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Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene. It is a leading
monogenic cause of autism spectrum disorder and inherited intellectual disability and is often comorbid with attention
deficits. Most FXS cases are due to an expansion of CGG repeats leading to suppressed expression of fragile X mental
retardation protein (FMRP), an RNA-binding protein involved in mRNA metabolism. We found that the previously
published Fmr1 knockout rat model of FXS expresses an Fmr1 transcript with an in-frame deletion of exon 8, which
encodes for the K-homology (KH) RNA-binding domain, KH1. Notably, 3 pathogenic missense mutations associated with
FXS lie in the KH domains. We observed that the deletion of exon 8 in rats leads to attention deficits and to alterations
in transcriptional profiles within the medial prefrontal cortex (mPFC), which map to 2 weighted gene coexpression
network modules. These modules are conserved in human frontal cortex and enriched for known FMRP targets. Hub
genes in these modules represent potential therapeutic targets for FXS. Taken together, these findings indicate that

© The Author(s) 2019. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

http://www.oxfordjournals.org
http://orcid.org/0000-0003-1445-3724
http://orcid.org/0000-0002-6739-939X
http://orcid.org/0000-0001-6961-3129
http://orcid.org/0000-0001-9383-6883
http://orcid.org/0000-0001-8898-8313
http://orcid.org/0000-0001-8283-9093
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto: journals.permissions@oup.com


attentional testing might be a reliable cross-species tool for investigating FXS and identify dysregulated conserved gene
networks in a relevant brain region.

Key words: 5-choice serial reaction time task, fragile X syndrome, medial prefrontal cortex, RNA sequencing

Introduction
Fragile X syndrome (FXS) is a leading monogenic cause of
autism spectrum disorder (ASD) and the most frequent known
form of inherited intellectual disability (ID) (Bagni et al. 2012).
FXS is caused by the loss of Fragile X Mental Retardation
Protein (FMRP), which is encoded by the FMR1 gene on chromo-
some X (Bagni et al. 2012). FMRP is involved in the regulation of
messenger RNA (mRNA) translation (Napoli et al. 2008; Darnell
et al. 2011; De Rubeis et al. 2013), shuttling of mRNA to den-
dritic spines (Santoro et al. 2012), and stability of mRNA (Zalfa
et al. 2007; Zhang et al. 2018). FMRP contains several RNA-
binding domains, including 3 K-homology (KH) domains and an
arginine–glycine box (RGG) (Vasilyev et al. 2015; D’Annessa
et al. In Press). In most FXS cases, FMRP loss occurs when the
unstable trinucleotide CGG repeat at the 5′ untranslated region
of FMR1 expands to above 200 copies, resulting in the hyper-
methylation and transcriptional silencing of FMR1 (Richter
et al. 2015). Notably, both point mutations (Suhl and Warren
2015) and deletions (Hammond et al. 1997; Coffee et al. 2008)
within the FMR1 gene coding sequence have also been reported
in a small number of individuals, including 3 missense muta-
tions in the KH domains (Pozdnyakova and Regan 2005; Zang
et al. 2009; Di Marino et al. 2014; Myrick et al. 2014) (Fig. 1).

Attention deficits and hyperactivity are very common behav-
ioral manifestations in FXS and are prevalent in both males and
females (Gross, Hoffmann, et al. 2015). Attention in rodents
requires an intact medial prefrontal cortex (mPFC) (Chudasama
and Robbins 2006), which shares functions with prefrontal regions
that are anatomically (Hoeft et al. 2010; Bray et al. 2011; Hallahan
et al. 2011) and functionally (Menon et al. 2004; Hoeft et al. 2007)
impaired in individuals with FXS. Despite the repeated implica-
tion of the mPFC as a nexus of cognitive dysfunction in FXS, it
has been the focus of very few preclinical studies in animal mod-
els (Krueger et al. 2011; Sidorov et al. 2014; Gross, Raj, et al. 2015).
In the current study, we used a rat model of FXS to study the
involvement of the mPFC in FXS.

To analyze the role of Fmrp in the mPFC, we employed
behavioral, molecular, and bioinformatic approaches using a
recently described rat model with a 122 base-pair (bp) in-frame
deletion in exon 8 that was previously shown to have enhanced
protein synthesis, exaggerated Group 1 mGluR-dependent long-
term depression (LTD), increased spine head width and spine
density in the CA1 region of the hippocampus (Hamilton et al.
2014; Till et al. 2015), and macroorchidism (Hamilton et al.
2014). We found that this 122 bp deletion leads to skipping of
exon 8 and the expression of a gene product that lacks the KH1
domain (Fmrp-ΔKH1). To study how this deletion affects visuo-
spatial attention, which requires an intact mPFC (Muir et al.
1996; Chudasama et al. 2003), we used the 5-choice serial reac-
tion time task (5-CSRTT) (Mar et al. 2013). In addition, we char-
acterized the transcriptional profiles in the mPFC and identified
discrete groups of conserved coregulated genes.

Materials and Methods
Generation of the Fmr1-Δexon 8 Rat Model

The Fmr1-Δexon 8 rat model, previously reported as the Fmr1
knockout (KO) rat model (Engineer et al. 2014; Hamilton et al.
2014; Till et al. 2015; Kenkel et al. 2016; Berzhanskaya et al. 2017),
was generated using zinc-finger nucleases (ZFN) in the outbred
Sprague-Dawley background. The design and cloning of the
ZFN, as well as the embryonic microinjection and screening for
positive founder rats were performed by SAGE Labs (Boyertown,
PA USA) as previously described (Kulinski et al. 2000). The best
performing ZFN pair targeting the CATGAACAGTTTATCgtacga
GAAGATCTGATGGGT sequence, located between 18 686 and 18
721 bp in the Fmr1 gene (NCBI reference sequence NC_005120.4),
was used for embryo microinjection. Positive Sprague-Dawley
founder animals with a deletion in the Fmr1 gene were mated to
produce F1 breeding pairs. Polymerase chain reaction (PCR)
amplification at the target sites followed by sequencing analysis
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Figure 1. Likely pathogenic or pathogenic point mutations associated with FXS. Likely pathogenic or pathogenic mutations in the coding region of the FMR1 gene pub-

lished (De Boulle et al. 1993; Lugenbeel et al. 1995; Pozdnyakova and Regan 2005; Zang et al. 2009; Collins et al. 2010; Gronskov et al. 2011; Di Marino et al. 2014; Handt

et al. 2014; Myrick et al. 2014; Myrick, Deng, et al. 2015; Okray et al. 2015; Xiong et al. 2015; Quartier et al. 2017; Sitzmann et al. 2018) or deposited in ClinVar are sum-

marized here. The FMRP domains are reported as described in Myrick, Hashimoto, et al. 2015. Mutations are indicated using the HGSV nomenclature. Reference

sequences used are Q06787 for the protein and NM_002024.5 for the cDNA. The splice-site mutations are indicated by their splice-site nomenclature and localized to

the position of the first amino acid predicted to be affected. For NM_002024.5:c.990+1 G > A and NM_002024.5:c.420–8 A > G (Quartier et al. 2017), we have indicated

the amino acid change identified experimentally (p.Lys295Asnfs*11 and p.Met140llefs*3, respectively). All mutations are absent in gnomAD. Mutations p.Gly266Glu

and p.Ile304Asn are supported by functional and/or structural analyses (Pozdnyakova and Regan 2005; Zang et al. 2009; Di Marino et al. 2014; Myrick et al. 2014). Age,

Agenet-like domain (also known as Tudor domain); KH, K-homology domain; RGG; arginine–glycine-glycine box. Missense mutations are indicated in red; protein-

truncating mutations are in black.
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revealed the exact deletion of 122 bp at the junction of intron 7
and exon 8 (between 18 588 and 18 709 bp), as previously
described by Hamilton et al. (2014).

