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Summary We analysed the status of the p53 gene and protein in eight newly established acute myeloid leukaemia (AML) cell lines
representing blast cells of either de novo leukaemia patients in first remission or patients with relapsed and chemotherapy-resistant disease
causing their death. There were no mutations in the p53 gene in any of the cell lines as analysed by single-strand conformation polymorphism
of amplified exons 5–8. However, the p53 protein was clearly and consistently expressed in all of these cell lines, as shown by
immunohistochemistry, Western blotting and flow cytometry. The consistently expressed p53 protein was located in both the nucleus and the
cytoplasm of all the cell lines and, as shown by flow cytometry, it was mostly in a conformation typical of the mutated protein. These AML cell
lines offer a tool for studying the production and function of the p53 protein and its possible role in cell cycle regulation and chemoresistance
as well as in the regulation of apoptosis in AML.

Keywords: p53; AML; cell lines

British Journal of Cancer (1999) 79(3/4), 407–415
© 1999 Cancer Research Campaign
Article no. bjoc.1998.0064
The expression of wild-type (wt) p53 protein is usually undetect-
able but, when the cells are exposed to physical or chemical geno-
toxic stimuli, the levels rise rapidly, leading to either arrest in the
cell cycle or initiation of apoptosis (Kastan et al, 1991; Fritsche et
al, 1993; Lu and Lane, 1993; Tishler et al, 1993).

In cancer, the function of p53 is often disturbed (for reviews, see
Selivanova and Wiman, 1995; Gottlieb and Oren, 1996; Hainaut
and V�h�kangas, 1997). In a large proportion of human solid
tumours, missense mutations can be found to occur in the area of
the central DNA-binding domain of p53 (reviewed by Greenblatt
et al, 1994; Hollstein et al, 1994; Levine, 1997). Mutations often
cause changes in the conformation of the protein and lead to inac-
tivation of p53 (Zhang et al, 1992; Milner, 1994; Hainaut, 1995).
The conformation of p53 may, however, also be changed for
reasons other than missense mutations, such as changes in the
redox condition, temperature and phosphorylation status of the
protein (Hainaut, 1995; Steegenga, 1996; Levine, 1997). Binding
to products of many viral oncogenes as well as the cellular onco-
protein mdm-2 may inactivate the p53 protein (Linzer and Levine,
1979; Bargonetti et al, 1991; Momand et al, 1992). Mutation or
binding often leads to an increased half-life of p53 and in such
cases, even without any evidence of growth arrest or apoptosis, the
expression of p53 protein is easily observable in cells (for reviews
see, for example, Gottlieb and Oren, 1996; Harris, 1996; Ko and
Prives, 1996).

Because the inactivation of p53 in cancer has been associated
with poor survival, refractory disease and chemoresistance (Lowe
et al, 1993; Soini et al, 1993; Marks et al, 1996; Dive 1997), it is
conceivable that restoring the function of p53 in cancer cells is
worth development in cancer treatment (for a review see e.g.
Harris 1996). The first in vivo studies on p53 gene therapy in lung
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cancer have already been published (Fujiwara et al, 1994; Roth 
et al, 1996). A plausible new form of cancer therapy would be to
activate p53 by restoring the wt p53 conformation of cancer cells
(Harris, 1996; Levine, 1997). This would become possible through
characterization of the p53 regulatory pathways.

Relapses and chemoresistance continue to be major problems in
malignant haematological disorders, especially in AML, which
causes death in over 80% of patients over 65 years old (Hamblin,
1995). However, mutations in the p53 gene have been found to be
very rare in these disorders (Greenblatt et al, 1994). In AML, the
incidence of mutations is as low as less than 5% (Fenaux et al,
1992; Schottelius et al, 1994). One possible explanation for this
could be that AML is a disorder in which p53 is inactive for
reasons other than mutations.

