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SUMMARY

SMYD3 is frequently overexpressed in a wide variety of cancers. Indeed, its inac-
tivation reduces tumor growth in preclinical in vivo animal models. However,
extensive characterization in vitro failed to clarify SMYD3 function in cancer cells,
although confirming its importance in carcinogenesis. Taking advantage of a
SMYD3 mutant variant identified in a high-risk breast cancer family, here we
show that SMYD3 phosphorylation by ATM enables the formation of a multipro-
tein complex including ATM, SMYD3, CHK2, and BRCA2, which is required for the
final loading of RAD51 at DNA double-strand break sites and completion of ho-
mologous recombination (HR). Remarkably, SMYD3 pharmacological inhibition
sensitizes HR-proficient cancer cells to PARP inhibitors, thereby extending the
potential of the synthetic lethality approach in human tumors.

INTRODUCTION

In recent years, the histone methyltransferase SET andMYND Domain containing 3 (SMYD3) gathered a lot

of interest from researchers and pharmaceutical companies, and several SMYD3 chemical inhibitors were

recently developed (Fabini et al., 2019a, 2019b; Bottino et al., 2020). Indeed, SMYD3 has been found over-

expressed in colorectal cancer (CRC) as well as in other types of tumors, such as breast cancer (BC), ovarian

cancer (OvCa), prostate cancer (PCa), pancreatic cancer (PC), gastric cancer, lung cancer, and hepatocel-

lular carcinoma (Hamamoto et al., 2004, 2006; Tsuge et al., 2005; Mazur et al., 2014). SMYD3 has been

initially identified as a member of the basal transcriptional machinery forming a complex with RNA poly-

merase II through the RNA helicase HELZ.3. This interaction, along with its ability to methylate histone tails

at oncogene regulatory regions (Hamamoto et al., 2004, 2006; Zou et al., 2009; Sarris et al., 2016) and the

increased susceptibility to some types of cancer conferred by the presence of tandem repeat polymor-

phisms in an E2F-binding element in its gene promoter (Tsuge et al., 2005), points to an oncogenic role

for SMYD3. In normal cells, SMYD3 seems to be dispensable for development as well as for proliferation

and survival. Indeed, SMYD3 homozygous conditional knockout (KO) mice, both male and female, did

not show any significant abnormality after full phenotyping (http://www.informatics.jax.org/allele/key/

571089; Mazur et al., 2014; Sarris et al., 2016). However, exogenous SMYD3 overexpression in normal cells

is sufficient to accelerate cell growth and has a key role in the activation of genes acting downstream of

pathways that are involved in tumor cell transformation and migration (Cock-Rada et al., 2012; Luo et al.,

2014). It is worth noting that a number of sophisticated in vivo studies using SMYD3-KO mice models

showed that this protein plays a key role in lung, pancreas, liver, and colon oncogenesis (Mazur et al.,

2014; Sarris et al., 2016).

In a recently published work, we studied the expression and activity of SMYD3 in a CRC preclinical animal

model and found that it is strongly upregulated throughout tumorigenesis both at the mRNA and protein

levels. Our results also showed that RNAi-mediated SMYD3 ablation or its pharmacological blockade by

a small-molecule inhibitor (BCI-121) induces a significant enrichment in the number of cancer cells in the

S phase of the cell cycle (Peserico et al., 2015). Extended analysis revealed that SMYD3 is overexpressed
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in a wide variety of cancer cell lines, with cells expressing high levels of SMYD3 mRNA and protein (high

SMYD3) being highly sensitive to its genetic depletion or pharmacological inhibition by BCI-121 (Peserico

et al., 2015).

Several studies have been carried out to explore themechanisms underlying SMYD3 oncogenic activity and

suggest that, besides regulating gene expression-related processes, SMYD3 also interacts with and/or

methylates non-histone proteins, through which it transactivates cancer-specific pathways. In the nucleus,

SMYD3 interacts with heat shock protein 90 (HSP90), which modulates its binding to chromatin and activity

(Hamamoto et al., 2004; Brown et al., 2015). SMYD3 also interacts with the PC4 coactivator, another compo-

nent of the transcriptional machinery that promotes cell proliferation and invasion (Kim et al., 2015). More-

over, SMYD3 has been shown to interact with transcription factors involved in cancer, such as the estrogen

receptor (ER), enhancing ER-mediated transcription (Kim et al., 2009). Additionally, it can methylate cyto-

plasmic proteins involved in signaling cascades that regulate cancer cell proliferation and survival, resulting

in enhanced activation, as is the case for VEGFR1, AKT1, HER2, and the RAS/ERK signaling component

MAP3K2 (Kunizaki et al., 2007; Yoshioka et al., 2016, 2017; Mazur et al., 2014). However, a recent work car-

ried out by Thomenius and colleagues, who characterized in vitro hundreds of cancer cell lines by using

several SMYD3 inhibitors (SMYD3is), SMYD3-specific siRNAs, and CRISPR/Cas9 KO cellular models, re-

vealed that SMYD3’s main contribution in the regulation of tumorigenesis is not based on simply sustaining

autonomous proliferation of cancer cells but is still largely unknown (Thomenius et al., 2018). Intriguingly, it

has been recently suggested that SMYD3 might participate in the homologous recombination (HR)

pathway by modulating the expression of certain HR genes (Chen et al., 2017). HR is a multistep process

that is tightly linked to human cancer risk. It is activated by the DNA damage sensor ATM and, through

the sequential involvement of BRCA1, CHK2, and BRCA2, finally leads to RAD51 recombinase loading

on chromatin at double-strand break (DSB) sites to repair these DNA lesions (Sun et al., 2020; Falck

et al., 2005).

To get insight into SMYD3 functions in cancer cells, we performed a proteomic screening to find novel

SMYD3 direct interactors that could help clarify its role in tumorigenesis. Here we report that SMYD3 is

a direct interactor of the key members of the HR pathway, ATM, CHK2, and BRCA2, and is required for

DSB repair. SMYD3 phosphorylation by ATM induces the formation of HR complexes and promotes the

recruitment of RAD51 at DSB sites in response to endogenous damage or administration of DNA-

damaging agents in CRC and BC cells. Finally, we show that targeting SMYD3 could help extend synthetic

lethality approaches based on PARP inhibitors (PARPis) to HR-proficient tumors originating from different

tissues.

RESULTS

SMYD3 Directly Interacts with ATM, CHK2, and BRCA2 In Vitro and In Cellulo

Based on the presence of a tetratricopeptide repeat module on SMYD3 C-terminal domain (Brown et al.,

2015), we searched for new SMYD3-interacting proteins by screening tripeptides composed of rare amino

acid residues, which are often found in specific interfaces for protein-protein interactions (Kanduc, 2010;

Reiss and Schwikowski, 2004).

Therefore, we performed a peptide screening and identified a set of 19 short amino acid motifs (P-tri-

peptides) that were able to bind to SMYD3 in vitro, thus being eligible to be used as a minimum probe

to screen the human proteome in the search for new SMYD3 interactors. Of note, all P-tripeptides were

shown to interact with recombinant SMYD3 in a surface plasmon resonance (SPR) assay (Figure S1). No

significant difference in binding responses between S-adenosyl methionine (SAM)-free and SAM-satu-

rated binding events emerged, indicating there was no allosteric effect related to the presence of the

methyl donor (SAM). Various proteomic studies suggest that rare amino acids often represent func-

tional and/or protein-protein interaction consensus motifs (Kanduc, 2010; Kusalik et al., 2009) and

that trimeric peptide modules act as biological effectors in protein-protein interactions (Wong et al.,

2016; Kataya et al., 2015; Nam et al., 2014; Nishimura and Linder, 2013; Sudnitsyna et al., 2012; Kieken

et al., 2009; Jeon et al., 2007). Thus, we performed an in silico analysis to investigate the specific dis-

tribution of these P-tripeptides in the human proteome, with the aim of identifying proteins with the

highest number of P-tripeptide occurrences at functional sites as potential SMYD3 interactors. Surpris-

ingly, the occurrence of P-tripeptides in all human proteins proved much lower than the theoretically

expected probability value, suggesting that their distribution in the human proteome is not stochastic.
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Figure 1. SMYD3 Directly Interacts with ATM, CHK2, and BRCA2 In Vitro and In Cellulo

(A) Upper panel: Diagram showing the nine overlapping GST-BRCA2 (B2-1 to B2-9) fusion proteins used in this study.

Lower panel: HIS-SMYD3 bound to histidine beads was incubated with GST-BRCA2 fusion proteins and washed. Bound

proteins were visualized by immunoblotting using anti-GST and anti-HIS antibodies.

(B) Upper panel: Diagram showing the eight overlapping GST-ATM (A-1 to A-8) fusion proteins used in this study. Lower

panel: HIS-SMYD3 bound to histidine beads was incubated with GST-ATM fusion proteins and washed. Bound proteins

were visualized by immunoblotting using anti-GST and anti-HIS antibodies.

(C) Competition assay: HIS-SMYD3 bound to histidine beads was incubated with GST-BRCA2 B2-4 and GST-ATM A-8

fusion proteins in the presence of escalating doses of the purified P1 and P10 tripeptides, respectively. Bound proteins

were visualized by immunoblotting using anti-GST and anti-HIS antibodies.

(D) Co-immunoprecipitation assay in MYC-SMYD3- and BRCA2-overexpressing HEK-293 cells using anti-MYC and anti-

BRCA2 antibodies.
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Indeed, our screening showed that among 169,671 reviewed human proteins (analysis performed in

December 2018; www.uniprot.org, UniProt Consortium, 2014), only 8,650 (5.1%) contain at least one

P-tripeptide. Intriguingly, we found R4 P-tripeptide occurrences in only 214 (0.12%) proteins, which

represented our starting subset to identify new potential SMYD3 interactors. One of these 214 proteins

was VEGFR1, a known SMYD3 interactor and substrate (Kunizaki et al., 2007). After clustering the

selected proteins for their biological role, we observed an enrichment in the cluster involved in DNA

repair and S-phase checkpoint (Figure S2). Then, we searched for members of the HR pathway (Reac-

tome database, http://reactome.org.), as it has been proposed that SMYD3 might regulate the expres-

sion of certain HR genes (Chen et al., 2017). The best candidates identified by our in silico analysis were

BRCA2 and ATM (with 6 P-tripeptide matches each). BRCA2 is a critical protein in the HR process for

DSB repair (Krejci et al., 2012); it has been found mutated in various cancers (BC, OvCa, PC, CRC), and

its germline mutations specifically predispose to breast and ovarian cancers (Petrucelli et al., 2010).

First, we analyzed in vitro the interaction between a full-length HIS-tagged SMYD3 recombinant protein

and a series of nine GST fusion proteins, designated B2-1 to B2-9 (Lee et al., 2004), which span the

entire BRCA2 coding region (Figure 1A). Interestingly, HIS pull-down assay results showed that

BRCA2 B2-4, B2-7, and B2-9 fragments interact with SMYD3 (Figure 1A). These fragments encompass

BRC repeats and the C-terminal domain, which mediate RAD51 binding and regulation on resected

DNA substrates (Carreira et al., 2009; Chatterjee et al., 2016). These results validated the predictions

of our proteomic screening by showing that BRCA2-SMYD3 interaction occurs directly and specifically

involves at least one region (B2-4) encompassing a P-tripeptide motif.

ATM is the initiator kinase mediating DNA DSB response through activation of the HR cascade (You et al.,

2007; Lee and Paull, 2007). We thus performed an ATM-SMYD3 in vitro pull-down assay by using HIS-

tagged SMYD3 and eight GST-ATM fusion proteins, designated A-1 to A-8 (Takai et al., 2007), and found

that A-7 and A-8 fragments interact with SMYD3 (Figure 1B). These two consecutive fragments encompass

ATM phosphatidylinositol kinase (PIK) domain, which mediates its kinase activity (Bakkenist and Kastan,

2003) and contains one P-tripeptide.

To validate the involvement of the identified tripeptide motifs in SMYD3 interaction, we performed an

in vitro competition assay for SMYD3 binding between the BRCA2/ATM fragments containing the relevant

tripeptide sequences and the specific purified P-tripeptides. Specifically, we tested BRCA2 GST-B2-4

fragment (encompassing P1, NFF) with escalating doses of the purified P1 tripeptide and ATM GST-A-8

fragment (encompassing P10, NDF) with escalating doses of the purified P10 tripeptide. In both cases,

the purified P-tripeptides interfered with the binding between HIS-SMYD3 and the indicated BRCA2/

ATM fragments in a dose-dependent manner (Figure 1C).

Next, we assessed whether a direct interaction between SMYD3 and ATM or BRCA2 also occurs in cellulo.

Co-immunoprecipitation (coIP) assays in HEK-293 cells transiently transfected with Myc-tagged SMYD3

and BRCA2 or FLAG-ATM confirmed the results obtained in vitro (Figures 1D and 1E). To validate these

findings, we also performed coIP assays of the endogenous proteins in breast cancer MDA-MB-231 cells,

which express high levels of SMYD3 (Figure S3A) and are wild-type for both ATM and BRCA2 (Figure S5F), in

the presence or absence of MNase to rule out indirect interaction via chromatin. Our results showed similar

signals in both experimental conditions, confirming that SMYD3 directly interacts with BRCA2 and ATM

(Figure 1F).