Animal Breeding, Care, and Husbandry

This study used age-matched male and female littermate rats. To
produce both male genotypes (Fmr1-Δexon 8+/y, Fmr1-Δexon 8−/y)
and all 3 female genotypes (Fmr1-Δexon 8+/+, Fmr1-Δexon 8+/−, and
Fmr1-Δexon 8−/−) we set up 2 pairs of breeders: Fmr1-Δexon 8+/y ×
Fmr1-Δexon 8+/− and Fmr1-Δexon 8−/y × Fmr1-Δexon 8+/−. Wild type
(WT) and Fmr1-Δexon 8−/y male rats were used for both the RNA
sequencing (RNAseq) analyses and the attentional task and WT,
Fmr1-Δexon 8+/−, and Fmr1-Δexon 8−/− female rats were used for the
attentional task. All rats were kept under veterinary supervision in
a 12h reverse light/dark cycle at 22 ± 2 °C. Animals were pair-caged
with food and water available ad libitum. Rats tested on the
5-CSRTT were food restricted to 85% of their free-feeding weight. All
animal procedures were approved by the Institutional Animal Care
and Use Committee at the Icahn School of Medicine at Mount Sinai.

Testes Weight

Testes were dissected from 10-week-old male Fmr1-Δexon 8−/y rats
(n = 19) and WT littermates (n = 19). After gonadal fat pads were
removed and testes were weighed, testes:body weight ratios
were calculated. The data was analyzed with a 2-tailed t-test.

Total Lysate Preparation

mPFC tissues were dissected from 8-week-old rats as previ-
ously described (Spijker 2011). Tissues were homogenized in
100 μL ice cold RIPA buffer supplemented with a 1:100 protein-
ase inhibitors cocktail (Thermo Scientific) and a 1:100 phospha-
tase inhibitors cocktail (Thermo Scientific), using a Teflon-glass
homogenizer. The homogenate was centrifuged at 12 000 × g
for 20min at 4 °C. The recovered supernatant was centrifuged
again at 12 000 rpm for 20min at 4 °C. The protein concentra-
tion in the final recovered supernatant was determined using
the BCA protein assay (Pierce).

Structural Data

FMR1 orthologs from 58 species, including Drosophila melanogaster,
2 Enterogona (Chordata: Tunicata), 12 fishes, Xenopus tropicalis,
2 reptiles, 5 birds, and 35 mammals, were extracted from
Ensembl and aligned using Alvis v. 0.1 software. The X-ray
structure of the human FMRP KH1-KH2 domains (PDBID =
2QND) was generated using Pymol v1.7.2.1.

Immunoblotting

Immunoblotting was performed using a standard protocol
(Bozdagi et al. 2010). Briefly, 10 μg of each protein lysate were
loaded to a 4–12% SDS-polyacrylamide gel electrophoresis (PAGE
gel, Invitrogen; Carlsbad, CA USA), which was transferred to
polyvinylidene fluoride membrane for immunoblotting. For
Fmrp detection, we used the anti-Fmrp (G468) antibodies tar-
geted against the C-terminus of the Fmrp (1:1000, Cell Signaling)
and the anti-Fmrp (F3930) antibodies targeted against the N-
terminus of Fmrp (1:1000, Sigma Aldrich). Anti beta III tubulin
antibodies (1:2000, Abcam; ab18207) were used to quantify the
beta III tubulin level, used for normalization. Horseradish peroxi-
dase (HRP)-conjugated antirabbit (1:5000) and HRP-conjugated
antimouse antibodies (1:5000) were purchased from Jackson

ImmunoResearch Laboratories (West Grove, PA USA) and used
as secondary antibodies. ECL substrate (Pierce; Thermo
Scientific, Rockford, IL) or SuperSignal West Femto (Thermo
Scientific, Rockford, IL) substrates were used to produce the sig-
nal that was detected on a G:Box Chemi-XT4 GENESys imager
(Syngene; Cambridge, UK). Blots were quantified using ImageJ
(Schneider et al. 2012).

Immunoprecipitation Followed by Immunoblotting
Analysis

Prefrontal cortex were dissected from 8-week old WT and
Fmr1-Δexon 8−/y rats and homogenized in lysis buffer (100mM
NaCl, 10mM MgCl2, 10mM Tris–HCl, 1mM diothiolhreitol, 1%
Triton X-100, (1:100) proteinase inhibitors cocktail (Thermo
Scientific) and (1:100) phosphatase inhibitors cocktail (Thermo
Scientific)), using an electric tissue homogenizer (Napoli et al.
2008). Samples were incubated on ice for 5min and centrifuged
at 12 000 × g for 8min at 4 °C. The recovered supernatant was
centrifuged again at 12 000 × g for 8min at 4 °C. The protein con-
centration in the final recovered supernatant was determined
using the BCA protein assay (Pierce). A 800 μg of protein extract
was used for Fmrp immunoprecipitation experiments. Fmrp was
immunoprecipitated based on the previously established proto-
col (Brown et al. 2001). Briefly, Fmrp was immunoprecipitated
with 6.24 μg 7G1-1 Fmr1 monoclonal antibody conjugated to
1.5mg of Protein A Dynabeads (Invitrogen). The same amount of
monoclonal mouse IgG2B (R&D Systems) was used as a control.
The immunoprecipitates as well as 20 μg of prefrontal cortex
protein lysate from WT and Fmr1-Δexon 8−/y rats were loaded
onto 4–12% SDS-polyacrylamide gel electrophoresis (PAGE gel,
Invitrogen; Carlsbad, CA) and ran for 3 h at 200V, 60mA to allow
an optimal separation of the bands around 75MW followed by
transfer onto PVDF membranes (Invitrogen) using XCell II Blot
Module system (Thermo Scientific). Membranes were immuno-
blotted with anti-Fmrp antibodies (1:1000, N-Terminal, Sigma
Aldrich F3930-25UL). Subsequently, membranes were incubated
with appropriate antirabbit HRP-conjugated secondary antibo-
dies (1:5000, Jackson ImmunoResearch Laboratories). Images
were developed usingWest Femto (Thermo Scientific).

