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DATA NOTE

Mitochondrial DNA sequences 
and transcriptomic profiles for elucidating 
the genetic underpinnings of cisplatin 
responsiveness in oral squamous cell carcinoma
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Abstract 

Objectives:  Functional genetic variation plays an important role in predicting patients’ response to chemotherapeu-
tic agents. A growing catalogue of mitochondrial DNA (mtDNA) alterations in various cancers point to their important 
roles in altering the drug responsiveness and survival of cancer cells. In this work, we report the mtDNA sequences, 
obtained using a nanopore sequencer that can directly sequence unamplified DNA, and the transcriptomes of oral 
squamous cell carcinoma (OSCC) cell lines with differing responses to cisplatin, to explore the interplay between 
mtDNA alterations, epigenetic regulation of gene expression, and cisplatin response in OSCC.

Data description:  Two human OSCC cell lines, namely H103 and SAS, and drug-resistant stem-like cells derived 
from SAS were used in this work. To validate our hypothesis that cisplatin sensitivity is linked to mtDNA changes, we 
sequenced their mtDNA using a nanopore sequencer, MinION. We also obtained the whole transcriptomic profiles of 
the cells from a microarray analysis. The mtDNA mutational and whole transcriptomic profiles that we provide can be 
used alongside other similar datasets to facilitate the identification of new markers of cisplatin sensitivity, and there-
fore the development of effective therapies for OSCC.
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Objective
Oral squamous cell carcinoma (OSCC) is a common 
malignant tumour of the head and neck [1]. To date, cis-
platin remains the first-line chemotherapeutic agent for 
OSCC. However, its efficacy is limited by drug toxicity 
and the resistance capabilities of cancer cells [2]. Recently, 
mitochondrial DNA (mtDNA) abnormalities have been 
reported in various cancers, highlighting their immedi-
ate role in modulating cancer development and survival 

and therapeutic resistance [3, 4]. By altering mtDNA 
replication or transcription, mtDNA defects may impair 
mitochondrial functions, including energy production, 
biosynthesis, cell signalling, and regulation of oxidative 
stress and cell death [5–7]. In this work, we hypothesized 
that functional genetic variation in mtDNA could alter 
cisplatin-mitochondria interaction, potentially leading to 
enhanced toxicity or reduced drug efficacy.

In our previous work [8], we examined the influ-
ence of mtDNA alterations on the cisplatin respon-
siveness of human OSCC cell lines, SAS and H103, 
obtained from Japanese Cell Bank Research and 
European Collection of Authenticated Cell Cultures, 
respectively. We also derived cancer stem-like cells 
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(CSCs) from the cell lines via a sphere-forming assay. 
We demonstrated that compared with SAS, H103 
and the tumour spheres derived from SAS (which we 
loosely classified as a cell line) had reduced sensitiv-
ity towards cisplatin. To validate our prior hypothesis 
that cisplatin sensitivity is linked to mtDNA changes, 
we used MinION, a nanopore sequencer, to obtain 
the mtDNA profiles of the cells. We also performed a 
microarray-based transcriptomic analysis of the cells 
to explore the complex interplay between mtDNA and 
nuclear DNA, which could be manifested as genetic or 
epigenetic changes.

Here, we report the mtDNA sequences and the tran-
scriptomes of the cells with differing responses to cispl-
atin [8]. One of the microarray datasets (H103), despite 
having been published elsewhere [8], has not been thor-
oughly analysed. Our findings add to the budding body 
of genomic and transcriptomic data, where pooled analy-
ses may aid in the identification of molecular markers 
for predicting cisplatin response and enabling precise 
anticancer therapies of OSCC. The unique mechanism 
of nanopore sequencing, which draws on the distinc-
tive electric current patterns produced by different DNA 
motifs, allows the detection of both sequence variations 
and DNA methylation. Therefore, the sequencing data 
can also be reused for in-depth analysis of mtDNA pro-
files and development of more effective tools for process-
ing nanopore sequences.

Data description
All the data files associated with this work are listed in 
Table 1. The study design is illustrated in Data file 1. The 
characteristics of the OSCC cell lines used in this work 
are described in Data file  2. The characterization of the 
stem cell-like tumour spheres and the measurements 
of cisplatin sensitivity of the three cell lines have been 
reported previously [8]. All the methods provided in the 
following sections are condensed versions of the methods 
described in our previous work [8].
MinION sequencing
We performed six MinION sequencing runs for H103, 
SAS, and SAS tumour spheres using two MinION Spo-
tOn Flow Cells version R9.5 (Oxford Nanopore Tech-
nologies (ONT), UK; Data file  3). We first co-extracted 
supercoiled mtDNA and nuclear DNA of the cells using 
QIAprep Miniprep Kit (QIAGEN, Germany) and Agen-
court AMPure XP (Beckman Coulter Inc., USA) [19]. The 
sequencing libraries were prepared using the 1D Ligation 
Sequencing Kit (SQK-LSK108; ONT, UK), loaded onto 
the flow cells, and sequenced for 48 hours. The flow cells 
were washed using a Wash Kit (EXP-WSH002; ONT, 
UK) before they were reused for subsequent sequencing 
runs.