This paper reports characterization of the p53 status of eight
new AML cell lines established at the Oulu University Hospital.
The cell lines were derived from patients who either are still in
first remission (>3 years) or who died from a chemoresistant and
relapsed disease. We show that p53 is consistently expressed at
high levels in all the cell lines without mutations in exons 5Ð8. If
the p53 protein is inactive in these cell lines, as is probable, the
restoration of such conformation-based inactivation of p53 would
be very interesting in terms of the development of leukaemia 
treatment.

MATERIALS AND METHODS

Source of cells

The study was carried out in accordance with the Helsinki
Declaration and approved by the Ethics Committee of the Medical
Faculty of University of Oulu. After obtaining informed consent,
peripheral blood samples for the study were drawn at the same
time as those for clinical tests before chemotherapy. The AML
blast cells that gave rise to the cell lines were obtained from AML
patients admitted to the Leukaemia Treatment Unit at the
Department of Internal Medicine, University Hospital of Oulu.
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The diagnosis of AML was based on MayÐGr�nwaldÐGiemsa
(MGG), Sudan black and esterase stainings of bone marrow and
blood smears according to the FrenchÐAmericanÐBritish (FAB)
classification criteria (Bennet et al, 1976). The clinical features of
the patients and the corresponding nomenclature of the cell lines
are given in Tables 1 and 2. The patients numbered 1, 2, 3 and 8
represent de novo AML and those numbered 4Ð7 represent
relapsed and clinically chemoresistant disease. The chemotherapy
of the patients was carried out by following the AML-86 treatment
protocol of the Finnish Leukaemia Group (Elonen, 1993).

Establishment of cell lines

Blast cells were separated from peripheral blood by FicollÐmetri-
zoate (Nycomed, Oslo, Norway) density-gradient centrifugation.
After isolation, the cells were cryopreserved at Ð70°C in the pres-
ence of 50% heat-inactivated fetal calf serum (FCS, Gibco, Grand
Island, NY, USA), 10% dimethyl sulphoxide (Aldrich-Chemie,
Steinheim, Germany) and α-minimal essential medium (α-MEM;
Gibco). For the cell cultures, the blast cells were quickly thawed,
washed twice with α-MEM and cultured at a high cell density of
1Ð2 × 106 mlÐ1 in α-MEM and 10% FCS in the presence of the
following growth factors: 100 U mlÐ1 interleukin -3 (IL-3) and 
IL-6 (Sandoz, Forschungsinstitut, Vienna, Austria), 100 U mlÐ1

granulocyteÐmacrophage colony-stimulating factor (Novartis,
Helsinki, Finland) and 40 ng mlÐ1 mast cell growth factor
(Immunex Corporation, Seattle, WA, USA). After culturing for
6Ð12 weeks in the above-mentioned culture medium, the cells
were allowed to proliferate in 10% FCS and α-MEM for the next 3
months. The cells were then frozen at Ð70°C. Before p53 analysis,
the cell lines were grown in the presence of 10% FCS and α-MEM
for more than 2 years. The cells were cultured in suspensions in a
moist atmosphere at 37°C with 5% carbon dioxide. The medium
was changed every 3Ð4 days during the experiments. The doubling
time of the cell line cells varied from 2.5 to 3.5 days, the mean
value being 2.9 ± 0.3 days.

The cell lines were numbered from 1 to 8 for the corresponding
patients presented in Table 1, and they were labelled as OU (Oulu
University)ÐAML cell lines.
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Table 1 Clinical data of the patients

Age/sex Response to
Patient (years) FAB initial therapy

AML-1 26/F M4 CR (C+BMT)
AML-2 52/F M2 CR (C)
AML-3 48/M M4 CR (C)
AML-4 39/M M2 CR (C+BMT)

AML-5 70/M M5 CR (C)

AML-6 47/F M1 CR (C)

AML-7 63/F M4 CR (C)

AML-8 63/F M4 CR (C)

aStatus in April 1998. bStatus at sample collection for cell culture. F, fem
acute myeloid leukaemia; CR, complete remission; C, chemotherapy; B
syndrome.
Controlling for mycoplasma contamination

To detect possible mycoplasma in the cell cultures, a nucleic acid
hybridization based technique was used (Gen-Probe Mycoplasma
T.C. rapid detection system, Gen-Probe, San Diego, CA, USA).
Until now, all the cell lines have proved to be negative for
mycoplasma.

