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Disrupted cortical cytoarchitecture in cerebellum is a typical pathology in reeler. Particularly interesting are
structural problems at the cellular level: dendritic morphology has important functional implication in
signal processing. Here we describe a combinatorial imaging method of synchrotron X-ray
microtomography with Golgi staining, which can deliver 3-dimensional(3-D) micro-architectures of
Purkinje cell(PC) dendrites, and give access to quantitative information in 3-D geometry. In reeler, we
visualized in 3-D geometry the shape alterations of planar PC dendrites (i.e., abnormal 3-D arborization).
Despite these alterations, the 3-D quantitative analysis of the branching patterns showed no significant
changes of the 77 6 86 branch angle, whereas the branch segment length strongly increased with large
fluctuations, comparing to control. The 3-D fractal dimension of the PCs decreased from 1.723 to 1.254,
indicating a significant reduction of dendritic complexity. This study provides insights into etiologies and
further potential treatment options for lissencephaly and various neurodevelopmental disorders.

T
he formation of cellular layers and dendritic architectures is essential in the development of cortical struc-
tures in the mammalian brain1. Alterations in cortical structures are related to epilepsy, mental retardation,
deficits in learning and memory, autism, and schizophrenia2–4. The alteration patterns of cortical structures

are often studied using neurological mutation reeler5, which is characterized by ataxia, tremors, imbalance, and a
reeling gait6–9. In the reeler cerebellum, the cytoarchitecture of neural networks and neurons becomes gradually
defective during the developmental process10,11. The Purkinje cells (PCs) are not arranged in a regular plane but
clustered in subcortical areas at early stages of corticogenesis. As a consequence of the ectopic location of such
cells, an aberrant laminar organization occurs12,13.

Previous investigations of the alteration patterns of cortical structures were based on imaging methods includ-
ing light microscopy (LM), electron microscopy (EM), X-ray computer-assisted tomography (CT) and magnetic
resonance imaging (MRI). For example, LM histological investigations of the reeler brain revealed abnormal
cytoarchitecture in cerebral and cerebellar cortices and in the hippocampus11,14–17. MRI analyzed the neuromor-
phology such as the quantification of the general sizes of brain and cerebellum18. However, the subcellular-level
alteration patterns including dendritic abnormalities are still largely unexplored.

Here we present an alternate strategy that can deliver not only the 3-dimensional (3-D) micro-architecture of
cerebellar tissue but also that of single neurons, and give access to quantitative information in 3-D geometry. This
approach combines synchrotron X-ray microscopy (Fig. 1) with Golgi staining19,20. Microscopy based on phase
contrast and strongly collimated synchrotron hard X-rays21–23 produces images of very high quality with limited
doses. Furthermore, hard X-rays are highly penetrating and can examine thick specimens with high resolution as
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required here24. To increase the contrasts and analyze minute details,
we used Golgi staining by impregnating fixed tissues with potassium
dichromate and silver nitrate. The heavy metals of the Golgi staining
enhance the X-ray absorption contrast. This approach can explore
microscopic details in very thick (up to 5 mm or more) specimens
and reveal subcellular-level alteration patterns24,25.

Results
3-D Neuronal Micro-Architecture of Whole Cerebellum. We first
acquired radiographs over a large field of view, then progressively
zoomed into more detailed pictures. Figure 2 shows typical results in
a normal mouse, starting from the entire cerebellum and then focus-
ing down to local dendrites. The progressive zoom (box in Fig. 2A)
clearly reveals the 4-layer arrangement (Fig. 2B) and the network of
different types of neurons and glias (Fig. 2C), as well as finely detailed
PC dendrites (Fig. 2D).

