasomal degradation [156–159] (Fig. 4).
Moreover, antibodies can be trafficked intracellularly with
single-chain antibodies or intrabodies specifically engineered
to penetrate the cell membrane via apolipoprotein B (ApoB),
TAT fusion proteins, or uptake by endogenous receptors
[160–165] (Fig. 4). Single-chain variable fragments (scFvs),
for example, are designed to retain the specificity of the orig-
inal full-length antibody without activating unwanted Fc-
mediated responses [160, 161, 166]. Several studies have
shown that transgenic mice injected with viral vectors
encoding scFvs against Aβ [167–169], α-syn [81, 170], or

tau [171, 172] show long-term in vivo scFv expression, im-
proved functional deficits, and reduced pathogenic protein
accumulation. Intrabody technology is continuing to be im-
proved, such as in a recent study in which Chatterjee et al.
(2018) enhanced the solubility of single-domain immunoglob-
ulin fragments by engineering a polypeptide tether construct,
and demonstrated its protective effects on motor function
when delivered by gene therapy to a PD rodent model [173].

These intrabodies and cell-penetrating single-chain anti-
bodies can block aggregation and target α-syn for degradation
in the lysosomes using the ESCRT system [73, 81, 174, 175].
Antibodies can also block α-syn oligomerization and fibrilla-
tion, target specific strains and isoforms, prevent cell-to-cell
transmission, and facilitate clearance via microglia [61, 149,
155, 176]. Therefore, antibodies can target both intracellular
and extracellular α-syn aggregates as they spread from cell to
cell (Fig. 4). This approach has been since applied to other
proteinopathies with predominantly intracellular accumula-
tions of tau, TDP43 [177, 178], SOD1 [179–181], RAN pep-
tides [32], and Huntingtin (Htt) [182, 183]. Additional lessons
from α-syn immunotherapy studies include the use of anti-
bodies to develop blood, CSF, and tissue biomarkers to mon-
itor the effects of immunotherapy and the ability of C-
terminus-specific antibodies to block protease-mediated C-ter-
minus truncation of α-syn and subsequently prevent oligo-
merization and transmission [59, 153, 156–158] (Fig. 4).

In this context, 2 main strategies for α-syn immunotherapy
have been pursued: mimotope vaccines and antibodies against
the N- or C-terminal ends of α-syn or specific conformations
of oligomeric and fibrillar α-syn (Fig. 4). Whereas most anti-
bodies have been developed with recombinant or synthetic α-
syn monomers or aggregates, a recent and novel variant uses
antibodies cloned from human healthy volunteers producing
high titers of auto-antibodies against α-syn [184–186]. As a
result of seminal cell-free in vitro and in vivo studies, several
immunotherapies are currently been tested in clinical trial for
synucleinopathies. The vaccines AFFITOPE® PD01A and
PD03A were well tolerated in phase I and produced a dose-
dependent immune response in patients with early MSA, but
plans for phase II have yet to be disclosed [187, 188]. For
passive immunotherapies, prasinezumab (also known as
PRX002 or RO7046015) is a humanized monoclonal anti-
body against the C-terminus of α-syn undergoing phase II
trials in patients with early PD (NCT03100149) [189]
(Table 2). A phase I trial for BIIB054, a human monoclonal
antibody that preferentially binds to aggregated α-syn, was
recently concluded and showed favorable safety, tolerability,
and pharmacokinetic profiles [190] (Table 2). MEDI1341 is
also in phase I clinical trial testing (NCT03272165) as an
antibody that can bind both monomers and aggregates. In
preclinical studies, MEDI1341 was shown to readily cross
the blood–brain barrier and block transmission of α-syn ag-
gregates in a combined viral vector model [191] (Table 2).
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In summary, antibodies against α-syn ameliorate Lewy
body pathology by multiple mechanisms such as promoting
the clearance of intracellular α-syn and blocking the propaga-
tion of extracellular α-syn. Other rising immunotherapy strat-
egies are T-cell modulation, such as that of Copaxone® [192],
and combinatorial approaches. We have tested several of such
combinations, including simultaneous administration of 2
AFFITOPEs® against Aβ and α-syn [74, 193], nanoparticles
containing both recombinant human α-syn and the immuno-
modulatory drug rapamycin, and the anti-inflammatory drug
thalidomide given alongside a single-chain antibody against
oligomeric α-syn derived from human DLB/PD brains and
conjugated to ApoB [73]. Through these studies in DLB/PD
mouse models, we show that combined immunotherapy may
be more effective than monotherapy. This topic will be
discussed in more detail in the following sections. The main
challenge in the field of synucleinopathies is the lack of reli-
able and accessible biomarkers and the overlapping pathology
among neurodegenerative diseases.