Morphology, immunophenotype and karyotype analysis
of cell lines

The morphology of the cell line cells was estimated from MGG-
stained-cytospin preparations. Immunophenotype analyses were
carried out by using monoclonal antibodies against differentiation
antigens and a FACSort flow cytometer (Becton & Dickinson).
The informative immunophenotypes are presented in Table 2
(corresponding available immunophenotype of native peripheral
blood (PB) samples are given in parentheses). None of the cell
lines expressed glycophorin A antigen or following cluster and
differentiation antigens (CD): CD3, CD19, CD61 or CD117.
Typical morphology pattern of the cells is shown in Figure 1. Cell
line karyotypes were analysed by a standard Giemsa banding tech-
nique. The karyotype was diploid in the cell lines 2 and 3 and
hyperdiploid (triploid or tetraploid) in the others. Otherwise, the
chromosome patterns were chaotic, containing innumerable
changes. However, no structural changes were observed in the
chromosome 17p in any of the cell lines.

Analysis of p53 mutations with single-strand
conformation polymorphism (SSCP)

Exons 5Ð8 of the p53 gene were amplified individually by PCR
using two sets of intron primers for each of the exons, the second
set being internal to the first one (nested primers) (Lehman et al,
1991). The primers were kindly provided by Dr Curtis C Harris
(Laboratory of Human Carcinogenesis, NIH, NCI, Bethesda, MD
20892, USA). Dynazyme DNA polymerase and the corresponding
buffer (Finnzymes, Espoo, Finland) were used in the polymerase
chain reaction (PCR) with other reagents and under the reaction
conditions described previously (V�h�kangas et al, 1992).
© Cancer Research Campaign 1999

Outcome (months Disease
from diagnosis) a status b

CR (50+) Diagnosis
CR (60+) Diagnosis
CR (66+) Diagnosis
Death in first First relapse
relapse (7)
Death in second Second relapse
relapse (28)
MDS, death in First relapse
first leukemic
relapse (62)
Death in first First relapse
relapse (14)
CR (43+) Diagnosis

ale; M, male; FAB, French–American–British classification of
MT, bone marrow transplantation; MDS, myelodysplastic
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Table 2 Immunophenotype of the OU–AML cell lines. Corresponding values of native
patient samples are presented in parentheses

Antigen-positive cells (%)

Cell line CD34 CD33 CD13 CD14 CD7 MPO

OU–AML-1 0 (11) 97 (69) 93 (31) 0 (34) 0   (0) 0
OU–AML-2 0   (0) 100 (75) 87 (76) 0   (1) 0 (16) 0
OU–AML-3 0   (0) 95 (85) 76 (55) 0 (44) 69 (10) 0
OU–AML-4 0 (34) 97 (93) 94 (79) 0   (0) 25 (21) 0
OU–AML-5 0 96 98 0 28 0
OU–AML-6 0 83 67 0 67 0
OU–AML-7 0 (23) 100 (97) 93 (46) 1 (10) 62 (12) 0
OU–AML-8 0   (3) 98 (97) 89 (77) 0 (69) 19 (16) 0

CD, cluster of differentiation, MPO, myeloperoxidase.