PCR Amplification on Genomic DNA Followed by Sanger
Sequencing

Tail samples were collected from WT and Fmr1-Δexon 8−/y rats
and DNA was extracted using the QIAamp DNA Mini Kit
(Qiagen) according to the manufacturer’s instructions. 25 ng of
each sample was PCR-amplified using the Fmr1-G-F and Fmr1-
G-R primers. PCR products were loaded onto an agarose gel and
pure bands from each of the WT and Fmr1-Δexon 8−/y samples
were sliced from the gel and cleaned using the QIAquick Gel
Extraction Kit (Qiagen). Purified samples were sent to GENEWIZ
for Sanger sequencing using both of the Fmr1-G-F and Fmr1-G-R
primers. The location and sequence of the primers are
described in Supplementary Table S1.

Reverse Transcriptase PCR (RT-PCR) Followed by Sanger
Sequencing

mPFC tissues were dissected from 8-week old WT and
Fmr1-Δexon 8−/y male rats as previously described (Spijker 2011).
RNA was extracted using the RNeasy Mini Kit (Qiagen) accord-
ing to the manufacturer’s instructions. A 2 μg of RNA was then
used to prepare cDNA, using the SuperScript II Reverse
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Transcriptase Kit (Invitrogen) and following the manufacturer’s
instructions. A 100 ng of each sample was PCR-amplified using
the F-Fmr1, which aligns to exons 6/7 junction and the R-Fmr1,
which aligns to exons 9/10 junction. PCR products were loaded
on an agarose gel and pure bands from each of the WT and
Fmr1-Δexon 8−/y samples were sliced from the gel and cleaned
using the QIAquick Gel Extraction Kit (Qiagen). Purified samples
were sent to GENEWIZ for Sanger sequencing using both of the
F-Fmr1 and R-Fmr1 primers. The location and sequence of the
primers are described in Supplementary Table S1.

Open Field Test

Rats were exposed to a brightly lit novel 90 cm × 90 cm environ-
ment during their light-cycle for one hour. All horizontal move-
ments were automatically tracked by Noldus Ethovision system
and samples were analyzed in 10-min bins. After a significant
effect of time and no significant effect of genotype were discov-
ered in a first batch of animals (WT: n = 6, Fmr1-Δexon 8−/y: n = 7),
the experiment was repeated and the same effect was repli-
cated in a second batch (WT: n = 7, Fmr1-Δexon 8−/y: n = 5). The
data was analyzed with the SPSS statistical package, version 23
(IBM SPSS Statistics, Armonk, North Castle, NY) using repeated
measures ANOVA where time was the within-subjects factor,
genotype was the between-subjects factor, and batch was a
covariate.

5-CSRTT

The 5-CSRTT was carried out as we have previously described
(Harony-Nicolas et al. 2017), with slight modifications due to
performance. Briefly, training on the 5-CSRTT began when the
rats were 8-week old and after they were habituated to being
handled and food deprived to achieve ~85% of free feeding
weight. Rats were first trained to touch the location of an illu-
minated white square presented at 1 of 5 locations on a
Bussey-Saksida capacitive touchscreen system (Lafayette
Instrument Company; Lafayette, IN) (Mar et al. 2013) using
ABET II Software for Touch Screens. If a capacitive screen touch
occurred at the illuminated location during the stimulus pre-
sentation, sucrose (valve open for 250ms) was delivered in the
reward receptacle located across the chamber from the
touchscreen. Training occurred in stages, where the light stim-
ulus duration decreased from 60 to 30 to 20 to 10 to 5 to 2.5 s.
Rats advanced schedules once criterion performance was met.
Criteria for progression were an accuracy rate higher than 80%
(accuracy rate = number of correct trials/total trials) and an
omission rate lower than 20% (omission rate = number of omit-
ted trials/total trials). Trials where the rat made a correct
response after the time allotted were termed “late responses.”
Once criterion was reached with a stimulus duration of 2.5 s,
training was recorded as complete. Four separate batches of
animals were trained on the 5-CSRTT, totaling 12 WT male, 15
Fmr1-Δexon 8−/y male, 11 WT female, 13 Fmr1-Δexon 8+/− female,
and 12 Fmr1-Δexon 8−/− female rats, where the experimenter
was blind to subject genotype. Five Fmr1-Δexon 8−/y male, 1 WT
female, 1 Fmr1-Δexon 8+/− female, and 2 Fmr1-Δexon 8−/− female
rats that either did not reach criterion on a stimulus duration
of 5 s after 30 sessions or on a stimulus duration of 2.5 s after 45
sessions were removed from analysis. When subsets of 10 ani-
mals per group were randomly sampled from the male and
female WT and Fmr1-Δexon 8 dataset 10 000 times and analyzed
via a 2-way ANOVA (genotype × sex), a significant main effect
of genotype (P < 0.05) on the % omissions measure at a 2.5 s

stimulus duration was observed 92% of the time, suggesting
that there was reproducibility of a particularly significant find-
ing regardless of batch. Therefore, we focused our analysis on
the pooled data. Because Fmr1 is X-linked, there was an imbal-
ance in the number of genotypes available between males (2)
and females (3). Thus, the analysis included 2 separate compar-
isons: 1) WT male and female rats were compared with
Fmr1-Δexon 8−/y male and Fmr1-Δexon 8−/− female rats and 2) WT
female rats were compared with Fmr1-Δexon 8+/− and Fmr1-Δexon
8−/− female rats. Data analysis of training data was comprised
of linear mixed-effects modeling (LMM) where sex, genotype,
and stimulus duration were fixed factors and rat was nested
into batch as a random factor using custom scripts written in
the R statistical programming environment (R Development
Core Team, 2006).

RNA Isolation, Library Preparation, and Data
Availability

RNA was extracted from mPFC tissues from 8-week old WT (n =
12) and Fmr1-Δexon 8−/y (n = 12) littermate rats using the RNeasy
Mini Kit (Qiagen), according to the manufacturer’s instructions.
Subsequently, the quantity of all purified RNA samples was
measured on a nanodrop (2.07 ± 0.01 A260/280; 2.11 ± 0.19 A260/

230) and the quality and integrity were measured with the
Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). All RNA
integrity numbers were greater than 9 (9.6 ± 0.3). Next, 1 μg of
total RNA was used for the preparation of the RNAseq library
using the Illumina Genome Analyzer IIx TruSeq mRNA Seq Kit
supplied by Illumina (Cat number: RS-122-2001). A poly-A-
based mRNA enrichment step was carried out and cDNA was
synthesized and used for library preparation using the Illumina
TruSeqTM RNA sample preparation kit as previously described
(Tariq et al. 2011), except for the following step: adapter-ligated
DNA fragments were size-selected by gel-free size selection
using appropriate concentration of SPRI AMPure beads to get
an average 200 bp peak size in adapter ligated DNA. The size
selected adapter-ligated DNA fragments were amplified by LM-
PCR. Then, Illumina recommended 6 bp barcode bases were
introduced at one end of the adapters during PCR amplification
step. The amplified PCR products were then purified with SPRI
AMPure XP magnetic beads to get the final RNAseq library,
which was used for high-throughput RNAseq.

All samples were sequenced on the Illumina Genome
Analyzer IIx. A total of 40 million 100 bp paired-end sequences
were used to reliably assess expression for each sample.
Overall, the design of the experiment was as follows: 12 bar-
coded samples/per brain region were used, of which 6 of each
genotype were pooled and loaded onto 2 lanes so that each
sample was spread across 2 lanes in order to minimize con-
founds associated with lane effects. These raw RNAseq fastq
data have been submitted to Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/) under the accession number
GSE126057.

