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Abstract: The surface temperature (ST) of high-emissivity surfaces is an important 

parameter in climate systems. The empirical methods for retrieving ST for high-emissivity 

surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally 

continuous channel data. This paper aims to develop a multi-channel method for retrieving 

ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of 
land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness 

temperatures measured at the top of atmosphere by a radiometer having a spectral interval 

of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the 

sensitivity of the proposed method to spectral sampling frequency and instrumental noise, 

and evaluated the proposed method using satellite data. The results indicated that the 

parameters in the developed function are dependent on the spectral sampling frequency and 

that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if 

appropriate values are used for each spectral sampling frequency. The results also showed 

that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise 
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and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K 

in comparison with the AVHRR SST product. 

Keywords: surface temperature retrieval; spectral information; hyperspectral thermal 

infrared images; IASI 

 

1. Introduction 

The surface temperature (ST) of surfaces with high emissivity, e.g., dense vegetation and sea 

surfaces, is a key parameter in climate systems. Sea surface temperature (SST) retrieval is applied in 

thematic areas such as numerical weather/climate forecasting [1], and global climate change 

monitoring [2]. Surface temperature of high-emissivity surfaces in land is required for atmospheric 

correction of thermal infrared image [3]. Thermal infrared remote sensing has become an effective 

approach for measuring ST for high emissivity surfaces on a larger spatial scale [4,5]. We use the 

narrow definition of surface temperature, where surface temperature is defined as the temperature of 

the surface at radiative equilibrium. 

The ST of high-emissivity surfaces can be retrieved from satellite-based multispectral thermal 

infrared data by nine methods: the single-channel method [6], the split-window (SW) method [7] and 

the multi-channel method [8–10], the multi-angle method [11], the physical-based day/night 

operational method [12], the temperature and emissivity separation (TES) method [13], the multi-temporal 

physical method [14], the Kalman filter physical method [15] and the two-step retrieval method 

(TSRM) [16,17]. The single-channel method requires an accurate atmospheric profile. This condition 

is difficult or even impossible to satisfy in most practical situations. The split-window method utilizes 

differential atmospheric absorptions in two adjacent channels centred at 11 μm and 12 μm, which does 

not require information about the atmospheric profile for ocean applications at the time of the 

acquisition [7]. However, the SW method requires accurate atmospheric water vapour content [3]. The 

multi-channel method uses characteristics of the mid-infrared (MIR 3–6 µm) channel i1 at 3.9 μm and 

channel i2 centred at 8.7 µm to improve atmospheric correction at night, which does not require 

atmospheric water vapour content [8,10]. However, solar radiance at the MIR channel limits the use of 

the multi-channel method. Similar to the principle of the SW method, the multi-angle method is based 

on the differential water vapour absorption measured by sensor from different angles. The multi-angle 

method suffers from ST angular dependence [18]. The physical-based day/night operational method 

utilizes two-time measurements at 7 MIR and thermal infrared (TIR) channels to constrain the ill-posed 

temperature/emissivity separation with known atmospheric corrections [17]. However, the  

physical-based day/night operational method suffers from problems of geometry mis-registration, 

variations in the viewing zenith angle and inaccurate atmospheric correction [19]. The TES method 

relies on an empirical relationship between spectral contrast and minimum emissivity to separate land 

surface temperature (LST) and land surface emissivity (LSE) from five atmospherically corrected 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) TIR data [13]. 

However, the TES method exhibits significant errors under hot and wet atmospheric conditions [20]. 

The multi-temporal physical method [14] and the Kalman filter physical method [15] utilize the invariance 
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feature of LSE measured within a short time period (six hours) to separate LST and LSE from 

geostationary thermal infrared radiances provided that good atmospheric correction has been perform. 

The TRSM method simultaneously retrieves the atmospheric profiles, LST and LSE from the MODIS 

channel data, which does not require atmospheric correction [17]. However, the requirement of adequate 

channels and the TRSM method’s complex nature make it difficult to apply. 

The methods mentioned above use satellite data measured at several broad channels, therefore they 

cannot be applied to hyperspectral thermal infrared (HypTIR) data. The HypTIR data with thousands 

of channels provide plenty of information on the atmosphere and the observed surface. Therefore, new 

methods are required for retrieving ST for high-emissivity surfaces from HypTIR satellite data. 