Figure 1. Continued

(E) Co-immunoprecipitation assay in MYC-SMYD3- and FLAG-ATM-overexpressing HEK-293 cells using anti-MYC and

anti-FLAG antibodies.

(F) Co-immunoprecipitation of endogenous SMYD3 using anti-SMYD3 antibodies in MDA-MB-231 nuclei treated with

MNase to limit indirect interaction through polynucleosomes.

(G) Upper panel: Domain structure of CHK2 protein. Lower panel: HIS-SMYD3 bound to histidine beads was incubated

with recombinant CHK2 protein and washed. Bound proteins were visualized by immunoblotting using anti-GST and anti-

CHK2 antibodies.

(H) Co-immunoprecipitation assay in MYC-SMYD3- and FLAG-CHK2-overexpressing HEK-293 cells using anti-MYC and

anti-FLAG antibodies.

(A, B, C, and G) A 10% input of the purified fusion proteins was used as a loading control. (A, B, and G) GST-HSP90

C-terminal (616–736) was used as a positive control. (D, E, F, and H) Anti-IgGs were used as negative controls.

P, P-tripeptide. Results are representative of at least three independent experiments. See also Figures S1 and S2.
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These findings prompted us to further explore our screening list in the search for other key players of the HR

pathway. Interestingly, we found that CHK2, a kinase that acts downstream of ATM and plays an effector

role in the HR pathway by activating BRCA2 (Shiloh, 2003), also contains 2 P-tripeptides. Our data indicate

that CHK2 can also interact with SMYD3 both in vitro and in cellulo (Figures 1G and 1H).

SMYD3 Mediates DSB Repair in BC Cells

To assess SMYD3 direct involvement in the HR repair process, we analyzed the formation and clearance of

nuclear foci of the damage sensor p53-binding protein 1 (53BP1), a DSB marker (Panier and Boulton, 2014).

Since we found that SMYD3 is overexpressed in a large panel of BC cell lines (Figure S3A), including triple-

negative breast cancer (TNBC) cells (a BC phenotype for which no standard therapy is currently recommen-

ded), we genetically silenced SMYD3 in the high-SMYD3 TNBC cell line MDA-MB-231 and evaluated 53BP1

foci in non-stressed asynchronous cells. Double-immunostaining experiments for foci containing 53BP1

and gH2AX, which is another DSB response component that co-localizes with 53BP1, revealed the presence

of a higher number of 53BP1/gH2AX-positive foci in cells treated with SMYD3-specific siRNAs, indicating

the presence of increased unrepaired endogenous DSB lesions in SMYD3-depleted cells (Figures 2A and

S3B). An increase in 53BP1 foci was also observed when cells were treated with the SMYD3 inhibitors BCI-

121 or EPZ031686 for 2.5 h (Figures 2B and 2C). Next, we determined the ability of SMYD3-interfered cells

to repair neocarzinostatin (NCS)-induced DSBs (Dedon and Goldberg, 1992). Twenty-four hours after NCS

exposure, cells that were genetically depleted for SMYD3 were incapable of completely repairing DNA

compared with non-silenced cells (Figure 2A). This evidence indicates that SMYD3 genetic ablation pre-

vents correct repair and resolution of DSBs at this time point (Figure 2A). In contrast, SMYD3i treatment

did not affect the resolution of NCS-induced DNA lesions in MDA-MB-231 cells at the 24-h time point (Fig-

ures 2B and 2C). Similar results were obtained when 53BP1 foci were analyzed both in unstressed condi-

tions and following NCS exposure in BCI-121-treated MCF7 cells, a different high-SMYD3 BC cell line (Fig-

ure 2D). Importantly, BCI-121 treatment did not affect the abundance of endogenous or NCS-induced

53BP1 foci in the MDA-MB-468 cell line, in which SMYD3 expression is barely detectable (low SMYD3) (Fig-

ure 2E). These findings confirmed that SMYD3 has a critical role in DSB repair and its protein expression is

required for DNA restoration. However, although its function appears to be critical for endogenous dam-

age, data related to residual damage after NCS exposure suggest that alternative DNA repair mechanisms

might be involved when SMYD3 is pharmacologically impaired.

Of note, the results obtained upon 2.5 h pre-treatment with a SMYD3i (Figures 2B–2D) indicate that, at least

in cancer cells, the main role of SMYD3 in DSB repair is not the epigenetic regulation of certain HR genes as

previously suggested (Chen et al., 2017) but involves an important transcription-independent activity that

positively mediates DSB repair in cancer cells expressing high levels of SMYD3.

SMYD3 Analysis in the Pan-Cancer Dataset and Identification of a Genetic Variant in a High-

Risk BC Family

The involvement of SMYD3 in HR, together with its interaction with ATM, CHK2, and BRCA2, which are all

encoded by genes that are highly mutated in sporadic cancers and are implicated in genetic predisposition

Figure 2. SMYD3 Mediates DSB Repair in BC Cells

(A) High-SMYD3MDA-MB-231 cells were transfected with control (siCTRL) or SMYD3-specific (siSMYD3) siRNAs, exposed

to 0.8 nM neocarzinostatin (NCS) after 48 h, and fixed at the indicated time points. Upper panel: Number of 53BP1 foci/

cell based on immunostaining for 53BP1. At least 100 cells were analyzed for each time point. Means and standard

deviations obtained from at least three independent experiments are shown in the graph on the left. The graph in the

middle shows the number of 53BP1 foci/cell before NCS addition (endogenous damage). The graph on the right shows

the percentage of 53BP1 foci/cell induced by NCS and detectable 24 h after drug exposure (residual damage NCS 24h).

Lower panel: double immunostaining for 53BP1 (red) and gH2AX (green). Nuclei were stained with DAPI (blue).

Representative images are shown. The scale bar represents 5 mm.

(B) MDA-MB-231 cells were treated with 10 mM BCI-121 2.5 h before NCS addition. Immunostaining for 53BP1 and foci

counting were performed and are graphically shown as in (A).

(C) Same as in (B) but cells were treated with 1 mM EPZ031686.

(D and E) Same as in (B), but experiments were performed on high-SMYD3 MCF7 cells (D) and low-SMYD3 MDA-MB-468

cells (E).

Data are presented as mean (SD), and significance was calculated using Student’s t-test; *p < 0.05, **p < 0.01, and ***p <

0.001. Results are representative of at least three independent experiments.

See also Figure S3.
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Figure 3. SMYD3 Analysis in the PanCanAtlas BC Dataset and Identification of a Genetic Variant in a High-Risk BC

Family

(A) Oncoprint of SMYD3 and HRD-associated genes in PanCanAtlas BC tumors. Overall profiling of 981 BC tumors

(columns) carrying alterations involving the SMYD3 gene (mRNA overexpression, copy number alterations, and

mutations) and deleterious mutations, deletions, and epigenetic silencing events for each HRD-associated gene (rows

with gene names listed on the left) in more than 1% of cases. Gray boxes indicate the absence of alterations, and color/

shape combinations corresponding to the various alteration types are indicated below the oncoprint. The overall

frequency of each gene alteration in the oncoprint plot is indicated on the left.

(B) Pedigree of the BC family selected for whole-exome sequencing. The proband is indicated by an arrowhead. For each

individual diagnosed with cancer, the age at diagnosis is reported. Tested family members are marked as +/� to indicate

SMYD3 (C)794G>A (p.Arg265His) heterozygous mutation carriers or as �/� to indicate wild-type SMYD3 individuals.

(C) Partial electropherogram of SMYD3 exon 8 confirming the presence of the SMYD3 c.794G>A mutation (indicated by a

black arrow) in both the germline and the tumor DNA of the proband.
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to BC (Jerzak, et al., 2018; Apostolou and Papasotiriou, 2017; Tazzite, et al., 2020), prompted us to analyze

SMYD3 genomic alterations and mRNA expression using publicly available human breast invasive carci-

noma data from The Cancer Genome Atlas (TCGA) Pan-Cancer dataset. We included in this study a total

of 981 primary tumors previously and systematically analyzed by integrating data on somatic truncating

mutations, deep copy-number deletions, and epigenetic silencing events involving a curated list of 276

genes encompassing all major DNA repair pathways (Knijnenburg et al., 2018). We used the cBioPortal

website (http://www.cbioportal.org) to assess somatic alterations involving the SMYD3 gene in 981

selected BC tumors. Tumors were stratified based on SMYD3 RNA-seq Z score, and the third quartile

was identified as high SMYD3 (q3: SMYD3 Z scoreR 1.06). This analysis revealed that the overall frequency

of somatic alterations involving the SMYD3 gene was of about 33% in all BC tumors. Specifically, a low pro-

portion of BC tumors (11/981; 1.12%) harbored missense (6/981), fusion (1/981), or deleterious (4/981) mu-

tations involving the SMYD3 gene. Among the six SMYD3missense mutations identified in the BC dataset,

two (c.203C>T, p.Ala68Val; c.620G>T, p.Ser207Ile) were identified in diploid tumors with low/normal

SMYD3 mRNA levels and were predicted to be probably deleterious by in silico analysis. Furthermore,

in agreement with the observation that SMYD3 is overexpressed in several cancer types (Zhu and Huang,

2020; Bottino et al., 2020), increased SMYD3mRNA levels were observed in 25% of BC tumors (245/981); of

these, 32 also harbored copy number amplifications. The presence of copy number amplifications involving

the SMYD3 gene was observed in 6.7% of all BC tumors (66/981). These data highlighted the role of SMYD3

overexpression in the pathogenesis of sporadic BC (Figures 3A and S4).

Next, we investigated whether SMYD3 could also be involved in genetic susceptibility to inherited BC. To

this aim, we focused on a high-risk BC family who tested negative for BRCA1/2 germline mutations and

comprised four patients with BC, two males and two females (Figure 3B), selected from the ongoing Italian

Multicenter Study on Male Breast Cancer (MBC) (Rizzolo et al., 2019). Whole-exome sequencing was per-

formed on the germline DNA of the two MBC patients. A rare SMYD3 missense variant (c.794G>A; p.Ar-

g265His; rs61762672), which was predicted to be potentially pathogenic by in silico analysis, was found

in both MBC patients (Figure 3C). Sequencing analysis of tumor DNA isolated from all four patients with

BC showed that the two males and one of the females harbored this variant (Figure 3C). Further analysis

of transcriptome data of one of the two BC males showed that the SMYD3 p.Arg265His variant and the

wild-type allele were expressed in the tumor with similar percentages (the variant allele and the wild-

type allele represented 43% and 57% of the total reads, respectively). SMYD3 protein immunohistochem-

ical expression was evaluated in BC samples from all four affected family members. Strong (3+) SMYD3

expression was detected in tumor cells; by contrast, tumor-surrounding normal breast tissue exhibited

weak/absent immunostaining (Figure 3D). Tumor samples displayed R70% SMYD3-positive cells: 95% in

BC samples derived from family members with the germline SMYD3 p.Arg265His variant and 70% in the

sample from the SMYD3 wild-type family member. SMYD3 immunostaining was detected both in the nu-

cleus and in the cytoplasm, showing variable cellular localization across BC samples. Specifically, SMYD3

showed either cytoplasmic or cytoplasmic/nuclear localization in BC samples derived from family members

with the germline SMYD3 p.Arg265His variant, whereas it displayed cytoplasmic only localization in the BC

sample from the SMYD3 wild-type family member (Table S1 and Figure 3D). Overall, both RNA and protein

expression data in BC samples suggest that the SMYD3 p.Arg265His variant could be a rare missense mu-

tation acting with a dominant-negative effect on the wild-type protein.

SMYD3 Promotes the Formation of HR Complexes during DSB Response and Is a Substrate of

ATM

Identification of the SMYD3 p.Arg265His variant prompted us to gain further molecular details on SMYD3

function in the HR pathway. To this end, we characterized this variant in our models. We first examined the

role of wild-type SMYD3 (SMYD3-WT) in the formation of HR complexes by transfecting HEK-293 cells (Low

SMYD3, Figure S3A) with a vector expressing FLAG-tagged SMYD3-WT. CoIP with anti-FLAG antibodies

revealed that SMYD3-WT can bind to the HR complex members ATM, CHK2, BRCA2, and RAD51 following

DNA damage induced by doxorubicin exposure, and ATM pharmacological inhibition affects this

Figure 3. Continued

(D) SMYD3 expression by immunohistochemistry in normal male breast tissue (left) and male breast tumors: cytoplasmic

only localization (center) and nuclear and cytoplasmic localization (right). All the analyzed BC sections showed strong (3+)

SMYD3 expression compared with normal breast tissue, regardless of SMYD3 mutational status. Magnification: 203.

Results are representative of at least three independent experiments. See also Figure S4 and Table S1.
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Figure 4. SMYD3 Promotes the Formation of HR Complexes during DSB Response and Is a Substrate of ATM

(A) Co-immunoprecipitation assay with anti-FLAG antibodies in nuclear fractions from HEK-293 cells transfected with

FLAG-SMYD3-WT or FLAG-SMYD3-R265H after treatment with doxorubicin (1 mM) and/or the ATM inhibitor KU60019

(1 mM) for 6 h.