1 2 3 4

5 6 7 8

Figure 1 Morphology of OU–AML cell lines 1–8. Magnification × 500
Negative controls (reaction mixture without the template) were
included in each amplification in order to test for contaminations.
The size of the amplified DNA was controlled electrophoretically
© Cancer Research Campaign 1999
in a 3% NuSieve 3:1 agarose gel (FMC, Finnzymes) with molec-
ular size markers. The amplified DNA was purified by running in
a 3% NuSieve 3:1 agarose gel. The bands of appropriate sizes
British Journal of Cancer (1999) 79(3/4), 407–415
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were cut out of the gel and the DNA was eluted from the gel slices
with ammonium acetate. Eluted DNA was precipitated with 100%
ethanol in a freezer and the precipitated DNA was dissolved into
30Ð50 µl of TE buffer.

For SSCP, a 1:1 mixture of the purified DNA and a
bromophenol blue-formaldehyde stop solution (Sequenase Kit, US
Biochemicals) was denatured for 5 min at 100°C, and 1 µl of the
mixture was used for each run (Welsh et al, 1997). The samples
were loaded on a 20% homogeneous polyacrylamide gel, and the
gel was run by Pharmacia Phastsystem semi-dry electrophoresis
equipment with neutral buffer strips (Pharmacia Biotech, Uppsala,
Sweden). The gels were stained with the silver staining kit
(Pharmacia) according to the manufacturerÕs instructions. For
negative controls, p53 exons were amplified from wt lymphocyte
DNA. For a positive control, lymphocyte DNA was amplified
using a mutated 5′ primer (Welsh et al, 1997). We have shown that
the efficiency in detecting mutations within p53 exons 5Ð8 of our
SSCP method is 98%, i.e. 98% of known mutations can be
detected (Welsh et al, 1997).

p53 protein immunohistochemistry

The cells were prepared for immunohistochemistry as described
previously (R�met et al, 1995) by fixing in 10% neutral formalin
for 2Ð3 days at room temperature, after which the cells were
pelleted by centrifugation. The cell pellet was suspended in
melted 2% agarose, and the agarose block was further
embedded in paraffin. Four-micron-thick sections were placed
on slides and stained for p53 protein by using the routine
avidinÐbiotinÐperoxidase staining method. The primary anti-
body was polyclonal rabbit anti-human CM-1 antibody
(Novocastra Laboratories, Newcastle upon Tyne, UK), which
detects both the wild-type and the mutated p53 protein. At least
500 p53-positive cells were counted per sample. The experi-
ments were done in triplicate.

Western blotting

The cells harvested from the suspension cultures were first washed
twice with phosphate-buffered saline (PBS) and then lysed in two
ways as follows: for whole-cell extracts, 2 × 106 cells were directly
lysed in 50 µl of Laemmli sample buffer, and for nuclear and
cytoplasmic extracts, 1 × 107 cells were lysed in 150 µl of a low-
salt Hepes buffer (20 mM Hepes, 20% glycerol, 10 mM sodium
chloride, 1.5 mM magnesium chloride, 0.2 mM EDTA, 1 mM

dithiothreitol, 0.1% NP40). Both buffers contained the following
protease inhibitors: 500 mM phenylmethylsulphonyl fluoride, 
2 mg mlÐ1 aprotinin, 1.4 mg mlÐ1 pepstatin A and 1 mg mlÐ1

antipain. After 10 min on ice, the lysed cells were centrifuged at
2000 r.p.m. for 4 min and the supernatant (containing the whole-
cell or cytoplasmic extract) was collected. The pellet from low-salt
Hepes buffer was lysed further in 50 µl of Hepes buffer with a
high salt content of 500 mM sodium chloride. The second super-
natant (containing the nuclear extract) was collected after shaking
the mixture at +4°C and centrifugation at 14 000 r.p.m. for 15 min.
The protein contents of the cytoplasmic and nuclear extracts were
determined by Bio-Rad protein assay (Bio-Rad Laboratories,
USA). Cell lysate (15 µl) and 20 µg of cytoplasmic or 40 µg of
nuclear extract were applied to 12% SDS-PAGE (Bio-Rad,
Hercules, CA, USA) and transferred on to Hypond nitrocellulose
membrane (Amersham Life Science, Buckinghamshire, UK).
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After blocking for 30 min with 8% dried fat-free milk in Tris-
buffered salineÐTween (TBS-T) (20 mM Tris-HCl pH 7.6, 137 mM