Currently, there is large amount of HypTIR data acquired by space-borne sensors. The earliest 

sensor, Interferometric Monitor for Greenhouse Gases (IMG), was launched in 1996, but it failed in 

1997. The first successful sensor, the Atmospheric InfraRed Sounder (AIRS) [21], was launched in 

2002 and has been providing HypTIR data ever since. There are HyperTIR data observed by other 

space-borne sensors, such as the Infrared Atmospheric Sounding Interferometer (IASI) [22] and the 

Cross-track Infrared Sounder (CrIS) [23]. In the future, the infrared sounder (IRS) [24] will also 

provide this type of HypeTIR data. There is a pressing need for methodological development in order 

to retrieve ST from these space-borne HypTIR data. 

There are mainly five types of methods for retrieving ST for high-emissivity surfaces from  

space-borne HypTIR data: the principal component regression method [25–29], the artificial neural 

network (ANN) method [30,31], the stepwise LST and LSE retrieval method [32], the simultaneous 

LST and LSE retrieval method [33], the physical simultaneous atmospheric profiles, LST and LSE 

retrieval method [34–37]. The ANN method and principal component regression method are based on 

a linear/nonlinear empirical relationship between principal component amplitudes of brightness 

temperature spectrum at TOA and ST. The principal component regression method and the ANN 

method do not require extra atmospheric data and are fast enough for near real-time application [28]. 

However, the principal component regression method and the ANN method require thousands of 

channels and have much error for complex physical situations [33]. For example, aerosols contaminate 

the principal component regression method and the ANN method. The stepwise LST and LSE retrieval 

method relies on the phenomenon that LSE is close to unity at a certain channel to separate LST and 

LSE with known atmospheric profile. The stepwise LST and LSE retrieval method requires accurate 

atmospheric profile. The simultaneous LST and LSE retrieval method depends on an empirical 

relationship between principal components of LSE and channel LSEs to constraint iterative solution of 

LSE and LST with known atmospheric profile. The simultaneous LST and LSE retrieval method also 

requires accurate atmospheric profile. The physical simultaneous atmospheric profile, LST and LSE 

retrieval method utilizes physical constraint based on spectral smoothness characteristic of LSE to 

iterative solve LST, LSE and atmospheric profile simultaneously with the support of atmospheric 

radiative transfer model. The physical simultaneous retrieval method does not require atmospheric 

profile, but it has low computation efficiency because of its complex nature [31]. The objective of this 

paper is to develop a multi-channel method for retrieving ST for high-emissivity surfaces from  

space-borne HypTIR images. 

The proposed method is suitable for retrieving ST for high-emissivity surfaces from HypTIR 

measurements containing damaged data and provides flexibility for retrieving ST for high-emissivity 
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surfaces with taking the complex physical situations mentioned above into account in future. The 

proposed method can be used for near real time production of ST for high-emissivity surfaces from 

space-borne HypTIR data and for providing first-guess value of ST for the physical method. 

This paper is organized as follows: Section 2 presents the proposed method. The evaluation of the 

proposed method is given in Section 3. The sensitivity of the proposed method to spectral sampling 

frequency and instrumental noise is shown in Section 4. The application of the proposed method to 

satellite data is shown in Section 5, and the last section provides the conclusion. 

2. Methodological Development 

2.1. Physical Base of the Method 

Assuming that the land surface is a black body, the radiance L(λi) at TOA at a HypTIR channel can 

be written as: 

L(λ )=B(T ,λ )τ(λ )+L (λ )i s i i P i  (1)

where B(Ts, λi) is the surface radiance at a central wavelength λi of channel i with a surface 

temperature of Ts, Lp is the upwelling radiance emitted by the atmosphere, and τ is the  

atmospheric transmittance. 

If Equation (1) is linearized around ST and the wavelength λi in this equation is omitted,  

Equation (1) can be rewritten as: 

Tb = τ T + (1 τ )Ta ,1i i s i i i p    (2)

where Tbi is the brightness temperature at TOA at channel i, Tai is the equivalent atmospheric 

temperature at channel i, τi is the transmittance at channel i, and p is the number of channels selected 

for retrieving ST. 

Inspired by the split-window method for ST retrieval, we propose a multi-channel method for 

retrieving ST for high-emissivity surfaces from HypTIR data. In this method, ST can be written as: 

0
1:p

is i
i

T w wTb


    
(3)

where wi are regression coefficients. The number of channels is p, and the centre wavenumbers at 

channel i (i = [1,p]), and coefficients wi (i = [0,p]) can be determined using stepwise regression with 

simulation data. 