(B) Upper panel: Schematic representation of the plasmid coding for both HA-SMYD3-WT and FLAG-SMYD3-R265H used

in the subsequent assay. Lower panel: Co-immunoprecipitation assay with anti-ATM antibodies in nuclear fractions from

SMYD3-KOMDA-MB-231 transfected cells after doxorubicin exposure (1 mM, 6 h). (A, B) Anti-IgGs were used as negative

controls.

(C) After 48 h of transfection with the indicated constructs, high-SMYD3MDA-MB-231 cells were fixed and immunostained

with an anti-53BP1 antibody in combination with an anti-FLAG antibody. Cells positive for FLAG-SMYD3 nuclear staining

were considered for 53BP1 counting. At least 50 cells were analyzed in each of three independent experiments. Data

shown in the graph (endogenous damage) are presented as mean (SD).

(D) U2OS DR-GFP cells were transfected with the I-SceI and the indicated SMYD3 expression plasmids. After 24 h of

transfection the percentage of GFP+ cells was determined for each condition by FACS and subsequently normalized to

the control cells. Data are presented as the mean (SD) (n = 3). Significance was determined by one-way ANOVA followed

by a Dunnett test. *p < 0.05.
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interaction (Figure 4A). These results showed that SMYD3 is part of the HR complex and may mediate its

assembly and/or activity. The novel interaction with RAD51 emerging from this experiment, which is consis-

tent with the observation that SMYD3 interacts with BRCA2 regions involved in RAD51 binding (Figure 1A),

suggests that SMYD3 may recruit RAD51 on resected DNA ends as a final readout of DNA repair signals.

Transfection of HEK-293 cells with a vector expressing the FLAG-tagged SMYD3 p.Arg265His variant

(SMYD3-265H) showed that this variant binds to ATM, especially in its phosphorylated form, with a higher

affinity than SMYD3-WT but loses the ability to bind other members of the complex (Figure 4A). These data

suggest that the SMYD3 p.Arg265His variant might have a dominant-negative activity on ATM and may

impair SMYD3 ability to modulate DNA repair. To test this hypothesis, we first generated a SMYD3-KO

MDA-MB-231 cell line (MDA-MB-231 SMYD3-KO) using the CRISPR-Cas9 system for genome editing, along

with a vector expressing both HA-tagged SMYD3-WT and FLAG-tagged SMYD3-R265H. Then, we trans-

fected SMYD3-KOMDA-MB-231 cells with this vector and performed coIP assays with anti-ATM antibodies.

After induction of DNA damage with doxorubicin, we found that ATM binds SMYD3-R265H with higher af-

finity than SMYD3-WT (Figure 4B). Moreover, analysis of 53BP1 foci in the high-SMYD3 cell line MDA-MB-

231 transfected with FLAG-SMYD3-WT or FLAG-SMYD3-R265H revealed that increased endogenous DSBs

are found in cells overexpressing themutant form (Figure 4C). These latter results were further confirmed by

a DR-GFP reporter assay, in which the I-SceI endonuclease is expressed in low-SMYD3 U2OS cells (Fig-

ure S3A) that are integrated with a direct repeat DR-GFP. I-SceI generates a DSB that restores GFP expres-

sion when repaired by HR (Gunn and Stark, 2012; Pierce et al., 1999). This assay showed that SMYD3-WT

overexpression in the presence of I-SceI promoted HR repair efficiency and that this increase was not

detectable when the SMYD3-R265H mutant was co-transfected (Figure 4D).

These data indicate that the SMYD3 p.Arg265His variant exerts a dominant-negative activity resulting in the

accumulation of unrepaired DNA, an effect possibly mediated by enhanced ATM binding. These findings

suggest that SMYD3 could be a substrate of ATM. To verify this hypothesis, we performed an in vitro kinase

assay using the purified proteins. Our results showed that active ATM can efficiently phosphorylate SMYD3

(Figure 4E). Intriguingly, an in silico analysis suggested that the best candidate site for ATM phosphoryla-

tion is T268, a residue that is very close to the mutation site (R265H) we identified in the high-risk BC family

(Figure 4F). To ascertain whether ATM can also phosphorylate SMYD3-R265H in cellulo, we transfected

HEK-293 cells with a vector expressing FLAG-tagged SMYD3-WT or FLAG-tagged SMYD3-R265H and per-

formed coIP assays with anti-FLAG antibodies. Phosphorylation of SMYD3-WT following doxorubicin expo-

sure was observed with phospho-specific SQ/TQ antibodies, which recognize proteins phosphorylated on

these motifs. This site was specifically targeted by ATM, as confirmed by the loss of phosphorylation

observed after ATM inhibition. Remarkably, no phosphorylation was detected in cells overexpressing

the mutant form SMYD3-R265H (Figure 4F).

SMYD3 Localizes at DSBs and Its R265H Mutation Prevents RAD51 Recruitment

Because of SMYD3 ability to associate to chromatin (Peserico et al., 2015; Sarris et al., 2016; Fenizia, et al.,

2019; Proserpio et al., 2013), we wondered whether it is recruited at DSBs. First, we performed chromatin

immunoprecipitation (ChIP) assays in low-SMYD3 DR-GFP U2OS cells (Figure S3A) transfected with FLAG-

SMYD3-WT or empty vectors and we found that FLAG-SMYD3-WT associates to chromatin in close prox-

imity to the DSB (Figure 5A). Of note, ATMpharmacological inhibition prevented the recruitment of SMYD3

at the DSB site (Figure 5A), thus confirming the role of ATM-dependent SMYD3 phosphoactivation in the

assembly of the HR multiprotein complex (Figures 4A and 4E).

Figure 4. Continued

(E) In vitro kinase assay showing SMYD3 phosphorylation by ATM, as measured by the luminescence signal resulting from

ADP generation.

(F) Left panel: Schematic representation of the human SMYD3 protein highlighting the domains and residues located

around the identified variant. The dotted square indicates the ATM phosphorylation site (Thr 268) based on in silico

predictions by three different tools (http://phospho.elm.eu.org/; http://www.dabi.temple.edu/disphos/; http://www.cbs.

dtu.dk/services/NetPhos/). Right panel: Co-immunoprecipitation assay with anti-FLAG antibodies in nuclear fractions

from HEK-293 cells transfected with FLAG-SMYD3-WT or FLAG-SMYD3-R265H after treatment with doxorubicin (1 mM)

and/or the ATM inhibitor KU60019 (1 mM) for 6 h.

Significance was calculated using Student’s t-test; *p < 0.05. DOXO, doxorubicin. Results are representative of at least

three independent experiments.

See also Figure S3.
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Based on these findings, we tested the hypothesis that SMYD3 might be involved in RAD51 loading on

DSBs by analyzing RAD51 foci in MDA-MB-231 cells treated or not with BCI-121 or EPZ031686. We found

that SMYD3 inhibition impairs the formation of RAD51 foci on DSBs after NCS exposure (Figures 5B

and S5A).

Since the SMYD3-R265Hmutant strongly binds to (phospho-)ATM but failed to interact with CHK2, BRCA2,

and RAD51 in doxorubicin-treated cancer cells (Figure 4A), we assessed whether it could be recruited at

DSB sites. To this end, we performed a ChIP assay in low-SMYD3 DR-GFP U2OS cells overexpressing

FLAG-SMYD3-WT or FLAG-SMYD3-R265H and observed that both proteins occupy the DNA break region.

However, in SMYD3-WT-overexpressing cells RAD51 co-occupied the break site, whereas overexpression

of FLAG-SMYD3-R265H dramatically impaired RAD51 recruitment in proximity to the damage (Figure 5C).

Consistent with the dominant-negative effect of FLAG-SMYD3-R265H overexpression observed in MDA-

MB-231 cells (Figure 4C), our results showed that the mutant variant impairs RAD51 loading at DSBs after

damage (Figures 5D and S5B).

A B

C D

Figure 5. SMYD3 Localizes at DSBs and Its R265H Mutation Prevents RAD51 Recruitment

(A) SMYD3 association to DSB regions was assayed by chromatin immunoprecipitation (ChIP) qPCR in DR-GFP U2OS cells

transiently co-transfected with a plasmid carrying the I-SceI coding sequence and either an empty vector or the FLAG-

SMYD3-WT plasmid and treated or not with KU60019 (1 mM). ChIP assays were performed using antibodies against

SMYD3, and the region +1300 bp from the cut site was analyzed by qPCR.

(B) MDA-MB-231 cells were pre-treated for 4 h with BCI-121 (30 mM) or EPZ031686 (1 mM) and then subjected to DNA

damage with NCS (1 nM) for 6 h. The graph reflects the quantification of RAD51 foci analyzed by immunofluorescence.+p

% 0.05, all treatments compared with control (-NCS); #p % 0.05, SMYD3i treatment compared with its respective control

(GNCS).

(C) DR-GFP U2OS cells were transiently co-transfected with a plasmid coding for I-SceI and either FLAG-SMYD3-WT or

the FLAG-SMYD3-R265H variant. ChIP assays were performed using antibodies against SMYD3 and RAD51, and the

region +1300 bp from the cut site was analyzed by qPCR.

(D) MDA-MB-231 cells were transfected with FLAG-SMYD3-WT or FLAG-SMYD3-R265H and then treated with NCS (1 mM)

for 6 h. The graph reflects the quantification of RAD51 foci analyzed by immunofluorescence.

(A and C) The ubiquitin B promoter was used as a negative control. Data are expressed as fold enrichment compared with

IgGs and represent means (SD).

Statistical analysis was performed using Student’s t-test: *p % 0.05 was considered statistically significant. Results are

representative of at least three independent experiments. See also Figures S3 and S5.
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Overall, these data suggest that SMYD3 associates with DSBs and the R265H variant does not affect SMYD3

localization at these sites but prevents proper HR complex formation and RAD51 recruitment at DSBs.

SMYD3 Inhibition Triggers a Compensatory PARP-Dependent DNA Damage Response

We observed a difference between the effect of SMYD3 genetic ablation or pharmacological inhibition on

the residual damage of BC cells exposed to a DNA damaging agent, as reported in Figure 2. These findings

prompted us to analyze in depth the possibility that other DNA repair signals may be activated to restore

efficient DSB religation in the presence of a SMYD3i. PARP1 is an important player in DNA damage

response: it acts upstream of various pathways and is implicated both in single-strand break repair mech-

anisms and in the regulation of DSB repair (Pascal, 2018). Thus, in order to investigate the potential compen-

satory effect of DNA repair mechanisms, other than HR, acting in BC cells treated with NCS and a SMYD3i,

we inhibited PARP in these cells by using olaparib, an FDA-approved PARPi for BRCA1/2-mutated ovarian

and pancreatic tumors (Buchtel et al., 2018). We first analyzed 53BP1 foci in MDA-MB-231 cells pre-treated

with a SMYD3i alone, olaparib alone, or a combination of both, followed by 24 h NCS exposure in order to

induce DSBs (Figure 6A, right panel, and S5C). Of note, cells pre-treated with both a SMYD3i and olaparib

were found to be incapable of completely repairing DNA when compared with single drug-treated cells,

confirming that combined inhibition impairs DSB repair. Interestingly, the activity of both SMYD3 and

PARP1 was also required to efficiently repair endogenous damage (Figure 6A, left panel, and S5C). These

results prompted us to evaluate the effect of PARP1 inhibition in wild-type and SMYD3-KO MDA-MB-231

cells. Our data showed that in the absence of SMYD3, BC cells became more sensitive to olaparib (Fig-

ure 6B). Moreover, SMYD3-KO cancer cells appeared to have higher levels of basal apoptosis compared

with their wild-type counterpart (Figure 6B). To clarify this observation, we analyzed wild-type and

SMYD3-KO MDA-MB-231 cells throughout several passages in culture. Our results showed that the

SMYD3-KO cells we generated have a limited number of passages; indeed, we observed decreased cell

growth and increased cell death after 10–15 passages (Figure S5D). Of note, exogenous re-expression of

wild-type SMYD3 in SMYD3-KO MDA-MB-231 cells was able to rescue their phenotype by lowering

apoptotic levels (Figure S5E). Finally, to confirm the effect of SMYD3 pharmacological inhibition or genetic

ablation observed in BC cells, we analyzed the impact of the SMYD3-R265Hmutant on olaparib sensitivity in

HEK-293 cells (Low SMYD3, Figure S3A). Although overexpression of wild-type SMYD3 reduced HEK-293

sensitivity to olaparib, the R265H mutant significantly increased apoptosis induction (Figure 6C).