Short Read Mapping and Quantification of Gene
Expression

All high-quality short reads were mapped to the rat reference
genome rn4 using the STAR Aligner v2.4.0g1 (Dobin et al. 2013)
with 2-pass mapping strategy (–twopassMode Basic). RNAseq
read and alignment quality was checked with the FastQC and
RNA-seqQC tools, respectively. Uniquely mapped reads with
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overlapping genes were counted with featureCounts v1.4.4 (Liao
et al. 2014) parameters (featureCounts -T 10 -p -t exon -g gene_id).

RNAseq Data Preprocessing

Raw count data measured 16 499 transcripts across all samples
(12 WT and 12 Fmr1-Δexon 8−/y rats). Nonspecific filtering
required more than 2 counts per million (cpm) in at least 12
samples and retrained 14 745 transcripts. Filtered raw count
data was subjected to conditional quantile normalization (CQN)
(Hansen et al. 2012) to remove systematic bias introduced by
GC-content and correct for global distortions, resulting in a nor-
mally distributed data matrix. Normalized data were inspected
for outlying samples using unsupervised clustering of samples
(Pearson’s correlation coefficient and average distance metric)
and principal component analysis to identify outliers outside 2
standard deviations from these grand averages. Based on these
metrics, 2 outliers were removed from these data (WT = 2).
Rattus ENSEMBL symbols were converted to HGNC symbols,
then converted to human orthologues using Ensemble biomart
conversion (http://www.ensembl.org/biomart). In order to form
the bases for cross-species comparisons (rat, human), one large
reference transcriptome of the mPFC in WT rats was con-
structed by integrating RNAseq gene expression data from an
additional 24 WT rats (Ntot = 35). These data were processed in
an identical fashion as described above, and were generated in
3 batches (i.e., different processing dates). Combat batch correc-
tion (Leek et al. 2012) was applied to resolve systematic sources
of variability across batches.

Finally, to estimate the relative frequencies of brain cell
types for each sample, Cibersort deconvolution analysis was
applied (https://cibersort.stanford.edu/). Cibersort (Newman
et al. 2015) relies on known cell subset specific marker genes
and applies linear support vector regression to estimate the rel-
ative frequencies of cell types from bulk tissue. A priori defined
brain cell type specific RNAseq expression markers (Zhang
et al. 2014) were used as a signature matrix to obtain estimates
for neurons, oligodendrocytes and astrocytes in all samples.

Visualization of the Fmr1 Deletion and Splice Junctions

To enable in-depth visualization of the deletion in exon 8 of the
Fmr1 gene, we used depth of coverage plots from the Integrated
Genome Browser (IGB) (http://bioviz.org/igb/). The Rattus norvegi-
cus reference genome version Nov_2004 was used as a reference
genome, and 2 pooled BAM alignment files were used as input,
one for each genotype (WT and Fmr1-Δexon 8−/y). Subsequently, to
visualize predicted splice junctions in the Fmr1 gene, we used the
Integrative Genome Viewer (IGV) (http://software.broadinstitute.
org/software/igv/). Similarly, the Rattus norvegicus reference
genome version Nov_2004 was selected, and sorted BAM files
from each rat were loaded separately (10 WT and 12 Fmr1-Δexon
8−/y) and then pooled across genotypes to show the total number
for each genotype.

Differential Gene Expression Analysis

Differential gene expression (DGE) signatures between WT and
Fmr1-Δexon 8−/y rats were identified using moderated t-tests in
the limma package (Ritchie et al. 2015). The covariates RIN, par-
ents, age, and date of dissection were included in the models to
adjust for their potential confounding influence on gene
expression between-group main effects. P-value significance
was set to an FDR-corrected P-value of < 0.05. This assumption

was later relaxed to an FDR-corrected P-value of < 0.1 to yield a
sufficient number of genes for down-stream network enrich-
ment analyses.

Weighted Gene Coexpression Network Analysis

Weighted gene coexpression network analysis (WGCNA)
(Langfelder and Horvath 2008) was used to build coexpression
networks. To construct each network, the absolute values of
Pearson correlation coefficients were calculated for all possible
gene pairs and resulting values were transformed with an
exponential weight (β) so that the final matrices followed an
approximate scale-free topology (R2 ≥ 0.80). The dynamic tree-
cut algorithm was used to detect network modules with a mini-
mum module size set to 50 and cut tree height set to 0.99.
These parameters were used to construct 3 separate networks.
First, we built one large reference transcriptome network using
all available mPFC samples from WT rats (n = 35, genes =
14 745, β = 10). Nonspecific filtering required more than 2 counts
per million (cpm) in at least 12 samples (1 batch) and retrained
14 552 transcripts. The resulting WT modules were assessed for
enrichment for Fmr1-Δexon 8−/y DGE signatures, FMRP targets,
CNS cell type specificity, genetic risk loci for neurodevelopmen-
tal disorders and gene coexpression modules implicated in ASD
cases, as described below. We then sought to determine
whether any WT modules displaying significant enrichment for
Fmr1-Δexon 8−/y DGE signatures and FMRP targets were also pre-
served in human cortex samples. To this end, we collected pre-
viously published healthy unaffected human cortical (BA 9/41)
gene expression data (Voineagu et al. 2011) (RIN, 7.5 ± 0.6; Age,
33.25 ± 13.09; PMI, 23.58 ± 6.3; Sex, 16M/1 F) and restricted our
analysis to HGNC gene symbols that were commonly expressed
in both rat and human data (genes = 6 926). Using this subset of
genes, a second WT network was constructed (β = 10) and a
separate, third network was constructed for human cortical
gene expression (β = 15). Our module preservation analysis
sought to determine whether any fundamental differences
exist in the underlying gene coregulatory patterns, as being
preserved or disrupted, in WT rats as compared with humans,
and vice versa. For these analyses, module preservation was
assessed using a permutation-based preservation statistic,
Zsummary, implemented within WGCNA with 500 random per-
mutations of the data (Langfelder et al. 2011). Zsummary takes
into account the overlap in module membership as well as the
density and connectivity patterns of genes within modules.
Zsummary score < 2 indicates no evidence of preservation, 2 <
Zsummary < 10 implies weak preservation and Zsummary > 10
suggests strong preservation.

Functional Annotation and Protein Interaction
Networks

Gene modules and DGE signatures with an FDR-corrected
P-value < 0.1 and an absolute log fold-change > 0.10 were sub-
jected to functional annotation. First, the ToppFunn module
(Chen et al. 2009) of ToppGene Suite software was used to
assess enrichment of Gene Ontology (GO) terms specific to bio-
logical processes and molecular factors using a one-tailed
hypergeometric distribution with family-wise FDR at 5%.
Second, gene modules implicated in the neurobiology of FMR1
were used to build direct protein–protein interaction (PPI) net-
works, which can reveal key genes and transcription factors
mediating the regulation of multiple target genes. PPIs were
obtained from the STRING database (Franceschini et al. 2013)

2232 | Cerebral Cortex, 2019, Vol. 29, No. 5

http://www.ensembl.org/biomart
https://cibersort.stanford.edu/
http://bioviz.org/igb/
http://software.broadinstitute.org/software/igv/
http://software.broadinstitute.org/software/igv/


with a signature query of the reported module gene list. STRING
implements a scoring scheme to report the confidence level for
each direct PPI (low confidence: < 0.4; medium: 0.4–0.7; high:
>0.7). We used a combined STRING score of >0.7 and reported
only the highest confidence interactions. We further used
STRING to test whether the number of observed PPIs were sig-
nificantly more than expected by chance using a nontrivial ran-
dom background model (that is, null model). For visualization,
the STRING network was imported into CytoScape (Shannon
et al. 2003).