sodium chloride, 0.1% Tween-20), the membranes were incubated
for 1 h with the primary antibody, a mouse anti-human p53 DO7
(Novocastra Laboratories Ltd, Newcastle Upon Tyne, UK), diluted
in the blocking solution at 1:10 000. The specific p53 proteinÐanti-
body complex was detected by using a secondary antibody, horse-
radish peroxidase-conjugated sheep anti-mouse immunoglobulin
(Amersham) and an enhanced chemiluminescence (ECL) detec-
tion kit (Amersham). OVCAR-3 ovarian carcinoma cell line cells,
which express both cytoplasmic and nuclear p53 protein (R�met 
et al 1998), were used in all experiments as positive controls. p53
protein is as a denatured form in Western blot analysis. DO7
antibody will recognize both mutated and wt protein. Molecular
weight markers ascertained that studied p53 protein was 53 kDa.

Flow cytometry

When analysed by flow cytometry, the p53 protein keeps its
native, non-denatured form (Zhu et al, 1993). To study the protein
conformation of native p53, the cell lines were investigated flow
cytometrically by using three different monoclonal anti-p53 anti-
bodies. For the analyses, the cells were harvested from the suspen-
sion cultures, washed twice with PBS, and then treated with 70%
cold ethanol for 15 min and washed twice with PBS. The perme-
abilized cells were incubated for 30 min at room temperature with
one of the mouse anti-human p53 monoclonal antibodies or with a
non-specific mouse isotype control. The antibody-treated cells
were washed twice with PBS and incubated with fluorescein iso-
thiocyanate (FITC)-conjugated rabbit anti-mouse F(ab)2 fragments
(Dakopatts, Glostrup, Denmark) for 30 min. The cells were then
washed twice with PBS and a total of 104 cells were analysed
using a FACSort flow cytometer (Becton-Dickinson).

The following monoclonal mouse anti-human antibodies were
used in the flow cytometer analyses: DO7, Ab3 (clone PAb 240)
and Ab5 (clone PAb 1620), the first being purchased from
Novocastra Lab and the others from Oncogene Research
Products/Calbiochem (Cambridge, MA, USA). Ab5 recognizes
only the wt p53 protein, whereas Ab3 detects only a mutated form
of the p53 protein. The mutated p53 protein recognized by Ab3
can be either a protein translated from a mutated p53 gene or a wt
p53 protein that is only in a mutational protein conformation (Zhu
et al, 1993). The antibody DO7 recognizes the p53 protein regard-
less of the conformation.

RESULTS

SSCP analysis

No mutations in the p53 gene were found in any of the cell lines
analysed by PCR-SSCP of amplified exons 5Ð8 (Figure 2). As
shown by Welsh et al (1997), the clearly visible differences in the
band patterns of the positive controls confirmed the success of the
analysis by SSCP.

Immunohistochemistry

Each cell line cultured for over 2 years was studied by immuno-
histochemistry. Expression of p53 was consistently observed in
each of the cell lines, although the number of positive cells per cell
line varied from one experiment to the next (Table 3).
© Cancer Research Campaign 1999
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Figure 2 An example of single-strand conformation polymorphism (SSCP). p53
exon 7 was amplified using intron primers, gel purified and subjected to SSCP (for
details see Materials and methods). 1, OU–AML-1; 2, OU–AML-2; 3, negative control
(p53 exon 7 amplified using lymphocyte DNA as a template); 4, positive control (p53
exon 7 amplified using lymphocyte DNA as a template and a 5′ primer with an
inserted mutation); 5, OU–AML-3; 6, OU–AML-4; 7, OU–AML-5; 8, OU–AML-6