In addition to the projection images, we performed microtomo-
graphy of the cerebellar tissue (the yellow box in the Fig. 2C) and
could observe in 3-D the realistic neuronal network (Fig. 3A; sup-
plemental video 1). Well-aligned PCs tend to be oriented towards the
external cerebellum surface (arrow heads in Fig. 3A). Different types
of neurons and glias establish the correct neural circuit. On the
contrary, in the reeler cerebellum the PCs do not form a well-defined
layer and are not aligned in the same direction: this can be seen in the

reconstructed tomographic image of Figure 3B (supplemental
video 2). The PCs tend to have a random orientation (arrow heads
in Fig. 3B).

Microtomographic Images Showing Altered Aborizations of
Reeler PCs. 3-D volume rendered images of normal PCs are shown
in Figure 3C and D whereas Figure 3E and F picture reeler cells
(corresponding to the boxes of Fig. 3A and B). Highly branched cells
with a flat system of dendritic arbors are clearly seen (Fig. 3C and D).
Figure 3D also shows that the PCs are oriented parallel to the coronal
plane (supplemental video 3).

In sharp contrast, Figure 3E and F show that the reeler PC
arborization is not flat and not oriented but developped in 3-D
(supplemental video 4). Furthermore, the overall length of each cell
is significantly small in reeler mice, indicating a reduction of
the dendritic development. Interestingly, the two cells of Figure 3E
and F are abnormally neighbored to each other. As demonstrated in
the segmented image of Figure 3G (supplemental video 5), the two
slice images (Fig. 3H and I) at the dotted lines of Figure 3G show that
the dendrites of one cell (green) look connected not only to the
dendrites of the other (violet) (box in Fig. 3H) but also to its soma
(box in Fig. 3I).

Quantitative Analysis of the Shape Alterations. Analysis of the
branching patterns of neurons is important for understanding their
functions26,27. From the 3-D volume-rendered images of a normal
(Fig. 4A; supplemental video 6) and a reeler (Fig. 4B; supplemental
video 7) PCs, we measured the distribution of the projections of end
points (blue dots) and branch points (green dots) into the x-y trans-
verse plane, as shown in Figure 4C and D, respectively. For the
normal cell, the projections are close to the y-axis, so the dendrite
system is flat and close to the sagittal plane. For the reeler cell, this flat
character is not remarked. Statistically the arbor span, the width,
and the height of PCs are 82.9 6 2.5 mm, 13.9 6 1.5 mm, and
79.9 6 5.4 mm (mean 6 SEM), respectively, as directly measured
for six normal mice in 3-D geometry (Table 1). The arbor span (the

Figure 1 | Scheme of the synchrotron X-ray microscopy apparatus.

Figure 2 | Microradiograph of a normal mouse cerebellum. (A) Patched image of the entire cerebellum (300 mm). The dashed line marks one lobule,

consistent with the scheme in (B). (B) Lobule scheme. PC, Purkinje cell; BG, Bergmann glial cell; GC, granule cell; note the 4 layers: 1, molecular layer;

2, PC layer; 3, granular layer; 4, white matter. (C) Magnified image of the box region in (A) (red, orange, and green arrowheads: Purkinje, Bergmann glia,

and granule cells). (D) Magnified image of the black box region in (C). (Scale bars: A, 600 mm; C, 300 mm; D, 50 mm.)
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Figure 3 | 3-D tomographic volume-rendered images of cerebellar tissues. (A) 3-D network of cerebellar neurons (the yellow box in the Fig. 2C). The bodies

of two PCs are marked by white arrow heads. ML, molecular layer; PCL, PC layer; GL, granular layer (supplemental video 1). (B) Disrupted neural circuit in a

reeler cerebellum (300mm). PCs are randomly oriented (supplemental video 2). (C) Alignment of two PCs in a normal cerebellum (white box in (A)) (point of

view: -30u from the direction perpendicular to the sagittal plane). The highly branched cells with planar dendritic arborizations are aligned to each other. A

detailed analysis reveals that a Bergmann glial cell coexists with the PC on the right (supplemental video 3). (D) The same cells as in (C), from a point of view in

the sagittal plane: they are markedly parallel each other. Their common orientation is parallel to the coronal plane. (E and F) Disrupted alignment of two PCs in

a reeler cerebellum (white box in (B)), from two different points of view (supplemental video 4). (G) Structures of (E) obtained by segmentation. (H and I)

Slice images at the red dotted lines in (G). The yellow boxes represent slice images of the corresponding boxed areas in (G). The dendrites of one cell (green) are

connected not only to the dendrites of the other (violet) (yellow box in (H)) but also to its soma (yellow box in (I)). (supplemental video 5). (Scale bars: 50mm).