Module Overlap and User-Defined List Enrichment
Analyses

DGE signatures and WT networks were annotated as described
above. In addition, cell type enrichment was performed by cross-
referencing gene modules with previously defined lists of genes
known to be preferentially expressed in different brain cell types
(Cahoy et al. 2008; Zeisel et al. 2015). Neurodevelopmental
genetic risk loci were curated from human genetic studies of
ASD (Xu et al. 2012; De Rubeis et al. 2014; Sanders et al. 2015), ID
(Parikshak et al. 2013), schizophrenia (SCZ) (Fromer et al. 2016),
and a list of well-known FMRP target genes (Darnell et al. 2011).
Over-representation analysis of these gene sets within DGE sig-
natures and WT transcriptome modules was analyzed using a
one-sided Fishers exact test to assess the statistical significance.
All P-values, from all gene sets and modules, were adjusted for
multiple testing using Bonferroni procedure. We required an
adjusted P-value < 0.05 to claim that a gene set is enriched
within a user-defined list of genes. All user-defined lists can be
found in Supplementary Data 1.

Quantitative RT-PCR

RNA was prepared, as described above, from a new cohort of WT
and Fmr1-Δexon 8−/y littermate rats (n = 7/genotype). A 1 μg cDNA
was synthesized from RNA samples using the SuperScript II
Reverse Transcriptase Kit (Invitrogen). The universal probe
library (UPL) system (Roche) was used to perform RT-PCR. Two
reference genes (Rplp0 and Gapdh) were used for normalization.
The relative expression levels were calculated using qBase soft-
ware (Hellemans et al. 2007), now available from Biogazelle
(Ghent, Belgium). Primers for each gene were designed using
ProbeFinder Software (Roche). The location and sequences of the
primers and the UPL probe numbers are listed in Supplementary
Table S1.

Results
Validation of an Fmr1-Δexon 8 Rat Model of FXS

ZFN targeting Fmr1 were used to introduce a 122 bp genomic
deletion in the gene in order to develop a rat model of FXS,
which has been published on previously (Engineer et al. 2014;
Hamilton et al. 2014; Till et al. 2015; Kenkel et al. 2016;
Berzhanskaya et al. 2017) and referred to here as the Fmr1-Δexon
8 rat (Fig. 2A). We used both PCR and genomic Sanger sequenc-
ing to confirm the 122 bp deletion between base-pairs 18 588 and
18 709 (NCBI reference sequence: NC_005120.4), spanning part of
intron 7 and exon 8 of the Fmr1 gene (Supplementary Fig. S1A–
C). To examine the effect of the genomic deletion on Fmr1
mRNA, we amplified the coding sequence between exons 7 and
9 using RT-PCR (Fig. 2B) followed by Sanger sequencing (Fig. 2C).
This analysis revealed that in the Fmr1-Δexon 8−/y rat at least a
portion of mRNAs show a skipping of exon 8, which results in an

in-frame deletion (Fig. 2C). Using Western blot analysis with
antibodies directed against the C-terminus or the N-terminus of
Fmrp, we detected the full-length Fmrp (~75KDa) in WT, but not
in Fmr1-Δexon 8−/y rats, where we detected a band at a lower
molecular weight (~70KDa) (Fig. 2D). Immunoprecipitation using
a monoclonal antibody against the N-terminus of Fmrp and
detection with both N-terminus and C-terminus directed antibo-
dies (Supplementary Fig. S2A) recovered the ~75KDa band in WT
rats and the 70KDa band in Fmr1-Δexon 8−/y rats. The sequencing
results, the immunoprecipitation results, and the ~70 kDa
molecular weight are compatible with an Fmr1-Δexon 8−/y rat in-
frame deletion of the 57 amino acids encoded by exon 8 and
composing the KH1 domain of Fmrp (Supplementary Fig. S2B).
Notably, the ~70KDa band had decreased expression relative to
Fmrp in WT rats (19.8–41.5%), indicating that although the in-
frame deletion did not cause Fmr1-Δexon 8 mRNA degradation, it
might have resulted in reduced translational efficiency or most
likely reduced stability of the resultant protein.

The FMRP KH1 domain is structurally organized by 3 anti-
parallel β-strands and 3 α-helices (β1-α1-α2-β2-β′-α′ configura-
tion) with a GxxG loop between α1 and α2 forming a cleft for
the RNA binding (Supplementary Fig. S2C). As shown by the
sequence conservation obtained from alignment of FMR1 ortho-
logs across 58 species (Valverde et al. 2008), the KH1 domain
has very strong evolutionary conservation (Supplementary
Fig. S2A). Interestingly, amongst the point mutations in FMR1
associated with FXS, there are 3 missense and 2 frameshift
mutations in the KH domains, including p.Gly266Glu, which
lies in the KH1 domain (Myrick et al. 2014) (Fig. 1). The pheno-
type associated with this mutation includes the characteristic
dysmorphic facial features of FXS, macroorchidism, and ID in
comorbidity with ASD and Attention-Deficit/Hyperactivity
Disorder (ADHD) (Myrick et al. 2014).

The rat with the deletion of exon 8 shares some phenotypes
with the Fmr1 KO mouse (Huber et al. 2002; Qin et al. 2005; Dolen
et al. 2007; Osterweil et al. 2010; Wijetunge et al. 2014), including
enhanced protein synthesis, alterations in mGluR-dependent
LTD, and deficits in spine density and morphology (Hamilton
et al. 2014; Till et al. 2015). We also observed a significant
increase in testes:body weight ratio in the Fmr1-Δexon 8−/y rats
compared with their WT littermates (Supplementary Fig. S3; 2-
tailed t-test, P = 0.019), replicating the macroorchidism pheno-
type reported in the rat (Hamilton et al. 2014) and in mouse
models for FXS (Bakker et al. 1994). In contrast to the findings
from the Fmr1 KO mouse model (Baker et al. 2010; Kazdoba et al.
2014; Sorensen et al. 2015), however, the rat model does not
appear to have increased locomotion in the open field test
(Hamilton et al. 2014; Till et al. 2015). We replicated this lack of
hyperactivity in the open field test, observing a significant effect
of time (Supplementary Fig. S4; repeated measures ANOVA for
time, P < 0.0001), where animals slowed down over the course of
the trial, but no interaction between time and genotype. We
focused our studies on attention, another key cognitive behavior
that is impaired in FXS and that is dependent upon a brain
region clinically implicated in FXS, the mPFC.