Targeting SMYD3 to Extend the Synthetic Lethality Approach to HR-Proficient Tumors

Based on the above evidence, we hypothesized that combined inhibition of SMYD3 and PARP could repre-

sent a valid strategy to induce cancer cell death as a synthetic lethality approach. Specifically, high-SMYD3

and HR-proficient cancer cells might become sensitive to PARP inhibition when combined with SMYD3 in-

hibition, which impairs HR repair response. Tumors with HR defects are more dependent on PARP to pre-

serve genome integrity (Telli and Ford, 2010). Indeed, inhibition of PARP enzymatic activity directly acti-

vates the HR pathway as a way to compensate for the dysfunction; as a consequence, cells with

impaired key HR proteins fail to repair DNA damage and restore replication, resulting in cell death

(Wang and Weaver, 2011). To get insight into this potential treatment strategy, we treated CRC and BC

cells with a SMYD3i and/or olaparib for 72 h and assessed cell death response in single and dual treatment

conditions. We found that the combined treatment has a synergistic cytotoxic effect both in MDA-MB-231

and HCT116 cell lines (Figure 6D). We thus extended our analysis to a large panel of BC and CRC cell lines

with different mutation profiles and SMYD3 levels (Figure S3A and S5F). Our results confirmed the efficacy

of combined SMYD3 and PARP inhibition both in CRC and BC cells with high SMYD3 levels, whereas no

significant difference was observed in low-SMYD3 cancer cells (Figure 6E). We further analyzed the biolog-

ical impact of the combined treatment by characterizing changes in cell fate. Our data revealed that treat-

ment with both a SMYD3i and olaparib promotes apoptosis (Figure 6F). As PARPis are used in the clinics for

ovarian and pancreatic BRCA1/2-mutant tumors (Gupta et al., 2019; Zhu et al., 2020; Penson et al., 2020), we

further investigated the apoptotic efficacy of the combined treatment in our panel of BC and CRC cells and

in OvCa and PC cells with different mutation profiles and SMYD3 levels (Figures S3A and S5F) by annexin V

staining (Figures 7A and 7B). Our results confirmed that the combined treatment has a synergistic cytotoxic

effect; in particular, PARPi-resistant high-SMYD3 cancer cells are sensitized by SMYD3 inhibition and un-

dergo apoptosis. The high-SMYD3 CAPAN-1 PC cell line was used as a control since it has already been

shown to be sensitive to PARP inhibition due to BRCA2 deficiency (McCabe et al., 2005). These data re-

vealed that SMYD3 is synthetic lethal with olaparib in HR-proficient cancer cells, thus extending the poten-

tial of the synthetic lethality approach in human tumors.
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Figure 6. Targeting SMYD3 to Extend the Synthetic Lethality Approach to HR-Proficient Tumors

(A) Upper panel: Treatment scheme. MDA-MB-231 cells were pre-treated for 4 h with BCI-121 (30 mM) and/or olaparib

(10 mM), then exposed to NCS (1 nM) for 24 h. Lower panel: Immunostaining with anti-53BP1 antibodies was performed to

count nuclear foci. At least 100 cells were analyzed for each time point. The graphs show the number of 53BP1 foci/cell

before NCS addition (endogenous damage, left) and the percentage of 53BP1 foci/cell induced by NCS and detectable

24 h after drug exposure (residual damage NCS 24 h, right). Data are presented as mean (SD).

(B) Cell death analysis by annexin V staining. Wild-type and SMYD3-KO MDA-MB-231 cells were treated with olaparib

(10 mM) for 72 h and analyzed by flow cytometry for annexin V staining. The indicated percentages of total apoptotic cells

include early and late apoptotic and dead cells. Statistical analysis was performed using Student’s t-test; +p % 0.05, all

treatments compared with control; Dp % 0.05, SMYD3-KO MDA-MB-231 versus wild-type MDA-MB-231.

(C) Immunoblot analysis showing cleaved PARP levels in HEK-293 cells transfected with FLAG-SMYD3-WT or FLAG-

SMYD3-R265H and treated with olaparib for 48 h. FLAGwas analyzed as an overexpression control and actin was used as a

loading control.

(D) Colony formation assay of MDA-MB-231 and HCT116 cells pre-treated with a SMYD3i (100 mM BCI-121 or 10 mM

EPZ031686) for 6 h and then treated with olaparib (10 mM) in the presence of the SMYD3i for a total of 72 h.
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To evaluate the potential clinical application of SMYD3i/PARPi combined therapy, we determined the frac-

tion of BCs that could be eligible for this therapeutic strategy. To this end, we considered the HR deficiency

(HRD) score—which is a biomarker that defines the HRD status and was calculated by Knijnenburg and col-

leagues by combining scores related to HRD-loss of heterozygosity, large-scale state transitions, and the

number of telomeric allelic imbalances—in BCs with high SMYD3 mRNA expression (Knijnenburg et al.,

2018). This analysis revealed that 62.4% (153/245) of BC tumors with high SMYD3 mRNA levels have a low

HRD score (i.e., equal or below the median within the BC dataset) (Figure S4), thus suggesting that 15.6%

(153/981) of all analyzed BCs could be eligible for SMYD3i/PARPi combined therapy (high SMYD3/low

HRD). Moreover, we determined in the BC dataset the prevalence (Figure S4) and mutual exclusivity of alter-

ations in genes that were previously shown to be significantly associated with a higher HRD score, which

means a higher correlation with a homologous recombination deficiency (Figure 8A, Table S2). Alterations

with a frequency above 1% were identified in genes (TP53, BRCA1, NEIL2, HERC2, ATM, RAD51C, BRCA2,

NSMCE3,NUDT15,MLH1, POLE, CHEK1, PER1, RFC3,NEIL3, FAAP20) involved in DDR pathways, including

homology-dependent recombination, nucleotide excision repair, and mismatch repair (Knijnenburg et al.,

2018) (Figures 3A and S4). Importantly, SMYD3 mRNA overexpression is mutually exclusive with loss-of-func-

tion alterations in several genes associated with HRD in cancer, i.e., TP53, BRCA1, NEIL2, HERC2, ATM,

RAD51C, and BRCA2 (Figure 8A and Table S2), supporting the potential of the therapeutic protocol relying

on combined SMYD3 and PARP inhibition for HR-proficient tumors with high levels of SMYD3.

These results prompted us to evaluate the prevalence and mutual exclusivity of SMYD3mRNA overexpres-

sion in association with genomic alterations of 43 HRD-associated genes (Knijnenburg et al., 2018), across

459 PanCanAtlas colon and rectum adenocarcinomas (COAD-READ). These tumors were previously

analyzed by integrating data on somatic deleterious mutations, deep copy number deletions, and epige-

netic silencing events involving a curated list of 276 genes encompassing all major DNA repair pathways

(Knijnenburg et al., 2018). This analysis revealed that 126/459 COAD-READ tumors (27%) show SMYD3

mRNA overexpression and that a low HRD score (i.e., equal or below the median within the COAD-

READ dataset) is found in 41.2% of tumors (52/126) with high SMYD3mRNA levels (Figure 8B). Furthermore

83% of COAD-READ tumors (383/459) display one or more deleterious alterations in a DNA damage repair

gene associated with HRD in cancer, including MLH1, ATM, EXO5, and HERC2, which are mutually exclu-

sive with SMYD3mRNA overexpression (Figure 8C; Table S2). This analysis suggests that 11% of total CRCs

could benefit from SMYD3i/PARPi combined therapy (high SMYD3/low HRD).

Since PARPi therapy has been approved for the treatment of patients with germline or somatic BRCA1/

BRCA2-mutant ovarian and pancreatic cancers, we used TCGA Pan-Cancer ovarian cancer (OV) and

pancreatic adenocarcinoma (PAAD) data to evaluate the fraction of patients who could be eligible for

SMYD3i/PARPi combined therapy. We included in this analysis a total of 177 OV and 152 PAAD tumors,

which were previously characterized for deleterious mutations in DDR genes, to assess the prevalence of

HR-proficient and SMYD3 mRNA-overexpressing tumors. This analysis revealed that 24 of the 51/177 OV

tumors with high SMYD3 mRNA levels and 16 of the 41/152 PAAD tumors with high SMYD3 mRNA levels

have a low HRD score (i.e., equal or below the median within OV and PAAD datasets). Moreover, at least

onemutation from a list of 43 HRD-associated genes was detected in 170/177OV tumors (96%) and 116/152

PAAD tumors (65.3%) (Figure S6). Thus, 13.5% of total OvCas and 10.5% of total PCs could be eligible for

SMYD3i/PARPi combined therapy.

Altogether, these results support the potential benefit of combined SMYD3 and PARP inhibition in the

management of several solid tumors with HR proficiency and high levels of SMYD3.

DISCUSSION

Personalized medicine is revolutionizing cancer therapy by targeting genes and pathways that are

mutated in specific patients’ tumors. At present, two different approaches are moving from bench to

Figure 6. Continued

(E and F) BC and CRC cell lines were treated as indicated in (D) and cell survival and cell death were assessed by colony

formation assay (E) and by immunoblot analysis of cleaved PARP (F), respectively. Actin was used as a loading control.

(A and E) +p % 0.05, all treatments compared with control; #p % 0.05, combined treatments compared with the

respective single treatments.

Results are representative of at least three independent experiments. See also Figures S3 and S5.
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bedside: oncogene addiction and synthetic lethality. The oncogene addiction approach relies on the

observation that tumor cells bearing an activating mutation in a cancer gene are addicted to the signal

generated by the encoded gene product and are thus hypersensitive to drugs that specifically target

the activated cancer pathway (Weinstein and Joe, 2006). The HER2-targeted antibody trastuzumab

used in BC and the VEGF-targeted antibody bevacizumab used in CRC are just a couple of examples

(Nahta, 2012; Rosen et al., 2017). Synthetic lethality approaches are based on the assumption that the

presence of a mutation in a cancer gene is often associated with a novel vulnerability that can be targeted

therapeutically. The genetic principle is that the combination of two genetic perturbations is lethal,

whereas each of them individually is not, because the function of the targeted genes is compensatory

or partially redundant. Thus, the clinical effect of single drugs individually targeting one of the genes

is limited, but their impact is greatly potentiated when they are used in combination (Shen and Ideker,

2018). At present, the only synthetic lethality approach approved in the clinics is based on the use of

PARP inhibitors (i.e., olaparib, rucaparib, niraparib, and talazoparib) in BRCA1/2-mutated tumors, as

breast, ovarian, and pancreatic cancers.

SMYD3 is a methyltransferase of particular interest for pharmaceutical companies. Indeed, novel inhibitors

of this enzymewere recently developed (Fabini et al., 2019a, 2019b; Bottino et al., 2020). However, although

its involvement in tumorigenesis is well established—supported by the fact that it is highly overexpressed

in several cancers and is required for the development of some types of tumors even in advanced mice

models (Sarris et al., 2016)—its role in cancer formation has recently been debated following the publica-

tion of a report showing that its genetic ablation or inhibition of its activity does not impair cancer cell

autonomous proliferation in vitro (Thomenius et al., 2018). This evidence prompted us to undertake an

in-depth study of the functional role of SMYD3. A better understanding of SMYD3 function might indeed

provide new therapeutic avenues to treat cancer.

As SMYD3 mediates cancer progression by interacting with and regulating key cancer-associated non-his-

tone proteins (Mazur et al., 2014), we performed an in silico peptide screening that identified novel SMYD3

interactors, including ATM, CHK2, and BRCA2. These proteins are strictly linked and play important initi-

ator and effector roles in the HR cascade responding to DSBs (Holloman, 2011; Maréchal and Zou,

2013). These data are in agreement with a preliminary study suggesting that SMYD3 is linked to HR

repair—although the authors only focused on its gene expression-modulating activity and its effects on

long recovery time (Chen et al., 2017)—and with another report hypothesizing that the absence of

SMYD3 could arrest cells in the G2/M phase via the ATM-CHK2/p53-Cdc25C pathway (Wang et al.,

2017). However, our results clearly support a direct interaction between SMYD3 and ATM. This interaction

enables the propagation of a signal cascade through CHK2, which also interacts with SMYD3, by modu-

lating the activity of the third SMYD3 interactor BRCA2, thereby promoting its ability to recruit RAD51

on resected DNA ends. Of note, we found that SMYD3 is a substrate of ATM, and an in silico analysis pre-

dicted that the targeted amino acid could be residue T268.