Figure 4 | Quantitative characterization of shape alterations in reeler PCs. (A) 3-D tomographic volume-rendered image of a normal (flat) PC

(supplemental video 6). Here, y-z defines the sagittal plane, x-z the coronal plane and x-y the transverse plane. (B) volume-rendered image of a reeler cell,

showing the shape alterations with respect to the normal case (supplemental video 7). (C) Projections on the x-y plane of dendrite end points (blue dots)

and branch points (green dots). The soma is marked by a red circle at the origin. (D) Similar projections for the altered reeler dendritic structure. (E)

Angular distribution in the x-y plane of dendrite end points and branch points together, for six normal (blue) and six reeler (red) mice. The plot shows the

percentage of points found in each 10-degree angular interval (the errors correspond to the s.e.m.). Scale bars: A and B, 20 mm.
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height) reduces to 40.0 6 4.6 mm (43.5 6 3.3 mm) while the width
increases to 28.7 6 4.8 mm for six reeler cells (Table 1). To compare
these two cases quantitatively, we computed the 99% confidence
volume for six normal mice using Hotelling’s T2 statistic28: the result
is shown by the magenta dotted line in Figure 4C. In contrast, the
distribution for the reeler cell of Figure 4D has a statistically signifi-
cant portion of points (51 6 3 %) (mean 6 SEM) well outside this
confidence volume.

In essence, both the visual inspection and the statistical analysis29

reveal that reeler PCs exhibit abnormally large arborizations perpen-
dicular to the sagittal plane and reduced arborizations in the same
plane. These conclusions are confirmed by the angular distribution
of the branch and end points (Fig. 4E); note that the angular distri-
bution for reeler mice is essentially random. Interestingly, the soma
size is not altered as 22.3 6 1.5 mm (Table 1), suggesting that reelin is
not related to soma morphogenesis during the cell development.

Branching Rules of PCs Revealed by 3-D Quantitative Analysis.
This analysis detected further interesting differences between normal
and reeler cells, not immediately evident from the raw images. We
found that the branch angles for normal PCs are almost the same and
equal to 74 6 6u (mean 6 SEM) for all the branch points from the
soma to the end of the dendritic system (Fig. 5A) and for all six tested
normal mice. The same conclusion applies to six reeler cells with the
branch angles of 77 6 8u, which is not statistically different from that
of normal mice. Thus, the abnormal arborization in reeler mice does
not appear to influence the branch angles.

In contrast, the Sholl analysis30 in 3-D (Fig. 5B) shows that the
branch number is significantly reduced in reeler cells. This indicates a

reduced arbor density. Figure 5B reveals another interesting feature
by showing the total number of branch points of each cell. This
number is much smaller for reeler than for normal cells. The same
figure shows that the distance between the soma and the end of the
dendritic system is shorter.

Furthermore, Figure 5C shows that the branch segment length –
the distance from one branch point to the next – is much larger for
reeler cells than for normal cells. In the latter case, the branch seg-
ment length is above 10 mm for the 1st and 2nd branch points from the
soma; for the subsequent branching, it becomes constant for all
branches and all normal mice, with a value of 5.6 6 0.9 mm. For
the reeler mice, after the first branch point the length is significantly
larger, 13.4 6 4.7 mm and with large fluctuations.

