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Abstract: Dapsone (DDS), Rifampicin (RIF) and Ofloxacin (OFL) are drugs recommended by the
World Health Organization (WHO) for the treatment of leprosy. In the context of leprosy, resistance
to these drugs occurs mainly due to mutations in the target genes (Folp1, RpoB and GyrA). It is
important to monitor antimicrobial resistance in patients with leprosy. Therefore, we performed a
meta-analysis of drug resistance in Mycobacterium leprae and the mutational profile of the target
genes. In this paper, we limited the study period to May 2022 and searched PubMed, Web of
Science (WOS), Scopus, and Embase databases for identified studies. Two independent reviewers
extracted the study data. Mutation and drug-resistance rates were estimated in Stata 16.0. The results
demonstrated that the drug-resistance rate was 10.18% (95% CI: 7.85–12.51). Subgroup analysis
showed the highest resistance rate was in the Western Pacific region (17.05%, 95% CI:1.80 to 13.78),
and it was higher after 2009 than before [(11.39%, 7.46–15.33) vs. 6.59% (3.66–9.53)]. We can conclude
that the rate among new cases (7.25%, 95% CI: 4.65–9.84) was lower than the relapsed (14.26%, 95 CI%:
9.82–18.71). Mutation rates of Folp1, RpoB and GyrA were 4.40% (95% CI: 3.02–5.77), 3.66% (95% CI:
2.41–4.90) and 1.28% (95% CI: 0.87–1.71) respectively, while the rate for polygenes mutation was
1.73% (0.83–2.63). For further analysis, we used 368 drug-resistant strains as research subjects and
found that codons (Ser, Pro, Ala) on RpoB, Folp1 and GyrA are the most common mutation sites
in the determining region (DRDR). In addition, the most common substitution patterns of Folp1,
RpoB, and GyrA are Pro→Leu, Ser→Leu, and Ala→Val. This study found that a higher proportion
of patients has developed resistance to these drugs, and the rate has increased since 2009, which
continue to pose a challenge to clinicians. In addition, the amino acid alterations in the sequence of
the DRDR regions and the substitution patterns mentioned in the study also provide new ideas for
clinical treatment options.

Keywords: leprosy; drug resistance; genes mutations; dapsone; rifampicin; ofloxacin

1. Introduction

Leprosy is a chronic infectious disease caused by M. leprae or M. lepromatosis, which
may lead to irreversible damage to the skin, peripheral nerves, and even disability. The
incubation period of the slow-growing viruses varies from 2 to 11 years, making treatment
extremely difficult [1]. According to the WHO weekly report, there were 208,641 new
cases around the world during 2018, and the transmission of leprosy continues in more
than 100 countries, particularly in India (120,334 cases), Brazil (28,660 cases), and Indonesia
(17,017 cases) [2,3].

Since 1940, dapsone (DDS) has been considered the most effective antibacterial and
anti-inflammatory drug against Mycobacterium leprae. Nevertheless, the first DDS-resistant
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strain of Mycobacterium leprae was discovered in 1964 [4]. In 1981, WHO introduced mul-
tidrug therapy (MDT) for leprosy as a priority strategy to reduce drug resistance: the
first-line drugs (rifampicin, ampicillin, and clofazimine) and second-line drugs (minocy-
cline, ofloxacin, and clarithromycin). WHO also recommends a 1-year MDT course for
multibacillary (MB) patients and a 6-month course for Paucibacillary (PB) [5]. Over time,
new cases have been largely eliminated. In 1996, however, the first resistant strain to
DDS, RIF, and OFL was identified. Relapse and recurrence cases remain a global public
health problem associated with non-compliance with MDT or antimicrobial resistance
(AMR), especially in MB patients [6–8]. As a first-line drug, there were few strains re-
sistant to clofazimine. MmpS5-MmpL5 is the most important RND transporter protein
in Mycobacterium tuberculosis, and its overexpression was associated with resistance
to azoles (e.g., clofazimine). Nevertheless, MmpS5-MmpL5 is absent in Mycobacterium
leprae, which partly explains the rarity of clofazimine-resistant strains [9].