2.2. Data for Simulation 

Although there are large amounts of HypTIR data measured at TOA, it is still difficult to find 

spatially and temporally collocated atmospheric moisture and temperature profile data. Additionally, 

there are few field-measured ST data at the spatial scale of a satellite FOV (12 km for IASI). 

Therefore, we have resorted to simulation data for determining the parameters in Equation (3). 

Specifically, we have used typical atmospheric profile data and typical ST data to create simulation 

data for determining the parameters in Equation (3). 
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We have selected typical profiles from the Thermodynamic Initial Guess Retrieval (TIGR) database 

for simulation [38,39] in two steps. First, we have classified the 2311 clear-sky TIGR profiles into six 

groups according the concentration of water vapour. The total precipitable water-vapour ranges of the 

six groups are between 0 and 1 g/cm2, between 1 and 2 g/cm2, between 2 and 3 g/cm2, between 3 and 4 

g/cm2, between 4 to 5 g/cm2, and between 5 and 6 g/cm2, respectively. After that, we have randomly 

selected nearly 23 profiles from each group to make sure the selected profiles were representative. 

Each atmospheric profile has 40 layers from 1013 hPa to 0.05 hPa. The air mass types for the selected 

atmospheric profiles are tropical, temperate, cold temperate and summer polar, cold polar, and winter 

polar types. The total precipitable water vapours of the selected atmospheric profiles range from  

0 g/cm2 to 6 g/cm2. The variation of bottom temperature with the total precipitable water vapour for 

the 139 atmospheric profiles is presented in Figure 1. The method for determining clear-sky 

atmospheric profiles from the TIGR database has been detailed by [40]. 

 

Figure 1. The bottom temperatures as a function of the total precipitable water vapour for 

the 139 atmospheric profiles and other 39 atmospheric profiles. 

To describe the rapid variation of LST for each profile, the six STs for simulation are sums of 

bottom atmospheric temperature (Ta0) and one out of six perturbations. The six perturbations are [−15 K, 

−5 K, 0 K, 5 K, 10 K, and 15 K] when Ta0 < 280 K, and these perturbations are [−10 K, −5 K, 0 K, 5 K, 

10 K, and 20 K] when Ta0 ≥ 280 K [30]. 

2.3. Determination of Centre Wavenumbers of Channel i (i = [1,p]) and Coefficients wi (i = [0,p]) 

We have used the stepwise regression method with the simulation data to determine the centre 

wavenumbers at channel i and coefficients wi in Equation (3) for IASI. The procedure is shown  

in Figure 2. 
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Figure 2. The scheme for determining the centre wavenumbers of channel i (i = [1,p]) and 

the coefficients wi (i = [0,p]). 

For this study, we have simulated large IASI data using Operational release for Automatized 

Atmospheric Absorption Atlas (4A/OP) [41,42] using the data mentioned in Section 2.2. The 4A/OP is 

used to simulate atmospheric transmittance and upward radiance using atmospheric profile data. 

Brightness temperature database is calculated using Equation (1) with output atmospheric radiative 

terms of 4A/OP. The spectral interval and spectral sampling frequency for simulation are  

800–1200 cm−1 and 0.25 cm−1, respectively. The viewing angle for simulation is restricted to nadir 

observation. For each simulation case, a random noise with dimension of 1601 generated by a Matlab 

random number generator with NE∆T of 0.1 K is added. The noise equivalent temperature difference 

(NE∆T) has been set according to that of the IASI [43]. Because O3 has a strong absorption feature in 

HypTIR radiance spectrum, only HypTIR data at channels in the spectral interval of 800–985 cm−1 and 

in the spectral interval of 1150–1200 cm−1 have been used for stepwise regression [44]. 

The stepwise regression is used to determine the centre wavenumbers of channel i and the 

coefficients wi with the simulation data above. First, the channel centred at a wavenumber of 1158.5 cm−1, 

where transmittance is the largest, is selected as the initial channel. 