Table 3 p53 positivity by immunohistochemistry. Percentage of p53-positive
cells when analysed by polyclonal antibody CM-1. Mean ± s.d. of three
experiments

Cell line Number of positive cells (%) a

OU–AML-1 14 ± 3
OU–AML-2 13 ± 8
OU–AML-3 25 ± 8
OU–AML-4 33 ± 10
OU–AML-5 29 ± 16
OU–AML-6 20 ± 6
OU–AML-7 17 ± 6
OU–AML-8 16 ± 13

aCells with nuclear and/or cytoplasmic staining were counted as positive. At
least 500 cells were counted per preparation.
Figure 3 shows an example of the p53 staining pattern of the
OUÐAML cell line 4. An OVCAR-3 ovarian cancer cell line,
shown previously to express an abundance of the p53 protein
(R�met et al, 1998), was used as a positive control for both nuclear
and cytoplasmic p53 expression. In the cell lines, the expression of
p53 was localized in both compartments of the cell.

Western blotting

D07 antibody proved to be very sensitive in Western blotting and
detected a single p53 band in whole-cell lysates as well as nuclear
and cytoplasmic preparations in each of the cell lines studied.
Every experiment was repeated three or four times. The represen-
tative results from one experiment are shown in Figure 4.

From three of the cell lines (4, 5 and 8) it was also possible to
analyse the p53 levels in corresponding non-cultured native cells
as well as in cells that had been cultured for only 6 weeks. Barely
detectable amounts of p53 protein were seen in the native cells,
while p53 expression was stronger, although minimal, in the cells
from the 6-week-old cultures. The most pronounced p53 expres-
sion was always detected in the cell line cells (data not shown).
© Cancer Research Campaign 1999
The expression of p53 in each of the cell lines was constant; during
a 4-day follow-up the level of p53 protein did not vary when the
whole-cell lysate samples were analysed every 4Ð6 h (data not
shown).

Flow cytometry

Five of the OU-AML cell lines (3, 4, 5, 7 and 8) were analysed by
flow cytometry. The analyses were repeated twice with each of the
different anti-p53 antibodies. The proportions of positive cells in
the samples (mean ± s.d.) are shown in Table 4. The results from
two representative cell lines are shown as histograms (Figure 5). In
each of the cell lines, p53 was expressed mostly in a mutational
conformation, whereas a negligible number of cells contained p53
in the wt conformation.

DISCUSSION

In the present study, the p53 gene and protein status in eight newly
established AML cell lines was analysed. Although p53 was over-
expressed in all of the cell lines, as shown by immunohistochem-
istry, Western blotting and flow cytometry, no mutations in the
exons 5Ð8 of the gene were found, as analysed by PCR-SSCP. As
the SSCP method that we used, utilizing, for example, two temper-
atures for each exon and a good temperature control, is able to
detect 98% of mutations within p53 exons 5Ð8, few additional data
would be expected by sequencing (Welsh et al, 1997).

There are altogether 11 exons in the p53 gene. Most of the p53
mutations in cancer cells occur in exons 5Ð8 (Greenblatt et al,
1994), and mutations in the other exons are very exceptional. As
we did not find any mutations in this region of the p53 gene, it is
probable that p53 mutations had played no role in the leukaemo-
genesis or the relapsed and chemoresistant disease of the patients
who donated the cells. On the other hand, the overexpression of
p53 in tumour cells implicates inactivation of the protein. The
present work also showed that cell culture conditions per se do not
British Journal of Cancer (1999) 79(3/4), 407–415
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A B C