The failure of Mycobacterium leprae to grow in vitro hinders the investigation of AMR.
There are two approaches available to detect drug resistance at present. The first one is
to inoculate Mycobacterium leprae onto the foot pads of mice for culture and extract the
tissues for testing [10]. In 1967, this method was used to detect drug resistance for the
first time, such as DDS and fluoroquinolones. However, the growth of Mycobacterium
leprae is slow and a long period of time (>1 year) is required to obtain the desired results,
rendering the process both time-consuming and laborious. The second approach is to
detect mutations by PCR-DNA sequencing. Studies have shown that mutations in the drug-
resistance determining region (DRDR) in the Folp1, RpoB, and GyrA genes are responsible
for resistance to DDS, RIF, and OFL [11,12]. The molecular-based detection method is more
effective than the classic footpad experiment, reducing the turnaround time for diagnosis
from months to hours. It has been shown that the DRDR region is situated between
44–64 loci of FolP1, 439–459 of RpoB, and 81–101 of GyrA (Figure 1) [13]. To date, many loci
mutations associated with drug resistance have been identified. For instance, mutations
within codon 53 (ACC→ATC) in the DRDR region of Folp1, ACC→ATC/GGC→GAC of
RpoB, and mutations in codon 55/91 of GyrA confer drug resistance to Mycobacterium
leprae [14–16].
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confer resistance to DDS, RIF and OFL, respectively, and the numbers indicate codon positions.

There are many possible mechanisms of drug resistance in leprosy, such as changes
in cell wall permeability and regulation of pump proteins. Genetic mutation detection re-
mained the most recognized method with a high degree of sensitivity [17]. So far, although
many papers have been published on the detection of drug resistance in Mycobacterium
leprae, no publications have studied genetic mutations and amino acid substitutions in this
virus. In this study, we investigated the global drug-resistance rate and gene mutation
features of Mycobacterium leprae based on a meta-analytic approach. The paper aims to
provide new ideas for the development of strategies to eliminate drug resistance and select
more appropriate clinical treatment drug options.

2. Methods
2.1. Database and Search Strategy

The review was conducted in accordance with the established PRISMA protocol
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) [18]. The review
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protocol has been registered in the International Prospective Register of Systematic Reviews
(PROSPERO) (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD420
22340709, accessed on 2 October 2022). We limited the publication period from 1 January
2000 to 10 May 2022 and searched PubMed/MEDLINE, Web of Science (WOS), Scopus,
and Embase databases for identified studies. Medical subject terms (MeSH) and free words
were used as keywords for the literature search. In addition, the references in the identified
papers were further screened for a relevant study. The main research keywords were
“leprosy”, “Hansen’s Disease”, “resist”, “resistance”, “genes”, “mutations” and related
terms. Finally, 1098 studies were identified from the database. The detailed database search
strategy is shown in Supplementary File S1.

2.2. Study Selection

Duplicates were classified, annotated, and removed after exporting the retrieved
papers to the reference software EndNote v.9.0 (Thomson Reuters, Stamford, CT, USA).
Two researchers conducted the screening independently (Xiang Li, and Guoli Li), if dis-
agreement still exists, a third author should be consulted. Finally, we evaluated the full text
of the articles according to the inclusion and exclusion criteria.

2.3. Inclusion and Exclusion of Studies

Detailed inclusion and exclusion criteria were as follows. Inclusion criteria: (1) Drug
resistance was detected by DNA sequencing recommended by WHO; (2) The studies that
have reported mutations at target genes (Folp1, RpoB, and GyrA); (3) The studies should
include accurate sample sizes (drug-resistant or none) and complete outcomes. (4) The
included studies were primarily English-language reports (Full text). Exclusion criteria:
(1) Diagnostic evaluation of experimental studies; (2) Animal-related studies; (3) Studies
of low quality such as multiple publications, unpublished or unavailable full-text articles;
(4) Reviews, conference reports, case reports, or social commentaries.