Fmr1-Δexon 8 Rats Have Deficits in Sustained Attention

We assessed visuospatial attention with the 5-CSRTT. In this
task, rats must respond quickly with a nose poke to briefly pre-
sented light stimuli after a 5-s delay (Fig. 3A) (Mar et al. 2013).
ADHD is comorbid with FXS in both males and females (Gross,
Hoffmann, et al. 2015). To compare across sexes, we tested
Fmr1-Δexon 8−/y and Fmr1-Δexon 8−/−, which have comparable
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genetic vulnerability, and Fmr1-Δexon 8+/− to probe for a dose
effect. This type of study cannot be carried out in humans due
to the fact that homozygous mutations in females with FXS do
not exist. Rats were trained in stages where the duration of the
light stimulus was incrementally decreased from 60 to 30 to 20
to 10 to 5 to 2.5 s and were progressed to the next stage once
performance criterion were met (≥80% accuracy and ≤20%
omissions). Decreasing stimulus durations increases demands
on sustained attention because briefer stimuli require more
attentional effort in order to continue to detect and respond to
them successfully.

Two separate analyses were performed: 1) male and female
WT rats were compared with male Fmr1-Δexon 8−/y and female
Fmr1-Δexon 8−/− rats and 2) female WT rats were compared with
Fmr1-Δexon 8+/− and Fmr1-Δexon 8−/− rats (see Methods). Whereas
all but one of the WT controls were able to meet criterion on
the most difficult stage (stimulus duration of 2.5 s) and were
therefore able to complete training, 5 male Fmr1-Δexon 8−/y, 1

female Fmr1-Δexon 8+/−, and 2 female Fmr1-Δexon 8−/− rats were
unable to complete training. When we analyzed male and
female WT rats compared with Fmr1-Δexon 8−/y and Fmr1-Δexon
8−/− rats, there was a significant association between genotype
and completion of training (Fig. 3B; 2 × 2 contingency table for
genotype × completion of training, Phi = 0.038). There was, how-
ever, no association between sex and completion of training
(Phi = 0.599). Furthermore, there was no interaction between
sex and genotype on attentional performance across training in
WT and Fmr1-Δexon 8 rats (Supplementary Table S2), suggesting
that, much like patients with FXS, both male and female
Fmr1-Δexon 8 rats behave similarly. Therefore, data from both
sexes were pooled for visual representation and presented in 2
groups: WT and Fmr1-Δexon 8.

By examining the performance of all rats that completed
training, we found that Fmr1-Δexon 8 rats took more sessions to
reach criterion in the final 2 stages (where the stimulus dura-
tions were 5 s and 2.5 s) compared with WT littermates (Fig. 3C;
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linear mixed-effects model (LMM), for genotype × schedule
across training P = 0.001, for genotype at 5 s, P = 0.003, 2.5 s, P =
0.015). We also found that the decline in performance was par-
alleled by an increase in omission rates (Fig. 4A; LMM for geno-
type across training, P = 0.001), where the Fmr1-Δexon 8 rats
omitted more often than WT littermates at stimulus durations
shorter than 30 s (Fig. 4A; LMM for genotype at 20 s, P = 0.038,
10 s, P = 0.011, 5 s, P = 0.02, 2.5 s, P = 0.001). Some of the
responses that we previously believed were omissions were in
fact correct responses that were performed after the time allot-
ted. We refer to these as “late responses.” We also found that
the Fmr1-Δexon 8 rats performed more of these late responses
than WT littermates (Fig. 4B; LMM for genotype across training,
P = 0.009) at the shortest stimulus durations (Fig. 4B; LMM for
genotype at 5 s, P = 0.012, 2.5 s, P = 0.018). When the Fmr1-Δexon
8 rats did make the correct choice in the time allotted, they
took longer to respond than WT littermates (Fig. 4C; LMM for
genotype across training, P = 2.01 × 10−33, at 30 s, P = 0.003, 20 s,
P = 0.009, 10 s, P = 0.026, 5 s, P = 0.032). Altogether, these find-
ings indicate impaired sustained attention in male and female
Fmr1-Δexon 8 rats across training.

Importantly, these deficits were not attributed to impair-
ments in learning or sensory perception because 1) accuracy
remained unaffected across all training sessions for each stim-
ulus duration (Fig. 4D; LMM for stimulus duration × genotype,
P = 0.463, and genotype, P = 0.924) and 2) the increased omis-
sion rates only appeared at the 20 s stimulus duration and
onward. Furthermore, the deficits were not due to decreased
motivation for food or motor deficits because the latency of
Fmr1-Δexon 8 rats to collect reward after a correct response was
comparable to WT rats (Supplementary Fig. S5A; LMM for stim-
ulus duration × genotype, P = 0.671, and genotype, P = 0.931)
and the average total amount of trials completed did not differ

by genotype (Supplementary Fig. S5B; LMM for stimulus dura-
tion × genotype, P = 0.755, and genotype, P = 0.385).
Additionally, the rate of premature responses in Fmr1-Δexon 8
rats was equal to WT littermates and both were low overall,
suggesting that impulsivity was not a factor in the delay in
reaching criterion (Supplementary Fig. S5C; LMM for stimulus
duration × genotype, P = 0.926, and genotype, P = 0.613).

Notably, Sprague Dawley rats can typically perform the task
with a stimulus duration of 1 s or less (Auclair et al. 2009;
Harony-Nicolas et al. 2017). Furthermore, often training on the
5-CSRTT is followed by testing of baseline performance at the
shortest stimulus duration obtainable and then challenge trial
testing where the task parameters are manipulated (Robbins
2002; Semenova 2012; Boutros et al. 2017). In Fmr1-Δexon 8 rats,
sustained attention deficits appeared during training and the
rats were not able to perform the task at stimulus durations
shorter than 2.5 s, suggesting a relatively severe deficit in sus-
tained attention that did not allow for further testing on more
demanding tasks.

We did not find sex differences amongst Fmr1-Δexon 8 rats;
however, males, regardless of genotype, took longer to collect
reward than females (Supplementary Fig. S6A; LMM for sex ×
schedule, P = 0.024, for sex at 30 s, P = 0.022, 20 s, P = 0.01, 10 s,
P = 0.005, 5 s, P = 0.024). Also, females, regardless of genotype,
made more perseverative responses after a correct choice at 60,
30, 5, and 2.5 s (Supplementary Fig. S6B; LMM for sex, P = 0.001,
at 60 s, P = 0.012, 30 s, P = 0.021, 5 s, P = 0.023, 2.5 s, P = 0.004).
To our knowledge, this is the first study to report sex differ-
ences in perseverative responses and reward collection latency
in rats on the 5-CSRTT. Both might be explained by overall
greater activity in females, which are also more active than
males in the open field test (Archer 1975). In our second analy-
sis, we found that female Fmr1-Δexon 8+/− rats, which have
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variable expression of FMRP with the in-frame deletion due to
random X chromosome inactivation, did not have significant
deficits in any of these measurements compared with their WT
and Fmr1-Δexon 8−/− sex-matched littermates (Fig. 5).