Figure 3 p53 protein analysed by immunohistochemistry using the polyclonal antibody CM-1. (A) Positively stained OVCAR-3 ovarian cancer cell line cells
used as controls. (B) Positively stained OU–AML-4 cell line cells. (C) Negatively stained OU–AML-4 cell line cells. Magnification × 500
predispose AML cells to p53 mutations, and mutations are not a
requirement for the establishment of AML cell lines, as suggested
earlier by Sugimoto et al (1992). They found mutations in the p53
gene in nine out of ten myeloid cell lines studied.
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Figure 4 Expression of p53 protein by Western blotting. (A), OU–AML cell
lines 1–8. (B) OVCAR-3 cell line as a control. Cell lysate (15 µl) and 20 µg of
cytoplasmic or 40 µg of nuclear extract/sample were loaded onto SDS
polyacrylamide gel and visualized by enhanced chemiluminescence and
DO7 antibody.* An unspecific band found in all Western blottings with
monoclonal antibodies of class IgG immunoglobulins
It was previously assumed that if the p53 protein is detected in
cancer cells it has to be a mutated protein. It was later recognized,
however, that there are cases and tumour types that express high
levels of p53 protein in the absence of mutations of the p53 gene
(Peng et al, 1993; Castren et al, 1998; for review, see Hall and
Lane, 1994). The present results show that AML also belongs to
this category of malignancies.

Although immunoprecipitation would be the most sensitive
method for the definition of p53 protein conformation, flow
cytometry provides a good alternative. Ab3 anti-p53 antibody has
been used in flow cytometric analysis (Zhu et al, 1993,1994; Bi et
al, 1994). It recognizes both mutated p53 and wt protein in muta-
tional, i.e. promoter but not in suppressor, conformation and also
reacts with denatured wt protein (Gannon et al, 1990; Rivas et al,
1992; Zhang et al, 1992; Bi et al, 1994). On the other hand, Ab5
antibody, although not introduced for flow cytometry, is known to
recognize p53 protein only in wt, i.e. suppressor, conformation,
but not in promoter conformation (Milner and Medcalf, 1991). It
does not react with denatured or mutated protein either. In our cell
lines, most of the p53 protein was recognized by Ab3 antibody, i.e.
it was in a mutational or promoter conformation. Apart from in
AML cells (Rivas et al, 1992; Zhang et al, 1992; Zhu et al, 1993,
1994), the mutational p53 conformation has also been detected in
© Cancer Research Campaign 1999

Table 4 p53 positivity as determined by flow cytometry. Percentage of p53
positive cells when analysed by monoclonal anti-p53 antibodies DO7, Ab3
and Ab5 (two analyses, mean ± s.d.)

Anti-p53 antibodies

Cell line Do7 Ab3 Ab5

OU–AML-3 96 ± 4 89 ± 15 0 ± 0
OU–AML-4 96 ± 4 85 ± 17 2 ± 2
OU–AML-5 99 ± 2 83 ± 23 1 ± 1
OU–AML-7 91 ± 10 77 ± 25 0 ± 0
OU–AML-8 92 ± 6 66 ± 19 1 ± 1
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Figure 5 The cell lines OU–AML-3 (A) and OU–AML-8 (B) were analysed
by flow cytometry for cytoplasmic p53 protein expression by using three
different monoclonal anti-p53 antibodies and FITC-conjugated F(ab)2
fragments in a two-step staining method. The antibody DO7 detects the p53
protein both in the functional wild-type conformation as well as in the
mutated conformation. Ab5 detects only the wild type and Ab3 the mutated
conformation. The dotted histogram represents irrelevant isotype control
normal haematopoietic progenitor cells (Rivas et al, 1992; Zhang et
al, 1992; Bi et al, 1994). This conformation may represent a condi-
tion whereby wt p53 is in an inactive form and permits cell prolifer-
ation instead of acting as a suppressor of the cell cycle. Also, the fast
growth of the cell line cells in suspension allows for the possibility
that most of the p53 protein was not functional as a suppressor.