2.4. Data Extraction and Quality Assessment

Data were extracted independently by two investigators, and any disputes were
resolved through discussion. The following information was extracted from the identified
papers: region of the study, year of the study, sample type, study period, number of
Mycobacterium leprae isolates, drug-resistance rates of Mycobacterium leprae isolates,
gene mutation frequency, and locus mutation characteristics. The Joanna Briggs Institute
recommended critical quality assessment inventory was used to assess the quality of all
included studies (JBI scale) [18]. The results of the quality evaluation criteria are shown in
the Supplementary File S2.

2.5. Statistical Analysis

Descriptive statistics were used to describe the overall search results and features of
included studies with Microsoft Excel 2021. The extracted data were imported from Excel
into Stata version 15.0. Forest plots evaluated the heterogeneity of the studies with the
inverse variance (I2) statistic and Statistical quantities (χ2). Considering the differences
among studies (I2 > 50%), the random effects model was applied at the 95% confidence
level. Otherwise, a fixed effects model was used for I2 < 50%. Subgroup analysis was
performed based on the study region, clinical treatment, drug-resistant strains, recurrence
condition, study period, and sample size. In addition, we calculated the frequency of gene
mutations and analyzed the probability of mutation at each locus with resistant strains.
Finally, publication bias was assessed using funnel plots. The authors have provided the
data extracted from the spreadsheet in the Supplementary File S3.

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022340709
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022340709
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3. Results
3.1. Characteristics and Quality Assessment of Included Studies

During the initial systematic search, 1098 studies were identified from the database.
After eliminating duplicate papers by title filtering and excerpting, 113 articles remained.
Articles with scores >5 were included based on predetermined criteria and the results of
the JBI scale scores. Finally, there were 25 articles in total included in this meta-analysis
after full-text evaluation. Figure 2 shows the search and selection process of the literature.
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Figure 2. Flow chart of literature screening.

Table 1 and the Supplementary File S3 show the study characteristics and quality
assessment. As a result, a total of 25 papers were included in this review, and there were
4349 leprosy patients included. Of these, 4128 were successfully amplified (94.92%), and
368 drug-resistant strains were obtained (RIF: 113, DDS: 145, OFL: 65, MDR: 57). A total
of 6 papers were conducted before 2009, and 14 were conducted after 2009, while the
remaining five papers were conducted outside of this temporal delineation criterion or
without notification of the time of collection. A total of 20 (80%) papers were considered
high quality because they provided accurate information on the number of drug-resistant
patients among relapsed cases. Sixteen articles also provided accurate numbers of drug-
resistant strains among MB patients (2394 cases) and PB patients (416 cases). Regarding
regional distribution, 10 studies were from Southeast Asia, 8 from the Americas, 5 from the
Western Pacific, and 1 from Europe (France) and Africa (Guinea). The study distribution
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map is shown in Figure 3. All articles reported the features of target gene mutations (Folp1,
RpoB, GyrA), while 2 papers only reported RIF/RpoB.

Table 1. The study characteristics and quality assessment of 25 included papers in this systematic review.

Author Publication
Year

Study
Period

Study
Region

Total
Positive
Samples

Percentage
* (%) MDR Folp1

(n/%)
RpoB
(n/%)

GyrA
(n/%)

JBI
Scores

Charlotte
et al. [19]. 2016 2012–2015 Africa 24 100.00 0 3 (12.50) 1 (4.17) 0 (0.00) 6

Masanori
et al. [20]. 2011 2004–2009 Asia 290 68.56 0 19 (10.16) 7 (4.29) 0 (0.00) 6

Adalgiza
et al. [21]. 2012 2006–2008 South

America 145 100.00 3 3 (5.26) 4 (7.02) 2 (3.51) 7

Liu et al. [22]. 2015 2007–2014 Asia 85 100.00 3 1 (1.49) 5 (8.77) 21
(31.34) 6

Williams
et al. [23]. 2013 2011–2012 North

America 39 100.00 0 2 (5.13) 1 (2.56) 0 (0.00) 6

Mallika,
et al [24]. 2014 2009–2013 Asia 111 79.29 2 9 (8.11) 4 (3.60) 9 (9.01) 6