This molecular evidence prompted us to study a group of 981 sporadic BCs from the TCGA BC Pan-Cancer

dataset. This study revealed that SMYD3 is altered in 1.2% of all BCs, whereas its mRNA is overexpressed in

25% of them. These data are in agreement with previous reports on cancer tissues (Mazur et al., 2014; Fei

et al., 2017) and with an extensive characterization performed on cancer cell lines including BCs and in

particular the TNBC phenotype (Peserico et al., 2015 and Figure S3A). Moreover, we found a BC high-

risk family carrying a SMYD3 genetic variant predicted to be deleterious. Intriguingly, the mutation occurs

at residue 265, which is located very close to threonine 268, the potential ATM phosphorylation site. This

variant correlates with a male and female BC phenotype and was also found in a dataset of patients with

CRC (Cerami et al., 2012; Gao et al., 2013). The identification of this variant allowed us to gain further

Figure 7. Apoptotic Efficacy of SMYD3i and PARPi Combined Treatment in a Panel of BC, CRC, PC, and OvCa Cell

Lines

(A and B) Cell death analysis by annexin V staining. OVCAR-3 (A), BC (red), CRC (blue), PC (green), and OvCa (orange) cell

lines (B) were pre-treated with a SMYD3i (100 mM BCI-121 or 10 mM EPZ031686) for 6 h, then treated with olaparib (10 mM)

in the presence of the SMYD3i for a total of 72 h and analyzed by flow cytometry for annexin V staining. The indicated

percentages of total apoptotic cells include early and late apoptotic and dead cells. Statistical analysis was performed

using Student’s t-test;+p% 0.05, all treatments compared with control; #p% 0.05, combined treatments compared with

the respective single treatments. Results are representative of at least three independent experiments. See also

Figure S3.
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Figure 8. Analysis of Genomic Alterations and Mutual Exclusivity of SMYD3 and HRD-Associated Genes in

PanCanAtlas BC and COAD-READ Datasets

(A) Oncoprint of mutual exclusivity between SMYD3mRNA overexpression and deleterious alterations of HRD-associated

genes (TP53, BRCA1,NEIL2, HERC2, ATM, RAD51C, and BRCA2) identified using DISCOVER algorithm at maximum false

discover rate (FDR) of 1% across 981 PanCanAtlas BC tumors. BC tumors with somatic alterations in mutually exclusive

ll
OPEN ACCESS

iScience 23, 101604, October 23, 2020 17

iScience
Article



molecular clues about SMYD3 protein function in tumors. Our results showed that the R265H mutant pro-

tein acts as a dominant negative on ATM, confirming the data obtained by SMYD3 pharmacological inhi-

bition and genetic ablation and unveiling the mechanisms underlying SMYD3 recruitment on DSBs and its

active involvement in the repair of DNA lesions.

At the molecular level, we propose that SMYD3 is phosphorylated by ATM and recruited to the site of

damaged DNA. At DSB sites, SMYD3 favors the recruitment of various key factors that drive DNA repair

through its direct interaction with ATM, BRCA2, and CHK2. Remarkably, the R265H variant identified in

the family case study is still capable of associating to DNAbreak sites but prevents the assembly of a proper

DNA repair complex. This suggests that it plays a dominant-negative role, as it displays a very strong inter-

action with ATM (and phospho-ATM) but loses the ability to interact with BRCA2 and CHK2 to recruit

RAD51 to DNA damage sites.

Our findings suggest that SMYD3 plays a role in HR DNA repair also in normal cells. Indeed, the SMYD3

R265H germline mutation was identified in the affected members (two males and one female) of a high-

risk BC family. This mutant variant may exert a dominant-negative effect on the wild-type allele by seques-

tering ATM and preventing proper HR protein complex formation. The analysis of SMYD3 alterations in tu-

mors shows that deleterious mutations have a low frequency, and SMYD3 overexpression, which accounts

for around one-third of all cases, is mutually exclusive with mutations occurring in major HR genes. Thus, it

seems that these molecular alterations (SMYD3 overexpression and HR gene mutations) may identify two

different tumor subsets: one that is HR competent and addicted to SMYD3 overexpression and the other

that ‘‘classically’’ displays impairment of major HR genes. Consistently, in our SMYD3-overexpressing can-

cer cell models, we found that SMYD3 genetic ablation or pharmacological inhibition could trigger a

compensatory DNA repair mechanism mediated by PARP1 (Figure 9).

Consistent with a role for SMYD3 in DNA repair, SMYD3 depletion, SMYD3 inhibition, or expression of the

R265H variant were all capable, by themselves, to induce endogenous DNA damage accumulation in

SMYD3-expressing cancer cells. However, only SMYD3-depleted cells showed a significant defect in rejoin-

ing DNA breaks induced by a damaging agent like NCS. Therefore, we hypothesized that activation of one

or more compensatory DNA repair signals may occur upon SMYD3 pre-inhibition. Indeed, our experiments

highlighted the crucial role of PARP1 in mediating DSB repair in DNA-damaged cells with impaired SMYD3

activity. Thus, we tested the combined treatment with a SMYD3i and a PARPi in order to inhibit both signals,

which resulted in cancer cells being incapable of repairing DNAdamage. Based on these data, we assessed

the efficacy of this combined treatment in BC, CRC, OvCa, and PC cell lines and found that it has a cytotoxic

effect and induces apoptotic cell death.

Targeted therapy is currently considered the best approach for fighting cancer. It is based on the use of

drugs that specifically interfere with selected molecules involved in cancer development. The increased

specificity of this approach allows one to achieve better outcomes and to decrease toxic side effects (Saw-

yers, 2004). The identification of small-molecule inhibitors that can be associated with PARPis paves the way

to new therapeutic protocols and opens up the possibility to extend PARPi/SMYD3i-based treatments even

to cancers that are HR proficient and overexpress SMYD3. These represent a significant proportion not only

Figure 8. Continued

genes are depicted in black; BC tumors without somatic alterations in mutually exclusive genes are depicted in gray.

Number of BC tumors is indicated below the oncoprint graph (x axis).

(B) Oncoprint of SMYD3 and HRD-associated genes in PanCanAtlas colon and rectum adenocarcinomas (COAD-READ).

Overall profiling of 459 COAD-READ tumors (columns) carrying alterations involving the SMYD3 gene mRNA

overexpression and deleterious mutations, deletions, and epigenetic silencing events for each HRD-associated gene

(rows with gene names listed on the left). The association between COAD-READ tumors and the HRD score, low (%12)

and high (>12), is represented as yellow and green bars, respectively. Gray boxes indicate the absence of alterations, and

color/shape combinations corresponding to the various alteration types are indicated below the oncoprint. The overall

frequency of each gene alteration in the oncoprint plot is indicated on the left.

(C) Oncoprint of mutual exclusivity between SMYD3mRNA overexpression and deleterious alterations of HRD-associated

genes (MLH1, ATM, EXO5, and HERC2) identified using DISCOVER algorithm at maximum false discover rate (FDR) of 1%

across 459 PanCanAtlas COAD-READ tumors. COAD-READ tumors with somatic alterations in mutually exclusive genes

are depicted in black; COAD-READ tumors without somatic alterations in mutually exclusive genes are depicted in gray.

The number of COAD-READ tumors is indicated below the oncoprint graph (x axis).

See also Figures S4 and S6 and Table S2.
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of BC (15%) but also of CRC (11%), OvCa (15%), and PC (10%) cases, according to data retrieved from the

TCGA Pan-Cancer Atlas.

We believe that our findings, which should be further tested in preclinical cancer models, may

provide the basis for future clinical trials to assess the potential of SMYD3 inhibitors in novel therapeutic

protocols.

Limitations of the Study

Our results showed that ATM can efficiently phosphoactivate SMYD3 in response to DNA damage, which

promotes HR repair; however, we cannot rule out that additional post-translational modifications mediated

by and/or affecting SMYD3 activity may be involved in the modulation of HR response. Thus, further inves-

tigations are warranted to identify protein modifications that could favor both the assembly of HR multipro-

tein complexes and RAD51 loading for DSB repair. These would complete the overall molecular picture and

may provide novel predictive biomarkers to monitor therapy response. Moreover, our findings would be

strengthened by additional testing of the identified synthetic lethality approach in preclinical cancer

models, especially in vivo systems that mimic human tumors, to further corroborate our findings and devise

novel therapeutic strategies for clinical settings. Furthermore, in order to enhance and improve future

studies, we have planned to develop more effective and safer SMYD3 inhibitors to translate these findings

into clinics.

Figure 9. DSB Repair in Depleted/Mutated and Overexpressing SMYD3 Cells

Based on our findings, SMYD3 might play a role in HR DNA repair response in normal cells. Indeed, the presence of the

SMYD3 R265H germline mutation may exert a dominant-negative effect on the wild-type allele by sequestering ATM and

preventing proper HR protein complex formation. In high SMYD3-expressing cancer cells, phosphorylated SMYD3 by

ATM interacts with CHK2 and BRCA2 forming the HR complex required for the final loading of RAD51 at DBS sites.

Molecular alterations as SMYD3 overexpression and HR gene mutations may identify two different tumor subsets: one

that is HR competent and addicted to SMYD3 overexpression and the other that is influenced by HR gene mutations. In

SMYD3-overexpressing cancer cell models, SMYD3 genetic ablation or pharmacological inhibition could trigger a

compensatory DNA repair mechanism mediated by PARP1.
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Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Cristiano Simone (cristianosimone73@gmail.com).

Materials Availability

Reagents (peptides, plasmids, and engineered cell lines) generated in this study are available upon request.

Data and Code Availability

In silico data analysis reported in this study were performed as detailed in Transparent Methods section

using public repository (i.e., Uniprot, Reactome, cBioPortal), datasets (Colorectal adenocarcinoma, Breast

invasive carcinoma, Ovarian serous cystadenocarcinoma, Pancreatic adenocarcinoma of TCGA, PanCancer

Atlas), and algorithms (i.e., DISCOVER).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101604.
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Figure S1. SPR analysis of selected P-tripeptides interaction with SMYD3, (Related to Figure 1).
Left: List of P-tripeptides with their amino acid composition and molecular weight. Right: Histogram of MW-
adjusted SPR responses for the tested P-tripeptides. Shown double-referenced responses refer to the SAM-free
assay. No difference in binding responses between SAM-free and SAM-saturated binding events emerged,
suggesting no allosteric effect.



Whole Human Proteome 
(169,671 human proteins) 

8,650 (5.1%)
Proteins contain the
identified P-tripeptides

24 (0.014%)
proteins in the cluster
involved in DNA repair
and S-phase checkpoint

214 (0.12%)
proteins showed at
least 4 different P-
tripeptide occurrences

Figure S2. Procedural scheme of P-tripeptide screening in the human proteome, (Related to Figure 1).
The exact distribution of each P-tripeptide in all human proteins annotated in the UniProt/SwissProt database
(analysis performed in December 2018; https://www.uniprot.org) was analyzed using the Peptide search tool
(https://www.uniprot.org/peptidesearch/). The entire human proteome was scanned to search for exact matches
of each P-tripeptide. Among 8,650 proteins containing the identified tripeptides, only 214 showed at least 4
different tripeptide occurrences. These 214 proteins represented our starting subset to analyze potential
candidates as new SMYD3 interactors. Next, we clustered these 214 proteins based on their biological function
annotated in the corresponding Uniprot entry and confirmed the clustering in the Reactome database (e.g. HR
pathway, Reactome id: R-HSA- 5685942; http://reactome.org). In the subset of 214 proteins showing at least 4
different tripeptide occurrences, we observed an enrichment in factors (24 proteins) involved in DNA repair
and S- phase checkpoint (e.g. ATM, BRCA2).
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Figure S3. Analysis of SMYD3 protein levels in BC cell lines (Related to Figures 2, 4, 5, 6, 7).
(A) Upper panel: Densitometric analysis of SMYD3 levels, normalized against the loading control, in 43 BC
cell lines classified for estrogen (ER) or progesterone (PR) receptor positivity and human epidermal growth
factor receptor 2 (HER2) status; TNBC: triple-negative breast cancer cell lines without any marker positivity.
Lower panel: immunoblotting analysis of SMYD3 protein levels in all the cell lines used in this study.
(B) Immunoblotting analysis of SMYD3 protein levels in MDA-MB-231 cells transfected with siCTRL and
siSMYD3 depicted in Figure 2A. Actin was used as a loading control.
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Figure S4. Oncoprint of SMYD3 and HRD-associated genes in PanCanAtlas BC tumors, (Related to
Figures 3, 8).
Overall profiling of 981 BC tumors (columns) carrying alterations involving the SMYD3 gene (mRNA
overexpression (25%), copy number alterations (6.7%), and mutations (1.12%) and deleterious mutations,
deletions, and epigenetic silencing events for each HRD-associated gene (rows with gene names listed on the
left). The association between BC tumors and the HRD score, low (≤ 21) and high (> 21), is represented as
yellow and green bars, respectively. Grey boxes indicate the absence of alterations, and color/shape
combinations corresponding to the various alteration types are indicated below the oncoprint. The frequency of
each gene alteration in the oncoprint plot is indicated on the left.
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Figure S5. Characterization of SMYD3 role in DSB repair and mutation profiling in cancer cells, (Related
to Figures 1, 5, 6, 7).
(A) Immunostaining for RAD51 (green) in MDA-MB-231 cells pre-treated for 4 h with BCI-121 (30 μM) or
EPZ031686 (1 μM) and then subjected to DNA damage with NCS (1 nM) for 6 h. Nuclei were stained with
DAPI (blue).
(B) Immunostaining of MDA-MB-231 cells treated with NCS (1 μM) for 6 h. Left panel: Immunostaining for
RAD51 (green) and γH2AX (red) in untransfected MDA-MB-231 cells. Right panel: Immunostaining for
RAD51 (green) and FLAG (red) in MDA-MB-231 cells transfected with FLAG-SMYD3-WT or FLAG-
SMYD3-R265H. Nuclei were stained with DAPI (blue).
(C) Immunostaining for 53BP1 (green) in MDA-MB-231 cells pre-treated for 4 h with BCI-121 (30 μM) and/or
olaparib (10 μM) and then exposed to NCS (1 nM) for 24 h. Nuclei were stained with DAPI (blue). (A,B,C) The
scale bar represents 5 μm.
(D) Quantification of cell viability and cell death by trypan blue staining in SMYD3-KO MDA-MB-231 cells at
the indicated culture passages, normalized against wild-type MDA-MB-231 cells.
(E) Cell death analysis by annexin V staining. SMYD3-KO MDA-MB-231 cells were transfected with FLAG-
SMYD3-WT for 24 h and then analyzed by flow cytometry for annexin V staining. The indicated percentages of
total apoptotic cells include early and late apoptotic and dead cells.
(D, E) Statistical analysis was performed using Student’s t-test; *p ≤ 0.05. Results are representative of at least
three independent experiments.
(F) Mutation profiles of selected BC, CRC, OvCa, and PC cell lines.
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Figure S6. Oncoprint of SMYD3 and HRD-associated genes in PanCanAtlas OV and PAAD tumors,
(related to Figure 8).
Overall profiling of 177 OV and 152 PAAD tumors (columns) carrying alterations involving the SMYD3 gene
mRNA overexpression and deleterious mutations, deletions, and epigenetic silencing events for each HRD-
associated gene (rows with gene names listed on the left). The association between tumors and the HRD score,
[OV: low (≤ 44) and high (> 44); PAAD: low (≤17) and high (>17)], is represented as yellow and green bars,
respectively. Grey boxes indicate the absence of alterations, and color/shape combinations corresponding to the
various alteration types are indicated below the oncoprint. The frequency of each gene alteration in the
oncoprint plot is indicated on the left.