In step m + 1 of the stepwise regression, for each remaining channel, a linear relationship fitted by 

the least square method is written as: 

0 1 1
1

i

m

s i m m
i

T w wTb w Tb 


    (4)

where Tbi (i = [1,m]) are the channel brightness temperatures determined before this step, and Tbm+1 is 

the brightness temperature at each remaining channel. The coefficients wi (i = [1,m + 2]) is calculated 

by the following equation: 

  1T TW X X X Y


  (5)

where W is the coefficient vector of dimension m + 2, X is HypTIR brightness temperature n × (m + 2) 

matrix, and Y is the LST vector of dimension n. Here, X contains n samples of the m + 1 channel 
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HypTIR brightness temperatures. A sum of squares for partial regression (Uk) is used to calculate the 

contribution of Tbm+1 and is defined as: 

k k kU SS SS   (6)

where SSk and SS−k are the sum of the squares for regression with channel k, and without channel k, 

respectively. The sum of squares for regression is defined as: 

2

0 0
1 1

n l

ij
i j

SS w w Tb y
 

 
   

 
   (7)

where l is the number of channels and n is the number of simulation cases, and ȳ is the mean of n 

samples of LSTs. The (m + 1)-th channel HypTIR brightness temperature added by the stepwise 

regression is the one with largest partial regression square sums among the remaining channel HypTIR 

brightness temperatures. We also check to see if the spectral interval of two nearby central 

wavenumbers is larger than 4.5 cm−1. If not, HypTIR brightness temperature of this channel is replaced 

by the one with second-largest sum of squares for partial regression. 

The criterion for determining the number of channels for Equation (3) is that the root mean square 

error (RMSE) of the ST retrieved using Equation (3) from the simulation data mentioned above is less 

than 0.2 K. The output coefficients wi and centre wavenumbers of channel i are the solutions. 

The variation of RMSE of the retrieved ST with the number of channels in the process of 

determining the centre wavenumbers of channel i and the coefficients wi is shown in Figure 3: the error 

of the ST that is retrieved using the corresponding regression equation with the simulation data above 

decreases with the growing number of channels, and the RMSE of the retrieved ST is less than 0.2 K 

when the number of channels is larger than 10. 

 

Figure 3. The variation of RMSE of the retrieved ST with the number of channels in the 

process for determination of centre wavenumbers and coefficients. 
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The centre wavenumbers of channel i (i = [1,p]) and the coefficients wi are shown in Figure 4. From 

this figure, we can see that the centre wavenumbers correspond to the wavenumbers where water 

vapour absorption is weak. The reason may be that the assumption that ST can be expressed as a linear 

function of p HypTIR brightness temperatures is more reliable at these wavenumbers. The Figure 4 

also shows that all the coefficients wi are varying in a relatively small range between: −0.80~0.80. 

 

Figure 4. The centre wavenumbers at channel i (i = [1,p]) and coefficients wi (i = [0,p]) 

superimposed on a typical IASI spectrum. (w0 = 2.486; the No. above each blue square 

indicate the order of each channel in the determination process). 

3. Evaluation of the Method 

First, we have evaluated the developed method by comparing the ST retrieved by that developed 

method from simulation data in Section 2 with the true input ST. The error of the retrieved ST is 

shown in Figure 5. From this figure, we can see that the RMSE of the retrieved ST is approximately 

0.20 K, and the error of the retrieved ST ranges from −0.6 to 0.9 K. Consequently, ST can be 

accurately retrieved using Equation (3), with only 10 measurements in the spectral interval of  

800–1200 cm−1. 

To evaluate the method independently, we have selected 39 other profiles from the clear-sky TIGR 

database as mentioned in Section 2.2. We have classified all the clear-sky TIGR profiles into five 

groups, except for the 139 profiles mentioned in Section 2.2, and selected nearly eight profiles from 

each of these five groups for evaluation. The total precipitable water-vapour ranges of the five groups 

are between 0 and 1 g/cm2, between 1 and 2 g/cm2, between 2 and 3 g/cm2, between 3 and 4 g/cm2 and 

between 4 and 5 g/cm, respectively. The variation of the bottom temperature with total precipitable 

water vapour for the 39 atmospheric profiles is represented in Figure 1 by green squares. For each 

atmospheric profile, the five STs for independent simulation are the sums of bottom temperature with 
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one of five temperature perturbations. The five temperature perturbations and other parameters for this 

independent simulation are the same as those in Section 2. 

 

Figure 5. Error of the ST retrieved by Equation (3) from simulation data with the  

139 atmospheric profiles. (STret = the retrieved ST, STact = the true ST). 

The error of ST retrieved from this independent simulation data is shown in Figure 6. The RMSE of 

ST retrieved by Equation (3) is 0.21 K. Our method is quite accurate and promising. 