Rosa
et al. [25]. 2020 2009–2013 South

America 37 100.00 12 16 (59.26) 15 (60.00) 2 (7.41) 6

Lavania,
et al. [26]. 2015 2013–2014 Asia 215 93.02 0 1 (0.47) 7 (3.26) 0 (0.00) 7

Narang
et al. [27]. 2021 2019–2020 Asia 61 100.00 2 5 (8.20) 6 (9.84) 1 (1.64) 7

Niranjan
et al. [28]. 2020 2007–2018 Asia 77 92.77 2 2 (2.60) 1 (1.30) 5 (6.49) 6

Martha,
et al [29]. 2014 1985–2004 South

America 941 100.00 6 4 (0.43) 27 (2.87) 10
(1.38) 6

Camilo
et al. [30]. 2016 2004–2013 South

America 243 100.00 1 5 (2.06) 5 (2.06) 1 (0.41) 6

Lavania
et al. [14]. 2018 2009–2016 Asia 250 100.00 17 16 (6.40) 11 (4.40) 10

(4.00) 6

Chokkakula
et al. [31]. 2019 2013–2017 Asia 290 100.00 2 8 (2.76) 1 (0.34) 8 (2.76) 6

You et al. [32]. 2005 NR Asia 104 100.00 5 20 (19.23) 3 (2.88) 1 (0.96) 6
Chen

et al. [33]. 2019 2003–2011 Asia 76 100.00 1 19 (25.00) 0 (0.00) 1 (1.32) 7

Masanori
et al. [34]. 2010 NR North

America 38 100.00 0 0 (0.00) 2 (5.26) 1 (2.63) 6

Chauffour
et al. [35]. 2018 2001–2015 Europe 160 86.96 0 13 (8.13) 3 (1.88) 2 (1.25) 6

Singh
et al. [36]. 2018 NR Asia 78 84.78 0 0 (0.00) 0 (0.00) 8

(32.00) 7

Masanori
et al. [37]. 2007 2000–2006 Asia 305 100.00 0 6 (4.58) 9 (11.54) 0 (0.00) 6

Matilde
et al. [38]. 2014 2009–2011 South

America 197 100.00 1 0 (0.00) 4 (5.26) 0 (0.00) 5

Singh
et al. [39]. 2011 NR South

America 233 100.00 0 2 (0.86) 1 (0.43) 0 (0.00) 7

Abu
et al. [40]. 2015 2007–2009 Asia 50 100.00 NS NS 2 (4.00) NS 6

Sundeep
et al. [41]. 2014 NR Asia 60 100.00 NS NS 10 (16.67) NS 6

Shi et al. [42]. 2022 2018–2021 Asia 34 100.00 1 (3.13) 0 (0.00) 3.13 6

%: Positive Sample; NS: Not studied; MB: Multibacillary; PB: Paucibacillary. *: Percentage of positive samples out
of all samples.

3.2. Drug Resistance Analysis of Mycobacterium leprae

We calculated the drug-resistance rate of Mycobacterium leprae, and due to its hetero-
geneity I2 = 89.7% > 50%, a random effects model was adopted for analysis. As shown in
Figure 4, the resistance rate of RIF, DDS, and OFL was 10.18% (95% CI: 7.85 to 12.51).
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criteria. The results show that the highest resistance rate was found in the Western Pacific
region (17.05%, 95% CI: 1.80–13.78). However, only 1 article in Europe and 1 in Africa
was included, with a resistance rate of 11.25% (95% CI: 6.35–16.15) and 16.67% (95% CI:
1.76–31.58), respectively. We have also calculated the resistance rates between different
drugs. The DDS rate was the highest (3.98%, 95% CI: 2.69–5.28), and the rate of MDR was
1.73% (95% CI: 0.83–2.63). After dividing patients into new and relapse groups, we found
that the resistance rate was 7.25% (4.65–9.84) in new cases, which was lower than the rate
of 14.26% (9.82–18.71) in relapsed patients. Temporal subgroups reported higher drug
resistance after 2009 (11.39% vs. 6.59%). In addition, studies with <100 isolates had higher
resistance rates than those with more than 100 isolates. Details of the results are shown
in Table 2.