The immunohistochemistry and Western blotting analyses
showed that the p53 protein was located both in the nucleus and in
the cytoplasm of the cells in all the cell lines. In the literature,
mainly nuclear localization of p53 has been reported. There are
reports suggesting that cytoplasmic p53 represents an inactivated
protein, which is logical in view of the fact that one of the main
functions of the p53 protein is to act as a transcription factor (Funk
et al, 1992). In these cell lines, p53 accumulation in cytoplasm
may have been caused by a failure in the translocation of the
protein to the nucleus (Moll et al, 1996). Alternatively, an
unknown factor in the cytoplasm contributing to the mutated
formation of the genetically wt p53 protein may have captured the
p53 in the cytoplasm. We do not know what factor it is in the cell
lines that changes the wt p53 protein conformation to a mutational
one. In theory, it could be a protein inhibitor of some kind, such as
a virus protein or mdm-2 (Linzer and Levine, 1979; Bargonetti et
al, 1991; Momand et al, 1992). However, what we know for
certain is that the inactivation is not due to proteolysis, which is
known to occur in ubiquitin-mediated (Chowdary et al, 1994;
Maki et al, 1996; Maki and Howley, 1997) and calpain systems
(Kubbutat and Vousden, 1997; Zhang et al, 1997), because the
protein detected by Western blotting was full sized, i.e. 53 kDa.
Furthermore, no major changes in the p53 expression levels were
observed in the repeated analyses performed on the cell lines
within 72 h, which indicates well-balanced production and degra-
dation of the p53 protein in the cells.

The p53 gene is located in the chromosome 17p13 (Isobe et al,
1986; Mcbride et al, 1986). In chromosomal analyses, the number
of chromosomes in the cell lines was higher than normal, and
several chromosomes 17 were frequently seen, which could partly
explain the observed overexpression of the p53 protein in the cell
lines.
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p53 provides an attractive target for drug action because its
inactivation has been shown to be related to disease progression
and poor outcome in many types of cancer (Soini et al, 1993;
Imamura et al, 1994; Wada et al, 1994; D�hner et al, 1995; Marks
et al, 1996; Dive 1997). On the other hand, p53-dependent apop-
tosis is known to suppress tumour growth and progression in vivo
(Symonds et al, 1994). When the wt p53 gene is transfected to
cancer cells containing a mutated and inactivated p53 gene, it often
stops the cell cycle and induces apoptosis in the cells (for a review
see Levine, 1997). It has also been shown that p53-dependent
apoptosis modulates the cytotoxic effects of both ionizing radia-
tion and common anti-tumour agents, such as fluorouracil, etopo-
side and doxorubicin. Cells lacking wt p53 are resistant to these
agents, whereas cells expressing wt p53 are sensitive to them and
undergo cell death by apoptosis (Lowe et al, 1993; Chresta et al,
1996).

In AML, mutations of the p53 gene are rare (Fenaux et al, 1992;
Schottelius et al, 1994). Based on the present findings and
according to the previously published studies (Zhang et al, 1992;
Zhu et al, 1993, 1994), it is probable that inactivation of the wt p53
protein in AML is due to a change in the protein conformation. In
order to improve AML treatment, it would be plausible to try to
develop drugs that are able to convert the inactive p53 protein
conformation to an active one. Such a restored p53 activity might
inhibit AML cell growth or increase the susceptibility of these
cells to standard treatments. Changes in the p53 protein conforma-
tion have been achieved in embryonal carcinoma cells by exposing
them to etoposide (Lutzker and Levine, 1996).

In conclusion, the p53 gene and protein status in eight newly
established autonomously growing AML cell lines were analysed.
All the cell lines overexpressed p53 protein, although there were
no p53 mutations at the gene level. As measured by flow cytom-
etry, a small part of the observed wt p53 protein was in a true wt
conformation, while most was in a mutational conformation,
which could mean that most of the p53 protein in the cell lines was
not functional, as in its usual role as a suppressor of the cell cycle.
Clarification of the mechanisms of p53 inactivation could lead to
the possible to restoration of its normal function. This, as well as
the possible consequences of p53 inactivity for the survival and
proliferation status of AML cells, is currently being studied.
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