3-D Fractal Dimension. This parameter reflects the degree of geo-
metric complexity31 of the PC branching systems. Previous estimates
from 2-D data varied among different authors31–34. We extracted our
values using instead 3-D data with the box counting method. The
results for normal and reeler PCs were 1.71 6 0.03 and 1.25 6 0.02
(Table 2). Our fractal dimension for normal cells is consistent

Table 1 | Sizes of PCs, measured for six normal and six reeler mice in 3-D geometry.

Soma size (mm) Arbor span (mm) Width (mm) Height (mm) N

Normal Purkinje cell 21.2 6 1.1 82.9 6 2.5 13.9 6 1.5 79.9 6 5.4 6
Reeler Purkinje cell 22.3 6 1.5 40.0 6 4.6 28.7 6 4.8 43.5 6 3.3 6

Values are the mean 6 SEM for six cells.

Figure 5 | 3-D quantitative analysis of branching patterns of normal and reeler PCs. (A) Branch angles (P 5 0.675). (B) 3-D Sholl analysis of the

distance of the terminal tip from the soma (P 5 0.11631023). (C) Branch segment length (P 5 0.1731023). The errors correspond to the s.e.m. (number

of tested mice n 5 6 for each case).

Table 2 | The fractal dimension of PCs in three dimension.

D SD N

Normal Purkinje cell 1.71 0.03 6
Reeler Purkinje cell 1.25 0.02 6

The box-counting method is used to estimate the Fractal dimension D with a standard deviation SD
for six cells.
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with previous results31,32,34, whereas for reeler cells it is significantly
smaller, indicating a reduced geometric complexity. The lower geo-
metric complexity is also consistent with the data of Figure 5 and
could reflect reduced synaptic connections with other neurons.

Disccussion
This study provides accurate, 3-D quantitative descriptions of
branching patterns of Purkinje cells in reeler and normal mice based
on a new combinatorial imaging method of synchrotron X-ray
microtomography with Golgi staining.

Our work has two different kinds of important implications: first,
the demonstration of the experimental technique and the possibility
to extend it to other cases, which requires a realistic analysis of the
limitations. Second, the specific results and their significance in the
general context of the assessment of the reeler model.

As far as the technique is concerned, we basically demonstrated
that the combination of synchrotron X-ray microimaging and Golgi
staining can reveal the 3-D micro-architecture of cerebellar tissues at
the cellular and subcellular levels with high absolute accuracy com-
pared to alternate techniques35,36. Furthermore, it can analyze thick
specimens, up to several mm, thanks to high penetration capability of
hard X-rays24,25. The results presented here provide ample evidence
of the feasibility of this strategy. To what other domains can this
approach be applied? In principle, any cellular system with complex
microscopic geometry could profit from its performances. This spe-
cifically applies to neuron systems such as the hippocampus or the
cerebral cortex. Preliminary results in these directions are quite
promising and confirm the indications of the present tests.

The basis for radiation damage to mammalian cells has been
extensively studied; however a clear understanding of how much
radiation doses kill and mutate cells has yet to emerge. In our
research, the high contrast made possible by the superior character-
istics of the synchrotron source and by Golgi staining keeps the X-ray
doses to a low level. We also certificated that radiation doses for
tomography (actual dose; 100sec/ tomography) did not produce
any detectable damage. The tests with increasing total dose to the
point of detecting damage effects specifically enabled us to verify that
the results used in this article are not affected by damage problems.

Another key issue in our technique is reaching a good compromise
between phase contrast and staining-enhanced absorption contrast.
The two contrast mechanisms are related to each other, in particular
when staining is used. Specifically, staining to reach high absorption
could suppress the phase contrast that requires sufficient transmis-
sion through the sample. There is no general rule to find a compro-
mise and the corresponding optimum level of staining, since the two
contrast mechanisms work in different ways for different specimens
and for different parts of the same specimens. The only solution is to
use empirical preliminary tests of Golgi staining to find the optimal
conditions.