Table 2. Summarized estimates of drug resistance stratified by region (according to WHO criteria),
different drugs, clinical treatment, relapse or new cases, and sample size variables.

Factor Study/n Cases/Positive
Samples(n) ES(%)/95% CI I2 Heterogeneity

Chi-Squared p

WHO Region
Southeast Asia 10 177/1482 11.43 (9.19–16.81) 88.8% 80.57 0.000

Americas 8 83/1873 4.19 (1.89–6.50) 82.6% 40.13 0.000
Western pacific 5 86/589 17.05 (7.17–26.93) 90.4% 41.60 0.974

Africa 1 4/24 16.67 (1.76–31.58) - - -
Europe 1 18/160 11.25 (6.35–16.15) - - -

Mediterranean
Different drugs

DDS 20 145/3325 3.98 (2.69–5.28) 86.2% 137.19 0.000
RIF 19 113/3352 2.97 (1.94–4.00) 70.6% 61.25 0.000
OFL 15 65/2609 1.90 (0.97–2.83) 72.6% 51.19 0.000
MDR 13 57/2617 1.73 (0.83–2.63) 71.7% 42.35 0.000

Relapsed or new cases
New 14 128/1960 7.25 (4.65–9.84) 86.1% 93.74 0.000

Relapse 17 119/1248 14.26 (9.82–18.71) 82.9% 87.83 0.000
Clinical Treatment

MB 15 175/2394 8.97 (6.29–11.65) 82.4% 79.57 0.000
PB 5 25/481 8.09 (2.15–14.02) 50.2% 8.03 0.091

No of isolation
≥100 13 257/3469 7.69 (5.21–10.18) 91.5% 141.26 0.000
<100 13 111/659 15.00 (9.45–20.55) 80.4% 56.15 0.000

Study period
After 2009 14 180/1652 11.39 (7.46–15.33) 91.6% 155.50 0.000

Before 2009 5 106/1785 6.59 (3.66–9.53) 82.3% 22.58 0.000
Overall 25 386/4128 10.18 (7.85–12.51) 89.7% 232.74 0.000

ES = drug-resistance rate, 95% CI = confidence interval.

3.3. Mutation Analysis of Drug Resistance Genes in Mycobacterium leprae

In this review, 20, 22, and 16 articles studied Folp1, RpoB, and GyrA genes 139, 129, and
83 times. The results showed that the mutation rates of Folp1, RpoB and GyrA were 4.40%
(95% CI: 3.02–5.77), 3.66% (95% CI: 2.41–4.90) and 1.28% (95% CI: 0.87–1.71), respectively,
as it was shown in Table 3.

Table 3. Mutation rate of drug-resistance genes.

Gene Study/n Mutations(n) ES% 95% CI I2 (%)
Heterogeneity
Chi-Squared p

Folp1 20 139 4.40 3.02-5.77 89.2 167.07 0.000
RpoB 22 129 3.66 2.41~4.90 80.2 105.84 0.000
GyrA 16 83 1.28 0.87~1.71 76.4 59.44 0.000

ES = drug-resistance rate, 95% CI = confidence interval.
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Based on the 382 drug-resistant strains, it can be seen that the RpoB gene involved
the largest variety of mutations and the GyrA the least, as it was shown in Table 4. In the
DRDR region of RpoB, the mutation rate in the codon encoding Ser was 54.17% (95% CI:
53.02–69.40), indicating that Ser had the highest probability of mutation. The codon encod-
ing Pro has the highest rate of mutation (83.97%, 95% CI: 77.58 to 90.37) in Folp1. The most
common mutation loci in GyrA was Alanine (Ala), with a probability of 75.18% (95% CI:
68.54 to 88.62). In addition, there were insufficient data from the studies to analyze rare
mutations, such as Arg in RpoB, Ala in Folp1, and Leu in GyrA.