SMYD3 
STATUS

IHC 
intensity 

% positive 
cells

Localization

Proband (BC 39y) p.Arg265His 3 95 cytoplasmic and nuclear

Father (BC 54y) p.Arg265His 3 95 cytoplasmic

Paternal aunt (BC 43y) p.Arg265His 3 95 cytoplasmic and nuclear

Paternal aunt (BC 50y) Wild-type 3 70 cytoplasmic

Table S1: SMYD3 immunohistochemistry results in the analyzed BC family, (Related Figure 3).

Table S2: Results of mutual exclusivity analysis in PanCanAtlas BC and COAD-READ tumors, (Related 
Figure 8). 
P-values and Q-values were obtained using the DISCOVER’s mutual exclusivity test.

Gene 1 Gene 2 P-value Q-value

TP53 SMYD3 1.236261e-22 1.236261e-22

BRCA1 SMYD3 3.264069e-09 6.215379e-09

NEIL2 SMYD3 1.315987e-02 2.186762e-02

HERC2 SMYD3 5.295595e-05 1.501736e-04

ATM SMYD3 1.214102e-03 2.226760e-03

RAD51C SMYD3 8.720251e-04 1.431774e-03

BRCA2 SMYD3 5.848456e-04 1.016715e-03

MLH1 SMYD3 2.5344277e-08 5.753839e-08

ATM SMYD3 1.019042e-04 1.101908e-04

EXO5 SMYD3 3.064239e-09 7.806982e-09

HERC2 SMYD3 2.499592e-06 3.315551e-04C
O

A
D

-R
EA

D
B

C



Transparent Methods 
 
 
Clinical data 
 
A high-risk, BRCA1/2 mutation-negative breast cancer (BC) family (Figure 3B) from the Italian Multicenter 
Study on Male BC (MBC) was selected for whole-exome sequencing (Rizzolo et al., 2019). The proband, a 
man affected by BC, was diagnosed at the age of 39 years with an estrogen/progesterone receptor-positive 
ductal carcinoma in situ and at the age of 48 years with an estrogen/progesterone receptor-positive invasive 
ductal carcinoma. His father was diagnosed with invasive BC at the age of 54 years; both paternal aunts were 
diagnosed with BC at 43 and 50 years, respectively.  
 
Cell Lines  
 
HEK-293, HCT116, MDA-MB-231, MDA-MB-468, MDA-MB-175, MDA-MB-415, MDA-MB-453, 
MDA-MB-436, MDA-MB-435, MDA-MB-361, HT29, MCF7, BT-474, BT-483, BT-20, DU4475, 
HCC1428, HCC1500, HCC1599, HCC38, HCC70, HCC202, HCC1954, HCC1143, HCC1187, HCC2218, 
HCC1806, HCC1419, HCC1937, HCC1569, DLD-1, LoVo, Caco2, OVCAR-3, A2780, SKOV-3, BxPC3, 
PK9, CAPAN-1, PANC-1, MIAPaCa-2, SW1990, SW480, T-47D, ZR-75-1, ZR-75-30, AU565, UACC-812, 
and SK-BR-3 cells lines were purchased from ATCC. CAL-85-1, CAL-148, CAL-51, CAL-120, EFM-19, 
EFM192A, Evsa-T, and HDQ-P1 cell lines were purchased from DSMZ. The U2OS cell line was kindly 
provided by Prof. Jeremy Stark. The SMYD3-KO MDA-MB-231 cell line was created using the 
CRISPR/Cas9 technology. 
HEK-293, HCT116, MDA-MB-231, MDA-MB-468, HT29, MCF7, MDA-MB-231-SMYD3 KO, SW480, 
SW1990, OVCAR-3, SKOV-3, PANC-1, MIAPaCa-2, CAL-120, Evsa-T, SK-BR-3, HDQ-P1, and U2OS 
cells were cultured in DMEM high glucose (HG), without pyruvate (#11360-070, Gibco) with 10% FBS 
(#0270-106, Gibco) and 100 IU/ml penicillin-streptomycin (#15140-122, Gibco). HCC1428, MDA-MB-175, 
MDA-MB-415, MDA-MB-453, MDA-MB-436, MDA-MB-435, MDA-MB-361, UACC-812, CAL-85-1, 
CAL-148, CAL-51, BT-20, and BT-474 cells were maintained in the same conditions with 1% NEAA 
(#11140, Sigma Aldrich). LoVo cells were cultured in DMEM high glucose (HG) with 20% FBS and 100 
IU/ml penicillin-streptomycin. Caco2 cells were maintained in the same conditions with 1% NEAA (#11140, 
Sigma Aldrich) and HEK-293 cells were supplemented with 1% pyruvate (#11360070, Gibco) and 1% 
NEAA (#11140, Sigma Aldrich). DLD-1, A2780, BxPC3, PK9, T-47D, ZR-75-1, ZR-75-30, EFM-19, 
EFM192A, HCC1428, HCC1500, HCC1599, HCC38, HCC70, HCC202, HCC1954, HCC1143, HCC1187, 
HCC2218, HCC1806, HCC1419, HCC1937, HCC1569, BT-483, AU565, DU4475, and CAPAN-1 cells 
were cultured in RPMI high glucose (HG), without pyruvate (#21875-034, Gibco) with 10% FBS (Gibco) 
and 100 IU/ml penicillin-streptomycin (Gibco). All cell lines were tested to be mycoplasma-free (#117048; 
Minerva Biolabs) at multiple times throughout the study. All cell culture was performed in a 37°C and 5% 
CO2 incubator. 
 
E. coli 
 
Tuner™(DE3) Competent Cells (#70623) were obtained from Novagen and were grown in standard LB 
media. High-Efficiency DH5α Competent Cells (C2987H) obtained from New England Biolabs were used 
for all cloning experiments performed in this study. Cells were grown in standard LB media. 
 
Chemicals 
 
Neocarzinostatin (N9162), BCI-121 (SML1817), and Doxorubicin (D1515) were purchased from Sigma-
Aldrich. KU60019 (S1570), and Olaparib (S1060) were purchased from SelleckChem. EPZ031686 (HY-
19324) was purchased from MedChemExpress. 
For each chemical, doses and treatment duration are indicated in the figure legends.  
 
Peptides 
 
Peptides were purchased from Proteogenix. Peptides were delivered in lyophilized form and obtained at a 



purity of at least 95% with TFA removal and in the hydrochloride salt form. The peptides used in this work 
are listed below. 
P1-tripeptide: NFF, P2-tripeptide: DFF, P3-tripeptide: LFF, P4-tripeptide: FFF, P5-tripeptide: QFF, P6-
tripeptide: KFF, P7-tripeptide: NIF, P8-tripeptide: NYF, P9-tripeptide: NAF, P10-tripeptide: NDF, P11-
tripeptide: NHF, P12-tripeptide: NNF, P13-tripeptide: NFI, P14-tripeptide: NFY, P15-tripeptide: NFA, P16-
tripeptide: NFH, P17-tripeptide: NFW, P18-tripeptide: NFR, P19-tripeptide: NFK. 
 
Plasmids 
 
The plasmids described in the manuscript were generated with specific primers, as previously described 
(Nakatani Y et al., 2003). Site-directed mutagenesis was performed using the Q5® Site-Directed 
Mutagenesis Kit (#E05545, New England Biolabs) according to the manufacturer’s instructions.  
The p3xFLAG-CMV14-SMYD3-WT construct was generated starting from the SMYD3 cDNA ORF Clone 
in Cloning Vector, Human (HG11217-M, Sino Biological), used as a template to amplify SMYD3. HindIII-
SMYD3 FW 5'-CTAAAGCTTATGGAGCCGCTGAAG and EcoRI-SMYD3 RV 5'-
ATTACGAATTCTGGGATGCTCTGATGT primers were used for the PCR. The SMYD3 fragment was 
cloned into the p3xFLAG-CMV14 EMPTY plasmid (E7908, Sigma) linearized with HindIII and EcoRI.  
The pCMV14-SMYD3-WT-HAHA construct was generated starting from the pHAHA EMPTY (#12517, 
Addgene) plasmid, used as a template to amplify HAHA. KnpI-HA FW 5'-
TGGTTGGTACCTGGATACGATGTTCCAGATTACGCT and XbaI-stop-HA RV 5'-
GGATCCTCTAGATGTATCTTATCATGTCTGGATCCGGC primers were used for the PCR. The HAHA-
stop codon fragment was cloned into the p3xFLAG-CMV14-SMYD3-WT plasmid linearized with KnpI and 
XbaI.  
The pCMV14-SMYD3-R265H-FLAG construct was generated by site-directed mutagenesis, using SDM 
SMYD3 R265H FW 5'-P-GTGACTGTTTCCATTGCCAAACCCAGG and SDM SMYD3 R265H RV 5'-P-
ATTCAAAGCAGTACTGGTCCCTCAGC primers. 
The p3xFLAG-CMV14-SMYD3-WT-HAHA-SMYD3-R265H-FLAG construct was generated starting from 
p3xFLAG-CMV14-SMYD3-R265H, used as a template to amplify CMV14-SMYD3-R265H-FLAG. XhoI 
CMV FW 5'-AATCGCTCGAGTGATGCGGTTTTGGCAGTA and XbaI-SMYD3 RV 5'-
TACTCTAGAGGATGCTCTGATGTTGGC primers were used for the PCR. The CMV14-SMYD3-R265H-
FLAG fragment was cloned into the pCMV14-SMYD3-WT-HAHA plasmid linearized with XhoI and XbaI.  
pCS2-MYC-SMYD3-WT was generated as previously described in Proserpio et al., 2013. 
pCDNA-FLAG-CHK2 was generated as previously described in Zannini et al., 2003.  
GST-BRCA2 fragments (B2-1 to B2-9) cloned into the pGEX-4T3-GST vector were kindly provided by 
Professor Ashok Venkitaraman (MRC Cancer Unit, Cambridge, UK). GST-ATM fragments (A1 to A8) 
cloned into the pGEX-4T2-GST vector were kindly provided by Professor Titia de Lange (The Rockefeller 
University, New York, USA). GST-HSP90 C (616-736) (#22483), pCDNA3.1(+)-HIS-FLAG-ATM 
(#31985) and pET28-MHL-SMYD3-WT (#32048) were purchased from Addgene.  
 