 

Figure 6. Error of the ST retrieved by Equation (3) from independent simulation data with 

the 39 atmospheric profiles. (STret = the retrieved ST, STact = the true ST). 
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4. Sensitivity Analysis of the Method 

4.1. Sensitivity to Spectral Sampling Frequency 

We have analysed the sensitivity of the method to spectral sampling frequency by refitting the 

coefficients wi in Equation (3) for each spectral sampling frequency, using five simulation databases 

and studying the error of ST retrieved using these refitted coefficients wi from five other independent 

simulation databases. 

To refit the coefficients wi, we have created five simulation databases for five HypTIR sensors with 

spectral sampling frequencies = 0.5, 1, 2, 4, 8 cm−1. We assumed that the five sensors have 10 channels 

with the centre wavenumbers shown in Figure 4. The instrumental spectral response functions (ISRFs) 

for the five sensors are rectangular impulse functions. The ISRFs for the five sensors at one channel 

are shown in Figure 7. The simulation database for each of the five sensors is resampled from the 

simulation data mentioned in Section 2 using each ISRF. The coefficients wi refitted for each spectral 

sampling frequency are shown in Table 1. 

 

Figure 7. The five ISRFs at the channel with the centre wavenumber = 1158 cm−1 

superimposed on one typical IASI spectrum in the spectral interval of 1148–1168 cm−1. 

Table 1. The coefficients wi refitted for each spectral sampling frequency using linear 

regression with simulation data. 

Spectral Sampling 

Frequency (cm−1) 
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 

0.5 −0.435 0.688 0.025 0.788 0.877 −0.535 −0.516 −0.795 0.575 −0.609 0.504 

1 0.676 0.614 0.132 1.126 1.050 −0.693 −0.624 −1.170 0.586 −0.603 0.579 

2 −0.372 0.738 −0.148 2.249 0.939 −2.158 −1.210 −1.339 0.953 0.259 0.720 

4 −0.080 0.531 1.555 −0.102 3.360 −3.164 −1.772 0.197 0.053 0.089 0.257 

8 1.083 2.833 0.931 −1.686 2.256 −1.431 −2.140 1.996 0.683 −2.549 0.102 
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To evaluate the accuracy of the ST retrieved using refitted coefficients wi, an independent 

simulation database for each spectral sampling frequency is resampled from the simulation data 

mentioned in Section 3 using each ISRF. The refitted coefficients wi and the 10 centre wavenumbers 

determined in Section 2 are then used for retrieving ST from these five independent simulation 

databases. The ST errors that were retrieved using Equation (3), with the refitted coefficients from 

each of the five independent simulation databases, are analysed with the spectral sampling frequencies 

and shown in Figure 8. 

 

Figure 8. Errors of the ST retrieved using Equation (3) with refitted coefficients wi from 

each of the five simulation databases with 39 atmospheric profiles as a function of spectral 

sampling frequency. 

The coefficients wi refitted for each spectral sampling frequency using simulation data vary 

significantly with spectral sampling frequencies. Therefore, the coefficients in Equation (3) are 

dependent on spectral sampling frequency. The biases of the ST retrieved by Equation (3) with refitted 

coefficients wi from each of the five independent simulation databases vary between −0.01 K and 

−0.05 K, and the corresponding standard errors of the retrieved ST for each independent simulation 

database are less than 0.30 K. The ST can be retrieved accurately using Equation (3) with the refitted 

coefficients wi (i = [0,p]) for each spectral sampling frequency. 

4.2. Sensitivity to Instrumental Noise 

To do this sensitivity analysis, three simulation databases are created by adding to noiseless IASI 

data noises with NE∆T = 0.1 K, 0.2 K, and 0.3 K, respectively. The noiseless IASI data is created 

using simulation data with 39 atmospheric profiles, as mentioned in Section 3. For each noiseless IASI 

spectrum, 20 noise-added IASI spectrums are created for each level of noise, including 20 random 

noises with the dimension of 1601. Each random noise is generated by the Matlab random number 

generator with corresponding NE∆T. The centre wavenumbers at channel i and coefficients wi, used 

for retrieving ST from the three simulation databases above, are those determined in Section 2.  
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Figure 9 depicts the errors of the ST retrieved using Equation (3) from each of the three simulation 

databases as a function of instrumental noise. 

With NE∆T instrumental noise growing from 0.1 K to 0.3 K, the standard error of the retrieved ST 

goes from 0.19 K to 0.53 K. Therefore, the impact of instrumental noise on the accuracy of the ST 

retrieved by Equation (3) is of the order of magnitude of the instrumental noise. 