Table 4. Genetic codon mutation characteristics.

Gene/Amino Acids Study(n) Events/
Mutations(n) ES% 95% CI I2 (%)

Heterogeneity
Chi-Squared p

RpoB (codon: 439–459)
Ser (Serine) 10 58/73 54.17 53.02~69.40 79.10 43.06 0.000

Thr (Threonine) 3 5/24 19.54 3.88~35.20 0.00 0.62 0.733
Asp (Aspartic) 8 13/92 12.32 5.67~18.98 0.00 0.64 0.913

Gln (Glutamine) 6 12/51 19.29 8.88~29.71 0.00 4.14 0.529
Ala (Alanine) 3 6/21 24.52 6.98~42.06 5.20 2.11 0.348
Leu (Leucine) 3 3/25 7.47 −2.80~17.74 0.00 0.16 0.688
His (Histidine) 2 4/37 10.52 0.76~20.27 0.00 0.00 0.949

Val (Valine) 4 4/36 10.10 0.33~19.86 0.00 0.55 0.909
Gly (Glycine) 4 7/28 25.40 3.01~47.78 53.30 6.42 0.093

Phe (Phenylalanine) 2 2/18 10.13 −3.72~23.98 0.00 0.24 0.628
Folp1 (codon: 44–64)

Pro (Proline) 10 87/112 83.97 77.58~90.37 37.80 14.47 0.107
Thr (Threonine) 11 44/133 31.36 5.32~57.41 95.60 229.51 0.000
Arg (Arginine) 2 2/37 5.31 −1.91~12.54 0.00 0.04 0.845

GyrA (codon: 81–101)
Ala (Alanine) 5 31/68 75.18 68.54~88.62 63.60 11.00 0.027
Gly (Glycine) 3 7/24 26.00 10.14~41.88 40.80 3.38 0.185
Ser (Serine) 2 7/20 23.64 7.779~39.493 86.80 7.58 0.006

ES = drug-resistance rate, 95% CI = confidence interval.

3.4. Subgroup Analysis of Site Mutation Patterns at Folp1, RpoB, and GyrA

A random effects model was used to conduct a subgroup analysis of the codon with
the highest mutation rate. As the result indicated, the most common mutation pattern
in Folp1 was Pro→Leu, followed by Pro→Arg, with an occurrence of 41.04% (95% CI:
22.76–59.31) and 36.80% (95% CI: 22.76–59.31). On the DRDR region of RpoB, Ser→Leu
was the most common mutation pattern in Folp1 (42.95%, 95% CI: 22.65–63.25), followed
by Ser→Phe (ES: 35.08%, 95% CI: 7.59–62.57). We did not perform a subgroup analysis for
Ala, since a majority of the included publications were Ala→Val (92.65%, 63/68), as shown
in Figure 5.

3.5. Publication Bias Analysis

The funnel plots were used to assess publication bias, and the standard error was
plotted against the gene mutations. The results showed a symmetrical distribution, indicat-
ing the absence of publication bias, as it was shown in Figure 6. The main causes of bias
are the following. First, leprosy has been completely eradicated in some areas, with an
insufficient number of papers available for research. Second, positive results may be more
easily published. In order to avoid publication bias and heterogeneity, we attempted to
reduce their impact on the analysis through random effects models and subgroup analysis
but were still unable to eliminate the impact on the interpretation of the pooled results.
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4. Discussion

Intensive chemical treatment has led to a significant reduction in leprosy patients.
However, the emergence of multidrug-resistance (MDR) remains a major public health
problem in leprosy control. Thus, we conducted a meta-analysis to describe the drug
resistance (DDS, RIF, OFL) and gene mutation features of leprosy, aiming to provide
recommendations for alternative treatment options.