Cell transfection and RNA interference  
 
U2OS cells were co-transfected with pCBASceI (#26477, Addgene) and p3xFLAG-CMV14-SMYD3-WT or 
p3xFLAG-CMV14-SMYD3-R265H using Lipofectamine 3000 (#L3000015, Thermo Fisher Scientific) 
according to the manufacturer’s instructions. 
MDA-MB-231 cells were transiently transfected with mammalian expression plasmids using fectamine 3000 
(L3000015, Thermo Fisher Scientific) according to the manufacturer’s instruction. For RNA interference, 
MDA-MB-231 cells were transfected with 50 nM validated siRNAs (Eurofins) directed against SMYD3 by 
using the HiPerfect reagent (#301704, QIAGEN) according to the manufacturer’s instructions. siCTRL 
(Eurofins) was used as a non-silencing control. siRNA sequences used in this study: 
siSMYD3: 5’-GAU UGA AGA UUU GAU UCU A  
siCTRL: 5’-GCG UUG CUC GGA UCA GAA A 
 
CRISPR/Cas9 system 
 
The CRISPR/Cas9 reporter vector, GeneArt CRISPR Nuclease Vector Kit (#A21175, Invitrogen), was used 
according to the manufacturer’s instructions. The SMYD3 gene was analyzed with the CRISPR Search and 



Design Tool (Thermo Fisher Scientific), which identified three different gRNA: gRNA1 top strand 5'-
TTGCACACCGTGTACGCCAgtttt, gRNA1 bottom strand 5'-TGGCGTACACGGTGTGCAAGcggtg, gRNA2 
top strand 5'-TTGGCGTACACGGTGTGCAgtttt, gRNA2 bottom strand 5'-
GCACACCGTGTACGCCAAGcggtg, gRNA3 top strand 5'-AGTTCGCAACCGCCAAGAGgtttt, gRNA3 
bottom strand 5'-CTCTTGGCGGTTGCGAACTTcggtg.  
MDA-MB-231 cells were transfected with all-in-one expression vector Cas9-CD4+-SMYD3 gRNA using 
Lipofectamine 3000 (L3000015, Thermo Fisher Scientific) according to the manufacturer’s instruction. After 
48 h MDA-MB-231 CD4+ cells were  enriched using the Dynabeads CD4 Positive Isolation Kit (11331D, 
Thermo Fisher) according to the manufacturer's instructions. Isolation of clonal populations was performed 
with agarose-based cloning rings (#C1059, Sigma). Cell clones were tested for site-specific loss of function 
alterations by PCR, using SMYD3 gRNA sequencing FW 5'-AGCCCGTGAGACGCCCGCTGCTGG and 
SMYD3 gRNA sequencing RV 5'-GAAAAGTTCGCAACCGCCAA. Sequencing products were purified using 
the Dye Ex 2.0 Spin Kit (#63204, QIAGEN) and sequenced on an ABI PRISM 310 Genetic Analyzer 
(Applied Biosystems).  
 
Recombinant protein expression/purification 
 
Tuner™(DE3) Competent Cells, transformed with different constructs, were grown in Luria Broth medium 
with Ampicillin (A9518, Sigma), Chloramphenicol (C0378, Sigma), and 0,5 mg/ml L-(+)-Arabinose 
(A3256, Sigma) and induced with 1 mM IPTG when they reached the optical density of 0.6 (A600) at 37°C, 
for 3 h. Cells were then collected by centrifugation, and pellets were lysed with B-PER lysis buffer (#78248, 
Thermo Fisher Scientific). The lysate was centrifuged at 20,000 × g for 20 min at 4°C. Recombinant protein 
expression was confirmed by SDS-PAGE. GST-Fusion proteins were purified by Pierce Glutathione 
Magnetic Agarose Beads (78601, Thermo Fisher Scientific) according to the manufacturer’s instructions. 
GST-fused proteins were evaluated and quantified by SDS-PAGE. HIS-Fusion proteins were purified by 
Dynabeads HIS-Tag Isolation and Pulldown (10104D, Thermo Fisher Scientific) according to the 
manufacturer’s instructions. HIS-fused proteins were evaluated and quantified by SDS-PAGE. 
 
Immunoblotting  
 
Whole-cell extracts were obtained from cells collected and homogenized in lysis buffer (50 mM Tris-HCl 
pH 7.4, 5 mM EDTA, 250 mM NaCl, and 1% Triton X-100) supplemented with protease and phosphatase 
inhibitors (Roche). Nuclear fractions were obtained by using the Nuclear Extraction Kit (#ab113474, 
Abcam) according to the manufacturer’s instructions. 20 μg of protein extracts from each sample were 
denatured in Laemmli sample buffer and loaded into an SDS-poly-acrylamide gel for immunoblot analysis. 
Primary antibodies used: 53BP1 (#4937, Cell Signaling), ATM (#2873, Cell Signaling), ACTIN ( #3700, 
Cell Signaling), BRCA2 (OP95, Merck), CHK2 (#6334, Cell Signaling), FLAG M2 (F1804, SIGMA), 
GAPDH (#2118, Cell Signaling), GST (#2625, Cell Signaling), HA-tag (H3663, SIGMA), MYC-tag (#2278, 
Cell Signaling), p-Ser/Thr ATM/ATR (#2851), PARP p85 Fragment (G7341, Promega), pATM (Ser1891) 
(#5883 Cell Signaling), polyHistidine (H1029, Sigma), RAD51 (#8875, Cell Signaling), SMYD3 (D2Q4V) 
(#12859, Cell Signaling), yH2AX (#9718, Cell Signaling) and LAMIN B1 (#12586S, Cell Signaling). Rabbit 
IgG HRP and Mouse IgG HRP (#NA934V, #NA931V, GE Healthcare) were used as secondary antibodies 
and revealed using the ECL-plus chemiluminescence reagent (GE Healthcare). Densitometric evaluation was 
performed by ImageJ software (Schneider et al., 2012).  
 
Co-immunoprecipitation (Co-IP) 
 
Cells were lysed with the Nuclear Extraction Kit (ab13474, Abcam), according to the manufacturer’s 
instructions. 10% of the nuclear fractions was used as input. 1 μg of each antibody was coupled to 
Dynabeads Protein A (10002D, Thermo Fisher Scientific) or G (10004D, Thermo Fisher Scientific) in 100 μl 
of 0.01% Tween20-1X PBS for 45 min at room temperature on a rocking platform. Nuclear fractions were 
incubated with antibody-Dynabeads Protein A or G complexes for 1 h at room temperature on a rocking 
platform. Immunocomplexes were washed extensively, boiled in Laemmli sample buffer, and subjected to 
SDS-PAGE and immunoblot analysis. Primary antibodies used: MYC-tag (#2278, Cell Signaling), BRCA2 
(OP95, Merk Millipore), FLAG (F1804, Sigma) and ATM (#2873, Cell Signaling). IgG was used as a 
negative control. 



For endogenous co-immunoprecipitation, cells were lysed with the Nuclear Extraction Kit (ab13474, 
Abcam), nuclear fractions were digested or not in 1x Micrococcal Nuclease Reaction buffer with 0,1 U/μL of 
MNase (M0247S, New England Biolabs) for 5 min at 37°C. 1 μg of SMYD3 antibody (#12859, Cell 
Signaling Technologies) was coupled to Dynabeads Protein A (10002D, Thermo Fisher Scientific) and co-
immunoprecipitation was carried on as described above.  
 
DR-GFP reporter assay 
 
U2OS-DR-GFP cells were seeded in 6 cm cell culture plates (1x106 cells/plate) and after 24h they were 
transfected with SceI-BFP, SceI-BFP+SMYD3_WT and SceI-BFP+SMYD3_R265H expressing vectors, 
using Lipofectamine 3000 transfection reagent (L3000015, Thermo Scientific, USA) according to 
manufacturer’s instructions. After 24 h, cells were detached from plates by using 0.25% Tyripsin-EDTA 
(TD-4049-100, Sigma,USA), centrifuged  at 1000 rpm x 10 min and suspended in an appropriate volume of 
cold flow cytometry buffer (phosphate buffer saline supplemented with 1% BSA). Cells were analyzed by 
using FACS Aria II fluorescence activated cell sorter (Beckton Dickinson, USA). 
 
Annexin V staining 
 
Briefly, 1×106 cells were cultured in 6-well plates (Corning Costar, Corning) for 72 h at 37°C, 5% CO2, with 
complete medium. After 24 h, cells were pre-treated or not for 48 h with BCI-121 or EPZ031686 and then 
treated or not with olaparib and/or with BCI-121 or EPZ031686 for another 24 h. 2×104 cells/plate were 
collected and resuspended in 1X PBS-1% FBS, then the Muse Annexin V and Dead Cell reagent was added 
to each tube (MCH100105, Luminex). Cells were incubated at room temperature for 20 min in the dark. 
Flow cytometry was performed using the Guava Muse Cell Analyzer. Cells were considered apoptotic if they 
were Annexin V+/PI- (early apoptotic) and Annexin V+/PI+ (late apoptotic). Each analysis was performed 
evaluating at least 2000 events using the assay-specific software module included in the Guava Muse Cell 
Analyzer instrument. 
 
Colony formation assay 
 
Colony formation assays were performed as previously described (Germani et al., 2014). Briefly, cells were 
cultured in 24-wells in the presence or absence of the indicated drugs. After 72 h, media were discarded and 
cells were washed twice with 1X PBS. An aliquot of 2 ml of Coomassie brilliant blue (#161-0400, 
BIORAD) was added into each dish for 5 min and then cells were washed with 1X PBS to remove excess 
Coomassie. Plates were dried at room temperature. Percent cell growth inhibition at each concentration was 
quantified by densitometric evaluation using ImageJ software (Schneider et al., 2012). 
 
Immunofluorescence and foci counting  
 
53BP1 (NB100-304, Novus Biologicals), γH2AX (05-636 Merck Millipore), FLAG (F1804, Sigma Aldrich), 
and RAD51 (#8875, Cell Signaling) foci were stained by immunofluorescence. Cells were grown on glass 
coverslips, treated as indicated for each experiment, and then fixed with 3% paraformaldehyde and 2% 
sucrose in 1X PBS for 10 min and permeabilized with 20 mM HEPES pH 7.6, 50 mM NaCl, 3 mM MgCl2, 
300 mM sucrose, 0.2% Triton-X-100 for 5 min at room temperature. Glass coverslips were then blocked in 
1X PBS, 3% BSA for 30 min, stained with primary antibody for 2 h at room temperature, then with Alexa 
Fluor secondary antibodies for 1 h at room temperature. Coverslips were mounted with medium anti-fading-
containing DAPI to stain nuclei. Foci were scored by fluorescence microscopy using a 100X magnification 
objective and digital image acquisition on a Nikon Eclipse E1000 equipped with a DS-U3 CCD camera. The 
percentage of 53BP1 foci was calculated as follows:  % residual damage = [(foci t24h-foci t0)/ (foci t1.75h-foci 
t0)] x 100.  
 
Cell viability and cell death 
 
Cell viability and cell death were assessed by counting. Briefly, supernatants (containing dead/floating cells) 
were collected. Cell pellets were resuspended in 1X PBS and 10 μl were mixed with an equal volume of 
0.01% Trypan blue solution (T8154, Sigma-Aldrich). Viable cells (unstained, trypan blue-negative cells) and 



dead cells (stained, trypan blue-positive cells) were counted with a phase-contrast microscope, and the 
percentages of viable and dead cells were calculated. 
 
DNA/RNA extraction, sequencing, and analysis 
 
DNA was extracted from both whole blood samples and microdissected FFPE sections of breast cancer 
tissue with commercial kits as previously reported (Silvestri et al., 2017).  
Whole-exome sequencing of germline DNA samples from breast cancer tissue and subsequent data analysis 
were performed as previously described (Silvestri et al., 2017). Candidate variants were validated in 
germline and tumor DNA samples by double-stranded Sanger sequencing.  
RNA was extracted from microdissected FFPE tumor sections using the MiReasy FFPE kit (217504, 
Qiagen) according to the manufacturer’s instructions. RNA quality and quantity were assessed on a 2100 
Bioanalyzer instrument (Agilent) (Wang et al., 2012). Libraries were prepared using the TruSeq RNA 
Access Library Prep kit (RS-301-2001, Illumina) according to the manufacturer’s instructions. RNA-
sequencing (75x2 bp) was performed on an Illumina NextSeq platform. A tailored bioinformatic pipeline 
including tools such as FastQC for quality control, STAR (version 2.5.1a) for alignment, and RSeQC-FPKM 
for counting reads was applied. Absolute quantification of transcripts (genes with all isoforms) was 
expressed in Fragments Per Kilobase of transcript per Million mapped reads (FPKM). The GATK Best 
Practices workflow for SNP and indel calling on RNA-seq data was used to evaluate the expression of 
variant alleles (Tian et al., 2016). 
 
Immunohistochemistry 
 
Tissue specimens were formalin-fixed in 4% buffered formalin and paraffin-embedded. Sequential sections 
(3 μm) were cut and used for morphological studies [stained with hematoxylin and eosin (HE)] and 
immunohistochemical analysis. 
Sections were dewaxed and rehydrated in dH2O. Endogenous peroxidase activity was blocked by incubation 
in 3% hydrogen peroxide for 10 min. Antigen retrieval was conducted in 10 mM sodium citrate buffer (pH 
6.0) for 15 min. Sections were incubated overnight with the primary antibody, anti-SMYD3 (ab183498, 
Abcam, 1:200 dilution). Then, they were incubated with secondary biotinylated antibody and subsequently 
with streptavidin-biotin-peroxidase (UltraTek HRP Anti-Rabbit, Scy Tek). Samples were developed with 
DAB (ACH500, Scy Tek), counterstained with hematoxylin, and mounted with permanent mounting media. 
Negative controls were used in each experiment. SMYD3 immunoreactivity was evaluated by a 
semiquantitative approach by two independent pathologists, in a blinded manner, who scored the percentage 
of SMYD3-stained cells and the intensity of the staining (0: absent, 1: mild and focal, 2: moderate, 3: intense 
and diffuse). 
 