Raw sequencing signals stored in FAST5 files were 
acquired by MinKNOW version 1.6 (ONT, UK; Data 
set 1). The sequencing run performance was assessed 
using Poretools [20] (Data file 4). During sequencing, live 

Table 1  Overview of data files/datasets

Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or accession 
number)

Data file 1 Schematic overview of the study design Image file (.tif ) Figshare (https://​doi.​org/​10.​6084/​m9.​figsh​are.​14701​
590) [9]

Data file 2 The general characteristics of the oral squamous cell 
carcinoma cell lines

Document file (.pdf ) Figshare (https://​doi.​org/​10.​6084/​m9.​figsh​are.​14701​
581) [10]

Data file 3 Details of sample processing and sequencing runs Document file (.pdf ) Figshare (https://​doi.​org/​10.​6084/​m9.​figsh​are.​14703​
801.​v1) [11]

Data file 4 Poretools visualizations of the FAST5 files generated 
by each sequencing run

Image file (.tif ) Figshare (https://​doi.​org/​10.​6084/​m9.​figsh​are.​14701​
572) [12]

Data file 5 Albacore base-called reads statistics generated using 
NanoStat

Document file (.pdf ) Figshare (https://​doi.​org/​10.​6084/​m9.​figsh​are.​14701​
578.​v1) [13]

Data file 6 Mapping statistics generated using QualiMap and 
Geneious

Document file (.pdf ) Figshare (https://​doi.​org/​10.​6084/​m9.​figsh​are.​14701​
587.​v1) [14]

Data file 7 The workflow for sequencing read processing and 
variant-calling analysis

Image file (.tif ) Figshare (https://​doi.​org/​10.​6084/​m9.​figsh​are.​14701​
584.​v1) [15]

Data file 8 The transcriptomic profiles of SAS, SAS tumour 
spheres, and H103, as analysed via GeneChip Human 
Clariom S arrays

Image file (.tif ) Figshare (https://​doi.​org/​10.​6084/​m9.​figsh​are.​14701​
575.​v1) [16]

Data set 1 Raw MinION sequencing data files FAST5 file (.fast5) Sequence Read Archive (Accession No.: PRJNA712949) 
[17]

Data set 2 Raw microarray data files CEL file (.CEL) Gene Expression Omnibus (Accession No.: GSE168424) 
[18]
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base-calling with a read quality score threshold of 7 was 
executed by an in-built MinKNOW base-caller. To base-
call all the reads, additional post-sequencing base-call-
ing was performed using Albacore version 1.2.6 (ONT, 
UK). The quality of the base-called reads was assessed 
using NanoStat [21] (Data file  5). The base-called reads 
were mapped to the human reference genome assem-
bly GRCh38 using BWA-MEM [22], generating align-
ment files (Sequence Alignment Map (SAM) format). 
The mapping statistics are provided in Data file  6 [23]. 
The SAM files were compressed into the binary format 
(BAM) using SAMtools [24]. The variants were called by 
Nanopolish [25], which compared the aligned reads with 
the revised Cambridge Reference Sequence of mtDNA 
in the GRCh38 assembly. The accuracy of variant call-
ing was evaluated by a cross-check of the quality-filtered 
variants with Sanger sequencing, as described in our pre-
vious work [8]. The workflow for sequence reads process-
ing and variant-calling analysis is provided in Data file 7.

Microarray analysis
Total RNA was isolated and purified using innuPREP 
RNA Mini Kit (Analytik Jena, Germany) and RapidOut 
DNA Removal Kit (Thermo Fisher Scientific Inc., USA). 
The purified RNA samples were subjected to a whole 
transcriptomic analysis using the GeneChip Human 
Clariom S Array (Thermo Fisher Scientific Inc., USA; the 
analysis outsourced to Research Instruments Sdn. Bhd., 
Malaysia). The raw data files (CEL files) were obtained 
from the GeneChip Command Console Software 
(Thermo Fisher Scientific Inc., USA; Data set 2). The 
transcriptomic profiles of the cells, as described in Data 
file 8, were analysed using Transcriptome Analysis Con-
sole 4.0 (Affymetric Inc., USA). As reported previously, 
the findings of the microarray analysis were confirmed 
by real-time quantitative polymerase chain reactions 
(qPCR) [8].

Limitations
The MinION sequencing produced raw signals stored in 
FAST5 files, whose size ranged from 321 MB to 6.94 GB 
(Data file  5). The notably varied file size was a conse-
quence of variable sequencing output that was deter-
mined by the number of active nanopores in a flow cell at 
the start of a sequencing run. We found that the availabil-
ity of active nanopores declined progressively after con-
secutive uses. Both amplicon and native DNA libraries of 
H103 that were sequenced on two used flow cells yielded 
low average depths of on-target coverage (Data file 6). As 
a result, Nanopolish could not call a complete profile of 
mtDNA variants for H103. Nevertheless, we performed 
‘fill-in’ Sanger sequencing for regions that were not 

adequately covered to provide a complete set of mtDNA 
variants for H103, as described in our previous work [8].

All the nanopore reads had average quality scores 
consistently ≥10, computed from every position in 
the reads (Data file  4). The read quality scores may 
seem low if we assess them on the same scale used to 
interpret the widely used Phred scores; and if we con-
sider the levels of data accuracy typically reported for 
other platforms. However, some have pointed out that 
the quality scores reflect error characteristics pecu-
liar to MinION and should not be considered equiva-
lent to the Phred-based scores [26]. Other researchers 
intending to reuse the data should be aware that the 
read quality scores may improve (or deteriorate) sig-
nificantly with different base-calling schemes. Creating 
an algorithm for accurately rendering electrical signals 
derived from the nanopores into DNA sequences are 
still an area of ongoing research.
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