After scoring by the JBI scale, 25 articles were included (score ≥ 5). There were
4349 patients, of which 4128 samples were successfully amplified (94.92%). Experts indi-
cated that the failure of amplification might be attributed to low or absent numbers of
bacteria and the presence of PCR inhibitors in the skin. During the treatment process with
MDT, the resistance rate for RIF, DDS, and OFL combination was 10.18% (95% CI: 7.85
to 12.51), while the single resistance rates were 4.40% (95% CI: 3.02–5.77), 2.00% (95% CI:
2.48–5.06), and 1.73% (95% CI: 0.99–3.00), respectively. The results are similar to the previ-
ous studies [43,44]. For instance, in a large cohort study of leprosy established by several
national sentinel testing centers, 8.0% of the strains had varying degrees of resistance (RIF:
3.8%, DDS: 4.5%, OFL: 1.10%, MDR: 1.24%).

We divided the study area into five parts based on the WHO criteria. It could be seen
that the highest drug-resistance rate was in the Western Pacific region (17.05%, 95% CI:
7.17–26.93). Few papers from Europe and Africa were included, comprising 11.25% and
16.67%, respectively. Leprosy was almost extinct in Europe, and the first study on AMR in
Europe was reported by Chauffour [35]: 18 cases were detected in 160 samples from France
between 2001–2015. The results suggested that further studies on drug resistance were
needed in Africa. The disease has placed a huge burden on the region, and incomplete
MDT coverage or inadequate financial support may account for insufficient research. For
example, Sofie MB recruited 1199 leprosy patients in Comoros (African region) between
2017–2019 and found that the patients were not resistant to any antimicrobial drugs [45].
Although the reasons for regional-level variation in resistance are beyond the scope of our
study, the findings still reflect differences in antibiotics use (e.g., misuse) or availability. We
can hypothesize that the distribution of resistant strains varies between regions, a finding
that provides clues to explore the distribution or population mobility of resistant patients.
In temporal subgroups, resistance rates were higher after 2009 than before (11.39% vs.
6.59%), which could be related to the global leprosy drug-resistance sentinel surveillance
program established by WHO in 2009, resulting in more patients being detected [46]. We
found a higher rate of drug resistance in relapsed patients than in new cases (14.26% vs.
7.25%), suggesting that patients were more likely to develop drug resistance if they received
MDT for longer periods of time. In addition, we found that there are significant differences
in the drug-resistance rates by sample size. Studies with <100 samples had significantly
higher resistance rates than studies with ≥100 samples, indicating that sample size was
associated with resistance rates.
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DDS competes with para-aminobenzoate (PABA) and interrupts the function of the
DHPS enzyme encoded by Folp1, disrupting folate biosynthesis [47,48]. In this study,
the mutation rate of Folp1 was 4.40% (95% CI: 3.02–5.77). It is significantly lower than
monotherapy for DDS [49]. In other words, leprosy monotherapy is more likely to induce
mutations in drug-resistant genes. RIF is also one of the most effective and broad-spectrum
antibiotics against leprosy, and the results indicated that the mutation rate of RpoB was
3.66% (95% CI: 2.41–4.90). The main mechanism of the drug acts via enzymatic activity
inhibition of the β-subunit of RNAP holoenzyme, an enzyme determined by RpoB, which
affects mRNA production and causes the death of Mycobacterium leprae [50]. As for the
core drug in MDT, the emergence of RIF-resistant strains showed that the effectiveness
of current leprosy control strategies is being challenged. DNA gyrase is an important
enzyme in Mycobacterium that catalyzes ATP-dependent transient cleavage and negative
supercoiling of closed-loop DNA [51]. GyrA determines the protein, and mutations within
the gene are associated with resistance to ofloxacin. The mutation rate of GyrA was 1.28%
(95% CI: 0.87~1.71). However, in a study conducted in Shandong Province, China, the
mutation rate was 25.93%. The high resistance rate may be because the majority of patients
in this region are from the rural population, and there is a phenomenon of antibiotic abuse,
which leads to primary OFL-resistant strains [22].