Immunotherapies Targeting Tau

Tau is a major member of theMicrotubule Associated Proteins
(MAP) family and abundantly expressed in neurons [194]. By
binding to tubulin dimers, tau can stabilize microtubule for-
mation and modulate cytoskeletal dynamics [195]. The degree
to which tau is phosphorylated is an important regulator of
microtubule stability [196]. Nonphosphorylated forms prefer-
entially bind to microtubules, whereas hyperphosphorylation
is associated with neurofibrillary tangle (NFT) formation from
paired helical filaments (PHF) [197, 198]. Intracellular NFTs
are a major hallmark lesion of AD and other neurodegenera-
tive tauopathies such as FTD, cortico-basal degeneration,

Pick’s disease, and progressive supranuclear palsy (PSP)
[199]. The severity of tau pathology has been shown to cor-
relate with the degree of cognitive impairment and neuronal
loss [200–203], making the tau protein an attractive target for
new immunotherapies.

Axon Neuroscience (Staré Mesto, Slovakia) recently com-
pleted a 24-month phase II trial for active tau vaccine
AADvac1 (NCT02579252), announcing in September 2019
that the vaccine was safe and well-tolerated, and generated
antibodies against pathological tau in over 98% of patients
[204]. AADvac1 consists of a B-cell epitope from a
cysteinated 12-mer tau peptide conjugated to keyhole limpet
hemocyanin, a carrier protein that stimulates a Th2 immune
response [205]. Based on the promising trends in cognitive
improvement and decelerated accumulation of AD bio-
markers in trial participants, Axon Neuroscience plans to
move forward with the next phase of clinical trials and is also
testing the vaccine for primary progressive nonfluent aphasia
(NCT03174886) [206, 207]. In another active vaccine, ACI-
35, 16 copies of synthetic tau fragments phosphorylated at
Ser396 and Ser404 are embedded to the surface of a liposome
[116, 208]. In August 2019, AC Immune announced a phase
Ib/IIa trial in collaboration with Janssen Pharmaceuticals
(Beerse, Belgium) to assess the safety, tolerability, and immu-
nogenicity of the second generation of this vaccine, AC-
35.030 [209].

AC Immune is also conducting phase 2 studies on the anti-
tau passive immunotherapy Semorinemab (also called
RO7105705, MTAU9937A, and RG6100) for prodromal/
m i l d AD (NCT03 2 8 9 1 4 3 ) a n d mod e r a t e AD
(NCT03828747) in partnership with Roche/Genentech
(South San Francisco, CA). Other ongoing trials for passive
anti-tau immunotherapies include that of Zagotenemab (also

Table 2 Examples of antibodies
against α-synuclein in clinical
development

Antibody Phase Binding Epitope Isotype Safety

PRX002/RG7935

(Prothena/Roche)

I-II Monomers ++

Oligomers +++

Fibrils +

C-term

aa 118-126

IgG1 Well tolerated

BIIB-054

(Biogen)

I-II Monomers −/+
Oligomers +++

Fibrils +++

N-term

aa 1-10

IgG1 Well tolerated

MEDI1341

(MedImmune/Astra

Zeneca/Takeda)

Preclinical Monomers +

Oligomers +++

Fibrils ++

C-term

aa 103-129

IgG1 In progress

ABBV-0805/BAN0805

(BioArtic/AbbVie)

I Monomers 0

Oligomers ++

Fibrils +++

aa ? IgG? In progress

Lu AF82422

(Lundbeck)

I Monomers +

Oligomers ++

Fibrils ++

C-term

aa 112-117?