At present, clinical application of synchrotron radiation CT
examination might be more difficult than that of dynamic con-
trast-enhanced CT37–39 on account to both the limited availability
of synchrotron X-ray (large, expensive facilities) and the compro-
mise between multi-section imaging and a fast data acquisition time.
Nevertheless, the medical applications of synchrotron sources40–44

have showed the possibility of improving in diagnostic accuracy with
reduced radiation dose to the patients45. It is likely that over the next
few years, compact and intense X-rays that operate in the hard x-ray
regime (15–150 keV) will enable access to practical diagnostic
imaging devices46.

We can now move to the discussion of our specific results.
Accurate analysis of neuronal branching patterns is important
because of their association with synaptic connections to other neu-
rons47,48. The structural information on reeler has been limited in 2-D
geometry so far. By our accurate, 3-D quantitative analysis, we show
substantial geometric differences in reeler cells, demonstrated by

branching rules, fractal dimension and quantitative analysis of 3-D
arborization, comparing to flat dendritic system in normal cell.

More specifically, the abnormal arborization perpendicular to the
sagittal plane and the reduced arborization on the same plane are
likely to make it more difficult to form synapses between PCs and the
other cerebellar neurons – known to have a potent excitatory or
inhibitory effect on postsynaptic spiking of a cerebellar folium49. In
addition, the anomalous connections between reeler PCs could con-
ceivably affect the functionality of the reeler cerebellum. Moreover,
the reduced geometrical complexity of the reeler dendritic structures,
revealed by the fractal dimension, is also likely to decrease the prob-
ability of synaptic connections with other neurons, enhancing the
above effects. Such differences stress the difficulty of reeler cells to
establish appropriate neural networks, resulting in their malfunction,
so could be a significant factor in understanding the disease model.

Lissencephaly (a severe developmental disorder in which neuronal
migration is impaired), for instance, is associated with human reelin
mutation50. Structural aberrations of patients with lissencephaly is
correspondent to those of reeler because of their highly conserved
functions50–53. Our accurate quantitative results of dendritic altered
features of reeler in 3-D provide insights into etiologies and further
potential treatment options for lissencephaly as well as for various
neurodevelopmental disorders including the Alzheimer disease,
schizophrenia, autism and epilepsy6,7,9.

Methods
Animals. Mice with the control genotype, B6C3Fe-a/a1/1, or mutant genotypes,
B6C3Fe-a/a-Relnrl/Relnrl (reeler) were housed at POSTECH in a constant-temper-
ature room with a 12-h light/dark cycle. All mouse lines were maintained in specific
pathogen-free conditions at the POSTECH animal facility under institutional
guidelines.

Tissue preparation. The mice (age 150–180 days) were anesthetized with ketamine/
rompun before perfusion with PBS and 4% PFA. After perfusion, the cerebella were
placed into freshly made 2.5% potassium dichromate (4-days) and 0.75% silver
nitrate (3-days) solutions at room temperature in the dark (Golgi staining procedure).
After dehydrated and embedded in resin (epon 812 kit: EMS, Hatfield, PA, USA),
each cerebellum was sliced using a sliding microtome (SM2000R: Leica, Nussloch,
Germany) from 0.1 to 5.0 mm thicknesses.

Synchrotron X-ray imaging. Experiments were performed on the ICPCIR
(International Consortium of Phase Contrast Imaging and Radiology) at 7B2
synchrotron X-ray microscopy high flux beamline (10–60 keV energy range) of
the PLS (Pohang Light Source: 2.5 GeV) and at BL01A X-ray microscopy beam line
(5–35 keV energy range) of NSRRC (National Synchrotron Radiation Research
Center: 1.5 GeV). Figure 1 shows the experimental setup of the X-ray imaging system.
In order to control and block the intensity of the X-ray beam, attenuators and a
mechanical shutter with a Pt-Ir blade were used. Sample was mounted on a high
precision motor-controlled stage with rotational, tilting, and translational resolutions
of 0.002u, 0.0009u, and 250 nm, respectively. A single image was recorded in 100ms.
After passing through the sample, the transmitted X-ray beam was converted by a
scintillator (CdWO4: Nihon Kessho Koogaku Co. Ltd., Hinata Tatebayashi-City
Gunma, Japan) to visible light that was then reflected by a mirror and magnified by an
optical lens. After magnification, the image was captured by a CCD camera.