Based on the 368 resistance strains, we analyzed the mutation rate of the gene codon.
As the results indicated, Pro was the most common mutation locus of Folp1, with a rate of
83.97% (95% CI: 77.58–90.37), followed by the codon Thr (ES: 31.36%, 5.32~57.41). Sundeep
also demonstrated that the mutations in target genes mostly involved these two amino acid
loci [52]. We found that the pattern of Pro was replaced by Leu with a probability of 41.04%
(95% CI: 22.76–59.31), followed by Arg (36.80%, 95% CI: 17.20~56.40). The highest mutation
probability was found at the Ser on RpoB, 54.17% (53.02–69.40). It has been shown that the
dynamics of protein phosphorylation at these two amino acid residues can regulate cellular
activities in bacteria and eukaryotes [53]. In addition, the most common mutation pattern
was Ser→Leu (42.95%, 95% CI: 22.65~63.25), which was also found in Mycobacterium
tuberculosis, influenza virus, or Escherichia coli [54–56]. Indeed, the mutation feature of
Ser→Leu has been demonstrated to significantly reduce the replication and hemagglutinin
(HA) cleavage of the H1N2 swine influenza virus and is an influential factor in attenuating
viral pathogenicity [57]. Therefore, we speculate that the viability and virulence of RIF-
resistant strains will be reduced, but further validation is needed. The mutations in the
GyrA target gene were mostly Ala, with a mutation rate of 75.18 % (95% CI: 68.54 to 88.62).
Mutations in Ala can be considered a marker of resistance to OFL in Mycobacterium leprae.
Furthermore, Ala→Val was the most common substitution pattern.

In summary, there are three distinctive features of drug resistance in leprosy. First, the
global drug-resistance rate to MDT therapies is low, and the number of resistant strains
decreases with fewer patients. Second, mutations in the resistance-determining regions
of the target genes (Folp1, RpoB, and GyrA) were mainly involved in Pro, Ser, and Ala,
and the resistant strains exhibit similar mutation patterns, such as Ser→Leu on RpoB.
Similar results have also been found in other mycobacterial genera, such as Mycobacterium
tuberculosis [57]. In the studies of resistant strains of Mycobacterium tuberculosis, mutations
in different codons of RpoB may be associated with different levels of rifampicin resistance.
For instance, mutations of Ser were associated with high levels of resistance to rifampicin
(minimum inhibitory concentration [MIC] >64 µg/mL). It is well known that Mycobacterium
leprae and Mycobacterium tuberculosis are highly homologous in the DRDR region of the RpoB
gene. We can reasonably speculate that the viability and virulence of RIF-resistant strains
may be increased. Experts also suggested that the RIF-resistant strains of Mycobacterium
leprae have become better adapted to the drug and more virulent after RIF treatment [58–60].
Therefore, further validation is needed in future studies. At last, evidence of mutations in
the resistance-determining region gene locus of M. leprae strains can help clinicians to select
alternative treatment options for their patients, such as a combination of RIF, OFL, and
clarithromycin. The emergence of resistance to OFL as a complementary therapy has also
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caused anxiety in patients. Patients who have never received quinolones for leprosy may
have been treated with drugs for other infections, resulting in primary drug resistance [61].
The priority now is to establish a better resistance surveillance policy, careful post-treatment
follow-up of cured patients, rapid identification of strains that may develop secondary
resistance, earlier detection of recurrent cases and new treatment regimens, and more
resistance investigations in endemic areas (e.g., Africa).

The present review has some limitations. Firstly, despite these subgroup analyses,
there was still a high degree of heterogeneity in the included studies. This heterogeneity
may reflect variability in sample collection methods or size. Secondly, the coverage of
studies in some regions was low (e.g., Europe and Africa) and some articles contained a
small sample size, which may have affected the final results. Thirdly, the meta-analysis
only included drug-resistance mutation loci from these 25 articles, and there may be other
mutations that have not yet been identified. At last, there were some potential publication
biases in our meta-analysis, such as time lag bias or citation bias.
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