IgG1 In progress
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called LY3303560) in AD patients (NCT03518073) and
ABBV-8E12 (also called Tilavonemab or C2N-8E12) for ear-
ly AD (NCT02880956). Zagotenemab is the humanized
mouse monoclonal antibody MC-1 and targets soluble tau
aggregates [210]. Similarly, ABBV-8E12 is the humanized
version of mouse monoclonal antibody HJ8.5 that was shown
to reduce tau seeding, hyperphosphorylation, and cognitive
deficits in P301S transgenic mice [211, 212]. Although phase
II trials for ABBV-8E12 in PSP patients were halted in
July 2019, favorable safety and tolerability profiles were ob-
tained [213]. Gosuranemab (BIIB092), the humanized anti-
body against extracellular N-terminal tau from Biogen
(Cambridge, MA), was also undergoing phase II trials for both
PSP (PASSPORT) and AD (TANGO) [214, 215]. However,
Biogen recently announced that topline results from the
PASSPORT study failed to meet primary endpoints and that
it would no longer pursue development of gosuranemab for
PSP and other primary tauopathies [216].

Interestingly, current preclinical studies seem to be
stepping away from targeting N-terminal tau in favor of
other epitopes. DC8E8 has been recently characterized as
a promising antibody that targets tau at 4 homologous
epitopes present in each microtubule binding domain re-
peat [217]. DC8E8 was shown to not only preferentially
bind truncated pathological tau over physiological tau but
also prevent both the formation of beta sheets and the
uptake of tau into neurons via sulfated heparan proteogly-
cans (HSPGs) [218]. In another study, Courade et al.
(2018) identified an antibody against the central region
of tau, dubbed “antibody D,” that was effective at
blocking tau seeding in vitro [219]. Albert et al. (2019)
further observed that this central tau epitope antibody was
more efficacious at preventing AD-like pathology and
cell-to-cell transfer of tau in mice [84].

In summary, considerable efforts have been made for over
20 years in the development of immunotherapies for neurode-
generative disorders. Antibodies targeting Aβ have led the
way with a number of phase III trials and at least one that
reported meeting primary outcome measures, followed close-
ly behind by a handful of immunotherapies for α-syn and tau
in phase I and II trials. Whereas accessible biomarkers are
currently available for Aβ- and tau-related pathologies to
guide the immunotherapy trials, there is a pressing lack of
such measures for synucleinopathies. The other challenge at
hand is that older patients present with protein aggregates that
are no longer primarily one pathologic protein species but
comprised of Aβ, tau, α-syn, TDP43, and others, in addition
to aging-related processes such as inflammation, proteotasis
deficits, DNA damage, mitochondrial alterations, and stem
cell alterations. Thus, there is a dire need to develop reliable
biomarkers and powerful combinatorial therapies to address
these polyproteinopathies and age-related pathophysiological
alterations, as will be discussed in the following section.

Combinatorial Immunotherapies

Combination therapy is already a standard of treatment for
many cancers [220] and chronic diseases including hyperten-
sion, CHF, epilepsy, and HIV [221]. Combinations of current-
ly available treatments are already being shown to improve
cognition and behavior in AD patients, such as coadministra-
tion of cholinesterase inhibitors and memantine [222, 223]
and enhancing memantine efficacy with beta-asarone and
tenuigenin [224]. Although a few AD mouse studies have
tested combinations of lipid mediators [225] or naturally oc-
curring dietary compounds [226], combinatorial therapeutics
in neurodegenerative disease remains a largely underexplored
field (Fig. 5). Monotherapy alone may be insufficient against
the complex and overlapping pathophysiology of age-related
neurodegenerative diseases. As such, there is a growing need
to simultaneously target multiple aggregating proteins as well
as modulate aging-related mechanisms that synergize with
protein aggregation to trigger neurodegeneration (Fig. 5).