 

Figure 9. Errors of the ST retrieved using Equation (3) from each the three simulation 

databases as a function of instrumental noise. 

5. Application to Satellite Data 

Our developed method is applied to Metop-A IASI data observed over the Mediterranean Sea. The 

Mediterranean Sea is in the region with a latitude of 30° N–43° N and a longitude of 12° E–32° E 

shown in Figure 10. 

 

Figure 10. Target area used for comparing the ST retrieved by our method from Metop-A 

IASI data with Metop-A AVHRR SST product. 
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5.1. Data for This Application 

The L1c image of Metop-A IASI has 8461 thermal infrared channels in the spectral interval of  

645–2760 cm−1 (3.6–15.5 μm) with a spectral sampling frequency of 0.25 cm−1. The spatial resolution 

of IASI image at nadir point is 12 km. The scan angle at the end of each scan line is 48.98°. IASI on 

Metop-A scans the Mediterranean area in mid-morning orbit every day. The five-minute Metop-A 

IASI images sensed in the morning on three days in the year 2014 (February 2, August 1 and 

November 4) are collected for this study. 

The Advanced Very High Resolution Radiometer (AVHRR) on the same satellite has two thermal 

infrared channels centred at 10.8 μm and 12 μm. The level 2 sea surface temperature (SST) product 

form AVHRR with a spatial resolution of 1 km is used to validate the SST retrieved by our developed 

method. The SST product from AVHRR is retrieved using the split-window method. The algorithm for 

deriving this SST product can be seen in [45]. 

5.2. Application to the Mediterranean Sea 

Our developed method is applied to part of the collected IASI data, which has a viewing zenith 

angle less than 15° (the surface area covered by this selected data is shown in Figure 10 with 

rectangles). The cloud information in the AVHRR SST product is used to select the clear-sky IASI 

data. Only IASI data with more than 90% clear AVHRR pixels is used for this evaluation. In total, 

there are 386 matched IASI samples used for this application. 

The comparison of the ST retrieved by our developed method from IASI with the SST product from 

AVHRR is shown in Figure 11. From this figure, we can see that the RMSE of the ST from IASI is 

0.43 K. The ST of high-emissivity surfaces can be retrieved accurately from satellite data by our method. 

 

Figure 11. Comparison of the ST retrieved by our method from Metop-A IASI data with 

Metop-A AVHRR SST product over the Mediterranean Sea on three typical days.  

(STret = the retrieved ST, SSTavhrr = the AVHRR SST). 
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The spatial pattern of the ST error retrieved from the IASI image sensed on 4 November 2014 over 

part of the Mediterranean Sea is shown in Figure 12. The error of the retrieved ST is homogeneously 

distributed, and no important deviation is seen. 

 

Figure 12. Error of the retrieved ST (IASI-AVHRR) plotted on a quality image of  

Metop-A AVHRR SST product over a typical part of the Mediterranean Sea on 4 

November 2014. (SSTerror = SSTiasi − SSTavhrr). 

6. Conclusions 

With the assumption that LSE is equal to unity, we have developed a multi-channel ST retrieval 

method for high-emissivity surfaces based on 10 HypTIR measurements of a radiometer with a 

spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have evaluated 

the method using independent simulation data. Moreover, we have analysed the sensitivity of the method 

to spectral sampling frequency and instrumental noise. This work draws the following conclusions: 

(1) ST can be retrieved by our method from independent simulation data with RMSE of 0.21 K, 

using only 10 HypTIR measurements. This method is very accurate and promising. 

(2) The coefficients wi of the method are dependent on a spectral sampling frequency. 

Nevertheless, ST of high-emissivity surfaces can still be retrieved accurately when the 

coefficients are refitted for each spectral sampling frequency. 

(3) The impact of instrumental noise is not significant: the accuracy of the retrieved ST is of the 

order of magnitude of the instrumental noise. 

(4) In comparison with the AVHRR SST product, ST of high-emissivity surfaces can be retrieved 

from satellite data with a RMSE of 0.43 K. The performance of our method is good for 

retrieving ST for high-emissivity surfaces from satellite data. 
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The drawback of our method is that it requires the assumption of LSE of unity. Our method can’t be 

applied to natural land surfaces yet. In future work, we will extend this method to natural  

land surfaces. 
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