Chromatin immunoprecipitation (ChIP)  
 
Chromatin isolated from U2OS cells co-transfected with pCBASceI and p3xFLAG-CMV14-SMYD3-WT or 
p3xFLAG-CMV14-SMYD3-R265H was subjected to ChIP. Briefly, cells were cross-linked in 1% 
formaldehyde (F8775, Sigma Aldrich) for 10 min. After blocking cross-links with 0.125 M glycine for 5 min 
and washing with PBS, the pellet was resuspended in Farnham buffer (5 mM PIPES pH 8.0; 85 mM KCl; 
0.5% NP-40). Cells were lysed in RIPA buffer (1× PBS; 1% NP-40; 0.5% sodium deoxycholate; 0.1% SDS). 
Chromatin was sonicated to a fragment length of about 1 kb and immunoprecipitated with 5 µg of rabbit 
IgG, anti-SMYD3 (NBP1-79393, NovusBio) or anti-RAD51 (14B4, cat. NB100-148, NovusBio) antibodies. 
ChIP primers used: 
DR-GFP+1300 FW: 5’- CCCCCGTAGCTCCAATCCTT 
DR-GFP+1300 RV: 5’-CCAGGAGCGGATCGAAATTG 
hChIP UbiquitB FW: 5’-GAAGGAAGAGAAGCGCATAGAGGAGAA 
hChIP UbiquitB RV: 5’-CTCATAGCCGTAAGAAAGGCTCCTAAA 
Quantitative real-time PCR was performed using SYBR green IQ reagent (Bio-Rad Laboratories) with the 
CFX Connect detection system (Bio-Rad Laboratories). 
 
Surface plasmon resonance (SPR) 
 



Direct binding assays were conducted employing flow-based SPR biosensor X100, (BIAcore, GE 
Healthcare) and data analysis was performed employing Scrubber or BIAevaluation software version 4.1. 
Recombinant human full-length SMYD3 was produced and purified in-house following a previously 
developed protocol (Peserico et al., 2015). Immobilization of SMYD3 on CM5 sensor chips was performed 
following a previously described amine-coupling procedure (Fabini et al., 2019). Briefly, using Hepes buffer 
saline (HBS) as running buffer, a 1:1 mixture of 0.4 M N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide 
(EDC) and 0.1 M N-hydroxy succinimide (NHS) was injected for 7 min over the sensor surface followed by 
10 min injection of the recombinant human full-length SMYD3 diluted to 100 µg/ml. Remaining active 
esters were quenched by switching the running buffer to tris buffer saline containing 0.05% Tween-20 (TBS-
T) supplemented with 2 mM dithiothreitol (DTT) and 2% DMSO. During the immobilization procedure, the 
flow rate was set at 10 µl/min. After the immobilization process, the surface was left to stabilize overnight to 
remove all tightly bound S-adenosyl methionine (SAM) which co-purifies with the protein. The whole 
process resulted in c.a. 8000 RU (Response Units) of SMYD3 covalently attached to the surface. For all 
performed experiments, the analysis temperature was set to 15°C. Interaction of tripeptides with immobilized 
SMYD3 was investigated using a 90 µl/min flow rate. Association was monitored for 30s and dissociation 
for 120s. All responses returned to baseline quickly after injection stopped, thus no regeneration procedure 
was necessary. A double-reference approach was used as negative control: the SPR signal was recorded upon 
injection of each tripeptide over the sensing surface bearing the immobilized SMYD3 and was corrected by 
the signal recorded in the reference cell and that of a blank solution. Reference cell allows accounting for 
non-specific interactions while signals recorded upon injections in both cells of a blank solution accounted 
for optical interference. RU values measured at the end of the injection phase were normalized for the 
molecular weight (MW) of each tripeptide to achieve MW-adjusted RUs. Interactions of tripeptides with 
immobilized SMYD3 were monitored both in SAM-free and SAM-supplemented buffer. SAH (S-adenosyl-
homocysteine) was used as a positive control compound in the first instance while a 26-amino acid peptide, 
based on MAP3K2 sequence 249-274, was used in the latter. The total number of replicates was 2. 
 
In vitro pull-down assay 
 
HIS-SMYD3-WT recombinant human protein was incubated with nine GST fusion proteins, designated B2-
1 to B2-9, that span the entire coding region of BRCA2, or with eight GST fusion proteins, designated A-1 to 
A-8, that span the entire coding region of ATM, or with recombinant human CHK2 protein (ab42604, 
Abcam). HSP90 C (616-736) GST fusion protein was used as a positive control. HIS-SMYD3-WT 
recombinant protein (500 ng) and GST fusion proteins (200 ng) were incubated for 1 h at 4°C on a rocking 
platform for in vitro binding. These fusion proteins were precipitated by Dynabeads HIS-Tag Isolation and 
Pulldown (Thermo Fisher Scientific) according to the manufacturer’s instructions, then washed extensively 
in buffer A (20 mM Tris-HCl pH 8, 150 mM KCl, 5 mM MgCl2, 0.2 mM EDTA, 10% glycerol, 0.1% NP-
40) containing fresh inhibitors and 1 mM DTT. Afterward, the precipitates were resolved on 10% SDS-
PAGE and subjected to immunoblot analysis. Primary antibodies used: polyHistidine (H1029, Sigma) and 
GST (#2625, Cell Signaling). Rabbit IgG HRP and Mouse IgG HRP (#NA934V, #NA931V, GE Healthcare) 
were used as secondary antibodies and revealed using the ECL-plus chemiluminescence reagent (GE 
Healthcare). 
For the competition assay, 500 ng of HIS-SMYD3-WT recombinant protein and 200 ng of GST-BRCA2 B2-
4 or GST-ATM A-8 fusion proteins were incubated for 1 h at 4°C on a rocking platform in the presence of 
escalating doses (0, 1, 5, 25, 125, 625 mM) of the purified P1 and P10 tripeptides, respectively. Bound 
proteins were precipitated and resolved as described above.  
 
ADP luminescent assay  
 
Analysis of ATM kinase activity was performed using a luminometric kinase assay by varying the 
concentration of ATP using the ADP-Glo reagents (#V6930, Promega). This luminescent ADP detection 
assay measures kinase activity by quantifying the amount of ADP produced during a kinase reaction. Briefly, 
ATM active protein (100 ng, #14-933 Millipore) was assayed in a kinase reaction buffer containing 40 mM 
Tris (pH 7.5), 20 mM MgCl2, 0.1 mg/ml BSA, varying concentrations of ATP, and 500 ng of human 
recombinant SMYD3-WT or SMYD3-R265H. After 30 min of incubation, an equal volume of ADP-Glo 
reagent was added to stop the kinase reaction and deplete the remaining ATP. Then, kinase detection reagent 
was added to convert ADP to ATP, which was determined by a luciferase/luciferin reaction. The generated 



luminescence was measured using a luminometer. Each data point was collected in triplicate and the result is 
shown as fold change on active-ATM only. 
 
Prediction analysis  
 
P-tripeptide screening was performed in silico using the Uniprot Peptide search tool 
(https://www.uniprot.org/peptidesearch/) to identify potential candidates as new SMYD3 interactors. Each P-
tripeptide was searched in all human proteins annotated in the Uniprot database (analysis performed in 
December 2018) and 8,650 proteins showed at least one identified tripeptide. Then, we analyzed the subset 
of all human proteins showing ≥ 4 P-tripeptide occurrences (214 proteins) for their biological function based 
on the functional annotation reported in the related Uniprot entry and in the Reactome database (i.e. HR 
pathway, Reactome id: R-HSA-5685942; https://reactome.org/; Fabregat et al., 2018; Jassal et al., 2020). Of 
note, we found that 24 proteins showing ≥4 P-tripeptide occurrences are involved in DNA repair and S-phase 
checkpoint pathways.  
 
In silico prediction of SMYD3 phosphorylated sites was performed using three different tools: PhosphoELM 
(http://phospho.elm.eu.org/, Dinkel et al., 2011), DISPHOS (http://www.dabi.temple.edu/disphos/, 
Iakoucheva et al., 2004) and NetPhos (http://www.cbs.dtu.dk/services/NetPhos/, Bloom, et al., 2004). This 
analysis identified T268 as the best target site for phosphorylation by ATM. 
 
TCGA PanCanAtlas data source/meta-analysis 
 
The analysis of genomic alterations of PanCanAtlas breast invasive carcinoma (BC), colon and rectum 
adenocarcinoma (COAD, READ), pancreatic adenocarcinoma (PAAD) and ovarian serous 
cystadenocarcinoma(OV) tumors was performed using a published study carried out by integrating data on 
somatic truncating and missense mutations, copy number deletions defined by GISTIC, and epigenetic 
silencing events by The Cancer Genome Atlas (TCGA) DNA Damage Repair Analysis Working Group 
(Knijnenburg et al., 2018). The available binary calls for each event class for a curated list of 276 genes 
encompassing all major DNA repair pathways were used to assess the prevalence of 43 DNA damage repair 
(DDR) gene alterations (LIG4, MLH1, MSH2, POLD3, RFC2, RFC3, RPA1, RPA4, ATM, BLM, BRCA1, 
BRCA2, BRE, CHEK1, CUL3, DNA2, DUT, ERCC4, FAAP24, FAAP20, FANCB, GTF2H2, GTF2H4, 
MDC1, MRPL40, NEIL2, NEIL3, NSMCE3, NUDT15, PER1, POLE, POLI, PPP4R2, RAD51B, RAD51C, 
SETMAR, SMC5, TCEB3, TP53, UIMC1, EXO5, MORF4L1, and HERC2) with a significant positive 
homologous recombination deficiency (HRD) determined using Bayesian ridge regression to model HRD 
scoring as a function of DDR gene alterations. We retrieved from the same published article the HRD score, 
a measure obtained by combining three separate metrics of genomic scarring (HRD loss of heterozygosity, 
large scale transition, and the number of telomeric imbalances). We defined BC, COAD-READ, PAAD, and 
OV as low HRD scoring if the HRD score was below or equal the median within the relevant cancer type. 
The website cBioPortal (https://www.cbioportal.org; Gao et al., 2013; Cerami et al.,2012) was used for the 
meta-analysis. Somatic mutations, copy number alterations, and RSEM processed and Z-score RNA-Seq v2 
gene expression data from PanCanAtlas BC (N=981), COAD-READ (N=459), PAAD (N=152), and OV 
(N=177) tumors that were comprehensively and systematically analyzed for 276 DDR genes were 
downloaded from cBioPortal (http://www.cbioportal.org) to characterize SMYD3 somatic alterations. 
Patients were stratified based on SMYD3 Z-score and the third quartiles were identified as high SMYD3 
(BC, q3 SMYD3 Z-score ≥ 1.06, N=245), (COAD-READ, q3 SMYD3 Z-score ≥ 0.41, N=126), (PAAD, q3 
SMYD3 Z-score ≥ 0.41, N=41), (OV, q3 SMYD3 Z-score ≥ 0.65, N=52).  
 
Mutual exclusion analysis 
 
Mutual exclusivity between SMYD3 and HRD-associated genes was evaluated using the DISCOVER 
analysis tool (Sander et al., 2016). Overexpression of SMYD3 mRNA and deleterious alterations of 43 HRD-
associated genes from 981 BC, 459 COAD-READ, 152 PAAD, and 177 OV tumors were combined into a 
single NxM binary data matrix for each cancer type, where each cell value Vi,j (i = 1…N [Number of genes], 
j = 1…M [Number of tumors]) indicated the status of gene i in tumor j. Vi,j = 1 if gene i is mutated in tumor j 
and 0 otherwise. The alteration status of all genes across all tumors for each cancer type was used to generate 
a null distribution for background alternation rate estimation. Finally, we computed pairwise mutual 



exclusivity between any two genes mutated in more than two tumors, taking the null distribution into 
account. 
 
Cell line mutational analysis 
 
Somatic mutations and copy number alteration data of key HR-related genes (BRCA1, BRCA2, CHEK2, 
ATM, RAD51B, RAD51C, and RAD51D) were retrieved from the Cancer Cell Line Encyclopedia (CCLE, 
https://portals.broadinstitute.org/ccle; Ghandi et al., 2019) and the Catalogue of Somatic Mutation in Cancer 
(COSMIC, https://cancer.sanger.ac.uk/cosmic; Tate et al., 2019) databases to assess the mutational status of 
BC cell lines (CCLE: HCC70_BREAST, MCF7_BREAST, BT474_BREAST, HCC1428_BREAST, 
MDAMB231_BREAST, MDAMB468_BREAST), colon cancer cell lines (CCLE: 
LOVO_LARGE_INTESTINE, HT29_LARGE_INTESTINE, HCT116_LARGE_INTESTINE, 
SW480_LARGE_INTESTINE, CaCo2_LARGE_INTESTINE, DLD1_LARGE_INTESTINE), ovarian 
cancer cell lines (CCLE: NIHOVCAR3_OVARY, A2780_OVARY, SKOV3_OVARY,), and pancreatic 
cancer cell lines (CCLE: CAPAN1_PANCREAS, MIAPACA2_PANCREAS, PANC1_PANCREAS, 
BXPC3_PANCREAS; COSMIC: PK-9). 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Data were analyzed and plotted using Microsoft Excel and GraphPad Prism softwares. Statistical analysis 
was performed using Student’s t-test or one-way ANOVA followed by a Dunnett test. Differences were 
considered significant when p ≤ 0.05. At least three independent experiments were performed for all of the 
assays.  
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