Overlapping pathology has been well-documented in age-
related neurodegenerative diseases, such as the presence of
Lewy body-like pathology in AD [227–232]. One study re-
ported that 30 to 40% of patients with PD copresent with Aβ
plaques and NFTs [233, 234], whereas over 70% of DLB
patients [235] and more than 50% of AD patients [236] may
have overlapping and, as a result, more aggressive pathology
[237]. Indeed, a growing amount of evidence suggests that
this copathology directly impacts disease progression. For ex-
ample, dementia in PD is associated with high levels of AD
copathology [235, 238–241]. Several groups have also shown
that α-syn can contribute to the formation of toxic Aβ and tau
species, as well as vice versa [242]. Moreover, as stated earli-
er, demented individuals over the age of 80 present with mul-
tiple pathologies including Aβ, tau, α-syn, TDP43, inflam-
matory, and vascular alterations [36]. As such, one therapeutic
strategy may be to target the clearance of more than one path-
ologic protein via immunotherapy.

For example, immunotherapies that generate a response
against both α-syn and Aβ may be more effective than either
alone given that α-syn and Aβ may directly interact in AD
patients and APP transgenic models [243–246]. AD patients
have been shown to display elevated levels of α-syn in the
CSF [247, 248], and further, Aβ may promote α-syn aggre-
gation and toxicity [249, 250]. In mouse models, hippocampal
neurons with α-syn accumulations were found to be more
susceptible to Aβ-mediated toxicity [251], whereas genetic
depletion of α-syn prevented the degeneration of cholinergic
neurons and attenuated behavioral deficits [39, 252].
Similarly, α-syn has been shown to directly interact with
PSEN1, which is important for the proteolytic processing of
the APP to yield Aβ [231]. α-syn infusion in APP Tg mice
also blocked Aβ seeding but enhanced synaptic degeneration
[253, 254], potentially by blocking SNARE-vesicle fusion in
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a cooperative manner [255]. We recently covaccinated a dou-
ble transgenic mouse model of DLB (mThy1-hAPP- and
mThy1-α-syn) with AFFITOPE peptides against Aβ
(AD02) and α-syn (PD1A) [74]. Remarkably, targeting one
protein often concomitantly lowered the accumulation of an-
other, in which AD02 effectively reduced Aβ pathology as
well as that of phosphorylated tau and α-syn. This study also
noted potential additive effects, particularly in alleviating be-
havioral deficits, suggesting that a combined immunotherapy
approach may be appropriate for the heterogenous pathology
of AD and DLB and other age-related neurodegenerative dis-
eases (Fig. 5).

Tau and α-syn were also found to colocalize in the same
cellular compartments, particularly in axons [256]. Although
both have been shown to form intracellular aggregations, un-
like Aβ, α-syn can self-aggregate whereas tau requires an
aggregation-inducing agent [257]. Many studies have demon-
strated that α-syn interacts with and catalyzes the oligomeri-
zation of tau [258–262]. α-syn may also demonstrate 14-3-3
cochaperone activity on 14-3-3 targets, including tau, promot-
ing mutual misfolding [263–265]. α-syn preformed fibrils
were shown to induce intracellular tau aggregation in vivo
[266], and may be closely involved in the GSK3β-mediated
phosphorylation of tau in a reciprocal manner [267–270]. α-
syn oligomers may induce a distinctly toxic tau oligomeric
strain in a cross-seeding effect [271, 272] or even form
coaggregates [273]. A recent paper also reported that an age-

dependent reduction in glucocerebrosidase (GCase) activity
was associated with accumulations of lipid-stabilized α-syn
and phosphorylated tau [274]. As such, a combination of im-
munotherapies against both tau and α-syn may be especially
effective for cases in which both tau and synuclein pathology
are present, as it can not only remove existing aggregates and
toxic species but also prevent future cross-seeding events.