In summary, these results indicate that male and female
Fmr1-Δexon 8 rats have impairments that are specific to sus-
tained attention, which is also commonly disrupted in indivi-
duals with FXS (Cornish et al. 2001).

Changes to the mPFC Gene Expression Profile in the
Fmr1-Δexon 8 Rat Model of FXS

To identify gene expression differences associated with Fmr1-
exon 8 deletion in a brain region largely responsible for sus-
tained attention, we applied transcriptome-wide RNAseq and
measured global gene expression profiles in mPFC samples of
WT and Fmr1-Δexon 8−/y rats following the analytic pipeline and
data preprocessing described in Supplementary Figures S7 and
S8 (see Materials and Methods). We first confirmed, based on
the RNAseq data and using the IGV and the IGB, that the dele-
tion in Fmr1 leads to exon 8 skipping (Supplementary Fig. S10).
Exon 8 is in fact not detected in Fmr1-Δexon 8−/y rats (Fig. 6A).
Similarly, we found that the levels of RNA transcripts aligning
to Fmr1 exon sequences (except for exon 8) are comparable
between WT and Fmr1-Δexon 8−/y samples, indicating that the
decreased level of the protein observed in our immunoblotting
analysis is not due to reduced mRNA levels. Subsequently, we
sought to identify DGE signatures and found 259 up- and 297
down-regulated genes in Fmr1-Δexon 8−/y rats compared with
WT (using False Discovery Rate [FDR] < 0.1) (Fig. 6B,
Supplementary Data 2). Notably, these genes were mainly asso-
ciated with differences in genotype and not with any other fac-
tor, including differences in parents, RIN values, age, date of
dissection, or estimated cell type proportions (Supplementary
Fig. S8H). Consistent with this result, DGE signatures largely
separated the 2 genotypes (Fig. 6C).

To validate our findings in an independent cohort of rats
(n = 7/genotype), we used RT-PCR on a cross section of the dif-
ferentially expressed genes (DEGs), including both up- and
down-regulated genes, for a total of 16 DEGs. Analysis of the
correlation between the 2 studies (i.e., absolute values of the
RNAseq and RT-PCR mean fold changes) showed a significant
correlation (R2 = 0.74, P < 0.0001) (Fig. 6D). Moreover, 8 out of
the 16 DEGs showed statistically significant changes (one tail
t-test, P < 0.05) and 3 showed a trend towards significance (one
tail t-test, P < 0.1) (Fig. 6D).

Next, to gain biological insights into the function of the
DEGs, we performed GO enrichment analysis (Fig. 6E). We found
that up-regulated genes were enriched in biological processes
that included transmembrane transporter activity (q-value FDR
B&H < 4.02×10−02). In parallel, down-regulated genes were
enriched for 1) cellular components, including neuron part
(q-value = 2.45 × 10−02), neuron projection (q-value = 2.45E-02),
synapse (q-value = 2.85 × 10−02), and axon part (q-value = 3.74 ×
10−02) and 2) biological processes including generation, differen-
tiation, and migration of neurons (q-value = 4.57 × 10−02),
enzyme linked receptor protein signaling pathway (q-value =
4.57 × 10−02), and actin filament based processes (q-value = 4.57
× 10−02) (Supplementary Data 2).

We then tested whether the Fmr1-Δexon 8−/y DEGs were
enriched for Fmrp targets (Darnell et al. 2011) or risk genes for
ASD (Xu et al. 2012; De Rubeis et al. 2014; Sanders et al. 2015),
ID (Parikshak et al. 2013), or genes found with de novo muta-
tions in SCZ (Fromer et al. 2016). We found that the down-
regulated genes in Fmr1-Δexon 8−/y rats show significant overlap
with Fmrp targets (∩ = 33, FDR P = 0.0002) and SCZ genes (∩ = 7,
FDR P = 0.03) (Supplementary Fig. S10).
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Rat mPFC Gene Networks, Preserved in Human Frontal
Cortex, are Altered in Fmr1-Δexon 8 Rats

Next, we asked whether mPFC gene networks in WT rats are
conserved in human and if any of the conserved networks
were especially vulnerable to the effects of Fmr1-Δexon 8
deletion. To address these questions, we first built a refer-
ence WT coexpression network by combining mPFC RNAseq
data across 35 WT rats, matched for age and sex, and using
WGCNA (see Materials and Methods). Because these 35 sam-
ples were prepared in 3 different batches, we first used the
Combat batch correction (Leek et al. 2012) to resolve any

systematic sources of variability (Supplementary Fig. S11)
before performing our conetwork analysis. Our WGCNA iden-
tified 23 modules specific to the mPFC of WT rats
(Supplementary Data 1). Next, we determined whether the
coexpression patterns of these 23 modules were preserved in
the human brain. For this purpose, we created separate tran-
scriptional networks from previously published human cortex
tissue (BA 9/41) sampled from control individuals (Voineagu
et al. 2011) in order to systematically explore potential species
similarities and differences. Interspecies coexpression preser-
vation has been shown to prioritize disease gene selection
under genetic disease loci and to categorize the function of
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poorly characterized genes better than coexpression in a sin-
gle species (Miller et al. 2010; Mueller et al. 2017). This
approach is sensitive to detecting fundamental differences in
the underlying gene coregulatory patterns between WT rats
and healthy humans, and vice versa, as being preserved or dis-
rupted. Using a permutation-based preservation statistic

(Zsummary) with 500 random permutations, we observed strong to
moderate preservation between the 2 species (all network mod-
ules displayed a Zsummary score > 2, which was higher than a ran-
dom sampling of 100 genes), indicating similar levels of gene
coregulation between rat mPFC and human frontal cortex
(Fig. 7A).
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To assess whether WT rat modules were vulnerable to the
Fmr1-Δexon 8 deletion, we tested for enrichment of the Fmr1-Δexon
8−/y DEGs. Of the 23 identified modules, one module (blue) con-
tained a strong, significant over-representation for Fmr1-Δexon 8−/y

down-regulated genes and FMRP targets, and another module
(midnightblue) was enriched for Fmr1-Δexon 8 up-regulated genes
and FMRP targets (Fig. 7B). The blue module also contained a sig-
nificant enrichment for neuronal cell type markers and genes
implicated in ASD, ID and SCZ (Fig. 7B, Supplementary Data 1).
Functional annotation of the blue module revealed enrichment
primarily associated with synaptic signaling, gated channel activ-
ity, and neuronal system-related terms (Fig. 7C). The midnight-
blue module did not display any cell type specificity nor any
enrichment for risk genes. Functional annotation of the mid-
nightblue module revealed functional terms implicating MapKKK
activity, synaptic vesicle docking, and neurotransmitter secretion
(Fig. 7C).

Subsequently, we tested whether genes that are coex-
pressed together in the blue module indeed interact with each
other at the protein level. A significant over-representation of
high-confidence direct protein interactions was identified in
the blue module, beyond what was expected by chance (P <
0.0001) (Fig. 7D). Hub genes in the blue module include numer-
ous FMRP target genes including MTOR, ANK2, ANK3, SCN2A,
GRIN2A, RELN, and NRXN1 (Darnell et al. 2011).