3-D images acquisition and reconstruction. Several images were averaged into one
comprehensive picture at every 0.18u rotation step, calibrated with background
images. This process was repeated 1000 times. The projected image set was recon-
structed by four parallel computers equipped with the standard filter-back projection
reconstruction algorithm. Reconstructed slices consist of 1600 3 1600 pixels in the
horizontal and vertical directions. Vertically stacked 2D slices were reconstructed as
volume-rendered 3D images using the Amira5.2 software (Visage Imaging, San
Diego, CA, USA).

Quantitative analysis. The main criterion to identify PC among various cell types is
the typical soma size (about 20 mm; see Table 1) in normal and reeler cerebella: the
soma sizes of the other cell types in the cerebella are generally much smaller than
10 mm. In order to obtain the 3-D coordinates, reconstructed image stacks of PCs
were manually segmented and skeletonized using the Amira5.2 software. The 3-D
coordinates of PCs were automatically analyzed with a Matlab software (Mathworks,
Natick, MA, USA). For 3-D Sholl analysis (Fig. 5B), a series of concentric spheres of
5 mm increments was drawn around the cell body, and the numbers of branch points
between spheres were counted.

Statistical analysis. To quantitatively compare dendritic branching patterns from
normal and reeler cells, we computed the statistical boundary within which both end
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and branch points of cells from all normal tested mice (n 5 6) reside, and then
analyzed the question of whether the end and branch points from the reeler mouse
cells are similarly distributed using the following statistical approach:

(i) To remove experimental and technical variability in each sample, we first
normalized so that the data from each normal specimen i) have the mean
of end and branch points (mean[x,y] where (x,y) is the coordinate of end
and branch points in each sample) at the origin in each sample on the
transverse x-y plane; ii) the same condition applies to the median absolute
deviation (MAD 5 median[(x,y)-median[x,y]]), and iii) the soma is located in
the origin.

(ii) After superimposing the normalized distributions of end and branch points
from normal cells, we computed the 99% confidence volume of the distribu-
tions using Hotelling’s T2 statistic, based on the assumption that the end and
branch points are normally distributed around the soma. From this con-
fidence volume, we estimated the sagittal to coronal aspect ratio of the distri-
bution to be 8.2; this parameter is defined as the length ratio of the long and
short axes (i.e. square-rooted eigenvalues of the covariance matrix in
Hotelling’s T2 statistic) of the ellipsoidal confidence volume.

(iii) Finally, we compared the distributions of the end and branch points from
releer and normal cells by superimposing the reeler distribution over the
control volume obtained for normal cells, after normalizing it so as to have
the soma at the origin. By counting the percentage of end and branch points
located outside the confidence volume, we quantitatively evaluated the differ-
ence between the normal and reeler dendritic branching patterns.

For statistical comparison of three different measures – branch angles, the number
of branches, and branch segment lengths – from normal and reeler cells, we tested the
null hypothesis that each measure follows the same distribution using the two-sample
Kolmogorov-Smirnov (KS) test. For this, we only used data points available for both
normal and releer cells.

Fractal dimension. To estimate the fractal dimension of the PCs, we used the box-
counting method. First, we embedded the data points of the PCs in the 3-D space.
This space was divided in a grid of boxes with size r and we counted the number of
boxes N(r) that contain at least one data point. A log-log plot of r versus N(r) could be
fitted by a straight line with slope -D, where D is the fractal dimension (supplemental
Fig. 1). A linear least square regression was performed to accurately evaluate this
slope. To determine the scaling region and the slope, two end-points of the size giving
the best linear fits were selected.
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