The ultimate approach would be to develop immunother-
apies that simultaneously target Aβ, tau, α-syn, TDP43, and
inflammation (Fig. 5). This could be achieved by 1) combin-
ing vaccines against Aβ, tau, α-syn, and TDP43 among other
proteins; 2) combining antibodies against Aβ, tau, α-syn, and
TDP43; 3) combining passive and active immunization; or 4)
using multivalent single-chain antibodies that can target 2 or
more of these proteins simultaneously. Another approach
would be to design antibodies to recognize a conformation
that is similar across multiple protein aggregate species, rather
than a specific sequence. Interestingly, studies in APP and α-
syn transgenic models have demonstrated that some antibod-
ies against oligomeric tau are effective at reducing α-syn,
whereas others have suggested that antibodies against Aβ
may also target tau [61, 275]. Moreover, a combined vaccina-
tion approach targeting Aβ and tau has been shown to de-
crease disease pathology in Tau22/5xFAD double transgenic
mice [276]. As such, a combination of these polyfunctional
antibodies is another way of maximizing the effectiveness of
immunotherapy (Fig. 5).

Fig. 5 Combination immunotherapies for AD/ADRD targeting protein
aggregates and aging-related pathways. Immunotherapy can also be used
to target other pathogens and age-related pathogenic processes associated
with aging. One such pathogen may be the herpes simplex virus (#1).
Aging-related pathways that can be targeted with antibodies include in-
flammation (e.g., TNF, TLR2, inflammasome) (#2), senescent cells (e.g.,

DPP4) (#3), and immune surveillance cells (e.g., NK cells) (#4).
Immunotherapies in neurodegeneration have been traditionally devel-
oped to target protein aggregates (e.g., Aβ, tau,α-syn, TDP43) (#5) alone
or in combination (#6). Combination therapies may involve targeting
multiple protein aggregates (#6) or protein aggregates (#5) and age-
related pathways (#1–4)
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Given the aforementioned copathology, immunotherapy
may also be effective in combination with gene silencing ap-
proaches. Several studies have shown that α-syn and tau de-
letion in animal transgenic models can delay the onset of dis-
ease. For example, α-syn knockout prevented neurotoxin-
induced neurodegeneration in MPTP and rotenone PD mouse
models [277, 278]. Injecting modified anti-sense oligonucle-
otides (ASO) targeting SNCA similarly promoted survival of
TH-positive neurons and ameliorated motor deficits in mice
expressing wild-type or mutant human SNCA [49]. Another
recent study found that tau deletion in A53T α-syn tg mice
rescued some cognitive and synaptic deficits without affecting
α-syn expression or phosphorylation [279]. Gene therapy is
also progressing in human neurodegenerative diseases, most
notably nusinersen for the neuromuscular disorder spinal mus-
cular atrophy [280, 281]. As such, immunotherapy to clear
existing aggregates and anti-sense therapy to prevent further
translation of pathologic proteins may be a viable combina-
tion, particularly in early stages of the disease.

As pointed out at the beginning of this section, effective
combination immunotherapy should target not only the pro-
tein aggregates but also age-related pathological processes
contributing to neurodegeneration, such as inflammation and
cell senescence. In this regard, although this review was fo-
cused on antibody-based immunotherapy, targeting cellular
immunity is another attractive approach to treat neurodegen-
erative disorders given its ability to reduce the protein aggre-
gate load by targeting T cells. We developed a mixed cellular
and active immunization in which α-syn and rapamycin are
simultaneously delivered in an antigen-presenting cell-
targeting glucan microparticle (GP) vaccine system [193]. In
this case, theα-syn peptide elicits the production of antibodies
againstα-syn, whereas rapamycin triggered the recruitment of
Tregs into the CNS. In turn, the Tregs immunomodulate mi-
croglia and induce greater microglial clearance of α-syn ag-
gregates and reduced neurodegeneration and inflammation in
α-syn tg mice. This vaccine, collectively termed GP+RAP/α-
syn, was capable of triggering neuroprotective Treg responses
in synucleinopathy animal models, and the combined vaccine
was more effective than the humoral or cellular immunization
alone. These results demonstrate the promise of multifunc-
tional vaccine approaches for the treatment of AD and DLB/
PD.