Discussion
This study is the first to uncover that the “Fmr1 KO rat” is not a
null KO of Fmr1, but instead results in a gene product with a
loss of exon 8, which encodes a domain within Fmr1 that is
responsible for RNA-binding, the KH1 domain (Burd and
Dreyfuss 1994). Notably, a point mutation was reported in the
Fmrp-KH1 domain of an individual with FXS and was shown to
cause deficits in mRNA binding, polyribosome association, and
mGluR-mediated trafficking of AMPA receptors (Myrick et al.
2014). Further, disrupted function of the KH1 domain was suffi-
cient to cause the classic symptoms of FXS that usually follow
from silencing of the entire FMR1 gene, including attention defi-
cits. Similarly, we find that the Fmr1-Δexon 8 rats have impair-
ments in sustained attention that parallel those reported in
individuals with FXS (Cornish et al. 2001). In addition, we find
alterations in their mPFC transcriptional profiles, which is of
potential translational value for subjects with FXS. It is impor-
tant to note that the deletion in exon 8 in this rat model both
caused a depletion of the KH1 domain and led to a decrease in
Fmrp expression. Therefore, we cannot discriminate whether
the observed phenotype is specifically due to a loss of function
of the KH1 domain or simply low expression of Fmrp.

The basis of the deficit in sustained attention could be
ascribed to functional impairments in the mPFC of Fmr1-Δexon 8
rats. Dysregulated sustained attention has been shown to fol-
low manipulations of mPFC activity in rats that have previously
acquired the task. Lister hooded rats that underwent treatment
with an immunotoxin to deplete cholinergic function in the
nucleus basalis magnocellularis of the basal forebrain, which
sends cholinergic projections to the medial frontal cortex, had
increased omissions and no difference in accuracy (Risbrough
et al. 2002). Increased omissions and response latency were
also observed in rats with lesions to mPFC or imbalanced inhi-
bition/disinhibition in mPFC (Muir et al. 1996; Pezze et al. 2014).
The performance of Fmr1-Δexon 8 rats during the acquisition of
the 5-CSRTT mirrors the performance of rats that underwent
specific manipulations of mPFC activity, indicating that the

mPFC is implicated in the manifestation of these attentional
deficits in the Fmr1-Δexon 8 rat model and could be a result of
an insult to the mPFC by the Fmr1 mutation during early devel-
opmental stages. Similar findings were reported in the Fmr1 KO
mice, where deficits in acquisition of the 5-CSRTT were accom-
panied by alterations in prefrontal synaptic composition and
neural activity (Krueger et al. 2011). We recently reported a sim-
ilar deficit in sustained attention and impairment in mPFC syn-
aptic plasticity in a Shank3-deficient rat (Harony-Nicolas et al.
2017), suggesting convergent findings across models of ASD
and ID disorders that are often comorbid with ADHD. Taken
together, these findings indicate that the mPFC warrants fur-
ther study as the basis of cognitive impairment in this
Fmr1-Δexon 8 rat model of FXS.

Our approach to address this was to probe the molecular pro-
file of the mPFC following the loss of exon 8 using RNAseq analy-
sis. We observed hundreds of dysregulated genes (FDR 10%)
associated with Fmr1-Δexon 8. Up-regulated genes were enriched
in biological processes that included transmembrane transporter
activity. Genes within this GO category included several solute
carrier proteins including a member of the Na+/H+ exchanger
superfamily, SLC9A9. This family of exchangers controls ion
transport across membranes, which is essential for regulating
cellular pH and electrical excitability that is known to be affected
in FXS (Kondapalli et al. 2014). SLC9A9 is highly expressed in the
brain and mutations in the encoding gene have been associated
with ASD (Prasad et al. 2017), ADHD (de Silva et al. 2003; Brookes
et al. 2006; Lasky-Su et al. 2008), and epilepsy, which are all prev-
alent in FXS (Kondapalli et al. 2014).

Down-regulated genes were enriched for neural and synap-
tic components and for biological processes including genera-
tion, differentiation, and migration of neurons and actin
filament-based processes. Impaired actin cytoskeletal function
has consistently been reported in FXS models and is thought to
underlie the abnormal dendritic spine phenotype common to
subjects with FXS (Maurin et al. 2014). It is possible that the
observed down-regulation at the transcriptional level is a sec-
ondary effect of increased translation caused by the mutation
and/or reduced Fmrp levels. Alternatively, this down-regulation
could instead be a direct consequence caused by the loss of
Fmrp. For example, Fmrp has been shown to regulate mRNA
stability (Zalfa et al. 2007; Zhang et al. 2018). The decreased
levels of transcription observed could reflect the destabilization
of mRNA molecules in the absence of Fmrp. Future studies are
needed to further examine the mechanisms by which a loss of
Fmrp leads to the observed transcriptional alterations.

Results derived from our reference WT transcriptome coex-
pression network echo our DGE findings and further refine the
biological processes involved in Fmr1-Δexon 8. Functional anno-
tation of the blue module, which we found to be conserved in
human PFC coexpression networks and to be significantly
enriched for down-regulated Fmr1-Δexon 8-related genes, known
Fmrp targets, neuronal cell type signatures, and genes impli-
cated in ID, ASD and SCZ, revealed enriched GO terms includ-
ing neuronal system, axon guidance, and neurexin (an Fmrp
target (Darnell et al. 2011)) and neuroligin interactions. These
biological processes were previously reported to be dysregu-
lated in a transcriptomic study of the cerebellum of Fmr1 KO
mice (Kong et al. 2014) and in functional studies of Fmrp
(Tucker et al. 2006; Bhakar et al. 2012). Amongst the hub genes
in the blue module are numerous FMRP target genes and sev-
eral ASD risk genes, including MTOR, ANK2, ANK3, TSC1, SCN2A,
GRIN2A, RELN and NRXN1. Interestingly, all of these genes are
implicated in neurodevelopmental disorders. ANK2, SCN2A,
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and NRXN1 are top risk genes for ASD (Sanders et al. 2015) and
the others are associated with neurodevelopmental syndromes
(e.g., MTOR in Smith-Kingsmore syndrome) (MIM 616638), ANK3
in an autosomal recessive ID syndrome (MIM 615493), GRIN2A
in a form of focal epilepsy and speech disorder with or without
ID (MIM 245570), RELN in a lissencephaly syndrome (MIM
257320), and NRXN1 in Pitt-Hopkins-like syndrome (MIM
614325). This module also includes the TSC1 gene, which is
associated with Tuberous Sclerosis (MIM 191100).

In summary, we have shown here that a specific deletion of
exon 8 in Fmr1 is sufficient to cause FXS-like phenotypes in rat.
The behavioral task we employed provides a tool to screen
potential therapeutic candidates for efficacy in treating a highly
common cognitive deficit observed in these rats that is also
seen in both males and females diagnosed with FXS: dysregu-
lated attention, which is associated with mPFC dysfunction. In
addition, the results from our RNAseq analysis of the mPFC
supply multiple potential treatment avenues to explore. Now
that these deficits are elucidated in the Fmr1-Δexon 8 rat, we can
begin to uncover their underlying circuit mechanisms by prob-
ing the mPFC with in vivo imaging and electrophysiology.
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