Another interesting and novel approach would be to trigger
immune surveillance byNK cells to target senescence cells for
elimination [282]. Moreover, senescent and immune cells can
be targeted with specific antibodies. For example, a recent
study used antibodies against the surface molecule DPP4
(dipeptidyl peptidase 4) of senescent cells [283] to facilitate
their clearance (Fig. 5). Antibodies against interleukins, tumor
necrosis factor (TNF), and Toll-like receptors may also be
effective at modulating the immune response in neurodegen-
erative disease [284–287]. Previous studies have shown that

Aβ , tau, and α-syn toxicity are mediated by the
inflammasome [288–290]. In the case of synucleinopathies,
we have shown that extracellular α-syn aggregates bind to
TLR2 to trigger neuroinflammation and neurodegeneration
and that selective neutralizing antibodies against TLR2 were
effective at blocking these effects and behavior deficits in α-
syn tg animals [152, 291]. In fact, TLR2 has been developed
as an important novel target for synucleinopathies [57, 292]
(Fig. 5).

Pathogens such as viruses or bacteria have been proposed
to contribute to progressive aggregate formation and chronic
inflammation given the antimicrobial properties of Aβ and
age-related impaired clearance mechanisms [293] (Fig. 5).
As such, directly targeting these pathogens with immunother-
apy may effectively attenuate neuroinflammation, particularly
in combination with immunotherapies against aggregating
protein. Infection with herpes simplex virus 1 (HSV-1) in
AD patients has long received attention for its association with
AD pathology and decreased cognitive function [294–297],
although increasing work is being performed on other viruses
such as herpes zoster, Epstein–Barr virus, and human cyto-
megalovirus [298–301]. Bacteria of particular interest include
Chlamydia pneumoniae , Helicobacter pylori , and
Porphyromonas gingivalis [302–307]. For a comprehensive
review of the evidence pertaining to pathogenic agents in age-
related neurodegenerative disease, please see Panza et al.
[293].

In summary, we have described the need and potential di-
rections for combinatorial immunotherapies that include ac-
tive, passive, and cellular approaches against specific protein
aggregates as well as age-related neurodegenerative pathways
such as inflammation and cell senescence (Fig. 5). These im-
munotherapy approaches may certainly also be amenable for
combination with gene therapy (e.g., anti-sense), small mole-
cules (e.g., autophagy modulators, antiaggregation,
senolytics), and nonpharmacological (e.g., exercise, diet,
training) treatments. Combinatorial therapeutics will also
open exciting opportunities for personalized medicine, includ-
ing catering to different stages of disease. For example, im-
munotherapy with anti-sense as described above may be well-
suited to presymptomatic stages of disease. Another early in-
tervention may be to combine immunotherapy with means of
upregulating proteostasis components such as chemical chap-
erones or gene therapy for BiP or XBP1 to prevent further
misfolding and aggregation [308–311]. Following the onset
of significant pathological changes or clinical symptoms,
however, polyvalent immunotherapy may be needed to ad-
dress the frequent presence of multiple pathogenic proteins.
Combining polyvalent antibodies with stress signaling inhib-
itors or regenerative therapy may prevent further synaptic loss
and delay progression of symptoms [312–314].

Furthermore, different combinations may be used to cater
to not only the stage of disease but also the patient’s specific
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symptoms, lifestyle risk factors, and genetic risk factors. For
instance, given alone, the therapeutic efficacy of statins or
antihypertensives for AD [315–321] and PD [322–328] pa-
tients remains largely inconclusive. However, a patient pre-
senting with overlapping pathology from both AD and VCID
may benefit from a combination of protein-targeting immuno-
therapy and such cardiovascular disease treatments. Current
preventative immunotherapy trials such as that of the API are
also just the beginning of genetics-based treatments. Many
key initiatives for genetics research in neurodegenerative dis-
ease, such as the International Parkinson Disease Genomics
Consortium (IPDGC), are spearheading a movement for ac-
cessible analytics tools and diverse and representative data. In
the future, we may be able to use this groundwork to identify a
patient’s specific risk variants and ultimately design a combi-
natorial therapy that can address both the protein accumula-
tion and the biological associations for those variants. Let it
also not be forgotten, however, that in addition to further de-
velopment of these therapeutic strategies, there is a dire need
for an overhaul of current policy and clinical trial practices in
order to truly pursue combinatorial and personalized medicine
for diseases as complex as age-related neurodegeneration.
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