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Head and neck cancer is the sixth most frequent cancer all over the world, with the majority of subtypes of head and neck
squamous cell carcinoma (HNSCC). Cellular senescence-associated genes have been confirmed to play a critical role in cancer
and have the potential to be prognostic biomarkers for cancer. Clinical information of HNSCC samples and expression data
were acquired from public databases. Expression profiles of genes related to cellular senescence were used to identify molecular
subtypes by consensus clustering. To screen differentially expressed genes (DEGs) between different subtypes, differential
analysis was performed. We used the univariate Cox regression to identify prognostic DEGs and performed least absolute
shrinkage and selection operator (LASSO) to optimize and construct a prognostic model. CIBERSORT, ESTIMATE, and TIDE
tools were applied to estimate immune characteristics. Four molecular subtypes were established based on cellular senescence-
associated genes. Differential prognosis was observed among different subtypes with C4 having the longest overall survival and
C1 having the worst prognosis. C4 subtype also showed the highest immune infiltration. We screened a total of eight cellular
senescence prognosis-related genes and established a cellular senescence-related signature score (CSRS.Score) that could stratify
samples into high-CSRS.Score and low-CSRS.Score groups. The high-CSRS.Score group had worse prognosis, lower immune
infiltration, and lower response to immunotherapy. We further improved the prognostic model and survival prediction by
combining CSRS.Score with clinicopathological features using a decision tree model, which had high predictive accuracy and
survival prediction. This study demonstrated an important role of cellular senescence in HNSCC. The identified eight cellular
senescence-associated genes have the potential to provide ideas for adjuvant treatment and personalized treatment of HNSCC
patients.

1. Introduction

Head and neck cancer (HNC) is the sixth most frequently
diagnosed cancer type that causes 500,000 affected individuals
per year worldwide [1]. Head and neck squamous cell carci-
noma (HNSCC) accounts for the majority HNC patients,
and more than half of the patients with HNSCC are initially
diagnosed with locally advanced disease [2, 3]. Lymph node

(LN) metastasis is a negative signal of head and neck cancer
prognosis. However, it is challengeable to identify metastatic
LN within the fibroadipose tissue [4]. The prognosis for
HNSCC remains poor even with the use of combination ther-
apy including surgery, radiation, chemotherapy, and immu-
notherapy [5]. Although no tumor LN is detected from
clinical and radiographic estimation, there is still a high possi-
bility over than 30% to observe nodal metastasis in the surgery
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[6]. Therefore, there is an urgent need to provide effective bio-
markers for early diagnosis, personalized treatment, and prog-
nostic evaluation.

Senescence is a nearly unavoidable feature in all crea-
tures, which is marked by a descending function of multiple
cells and tissues. In spite of that degeneration is the most
common age-related phenotype, aging allows to generate
gain-of-function changes that lead to abnormal cell prolifer-
ation [7]. Moreover, these changes can result in genomic
instability that enable to provide an advantage for the abnor-
mal cells in proliferation, migration, and escape from
immune surveillance [8]. Obviously, these phenotypes are
the hallmarks of malignant cancers. Senescence plays a
two-sided role in cancer development, preventing tumori-
genesis by cell growth arrest in precancerous cells, but also
facilitating malignant transformation of adjacent cells
through protumorigenic drivers [9, 10]. Senescent cells can
alter epigenetic modifications in neighboring cells by releas-
ing senescence-associated signals [11–13]. A number of
genes have been demonstrated to regulate senescence in can-
cer cells, such as p53 [14], Raf1 [14], MAP2K6/p38 [15], and
PTEN [16]. Therapy-induced senescence has been observed
in cancer cells after radiotherapy or chemotherapy [17].
When exposed to various conventional and targeted anti-
cancer drugs, tumor cell senescence is induced, resulting in
a positive effect on patient treatment [18, 19]. Thus, senes-
cence is considered as a therapeutic target for clinical cancer
treatment [20].

Senescence-associated genes also have the great poten-
tial to predict cancer prognosis. Althubiti et al. identified
10 plasma membrane-associated proteins expressed in
senescent cells to be prognostic biomarkers especially in
breast cancer [21]. Coppola et al. discovered a series of
senescence-associated genes that correlated with age, over-
all survival, and grade of glioblastoma [22]. Yang et al.
identified seven age-related genes by analyzing the expres-
sion profiles of HNSCC and adjacent cancer samples [23].
The risk score based on the seven age-related genes was sig-
nificantly related to prognosis and immune response. But
none of the studies have explored a molecular subtyping sys-
tem based on senescence-associated genes in HNSCC.
Senescence-associated molecular subtypes may help to fur-
ther understand the role of cellular senescence in the tumor
progression.

Therefore, in this study, we used cellular senescence-
associated genes to identify molecular subtypes. Differential
pathways and immune features were observed among dif-
ferent subtypes. Differential expressed genes (DEGs) were
screened between different subtypes, and least absolute
shrinkage and selection operator (LASSO) regression anal-
ysis was used to develop a cellular senescence-related sig-
nature scoring (CSRS) system. The CSRS system could
define CSRS.Score for each HNSCC sample and classify
them into high-CSRS.Score and low-CSRS.Score groups.
Importantly, CSRS.Score had the potential to guide immu-
notherapy and chemotherapy for HNSCC patients. A deci-
sion tree and a nomogram based on CSRS.Score were
constructed to more accurately predict prognosis than
CSRS.Score only.

2. Materials and Methods

2.1. Data Source and Preprocessing. From The Cancer
Genome Atlas (TCGA) database (named as TCGA cohort),
we downloaded RNA-seq data of HNSCC samples and
removed samples that did not have survival time, clinical
follow-up information, or status of patients’ survival. Ensembl
ID was transformed into gene symbol. The median value of
gene expression was selected for the genes with multiple gene
symbols. GSE65858 and GSE41613 cohorts including gene
expression profiles of HNSCC samples were obtained from
Gene Expression Omnibus (GEO) database and were used as
validation cohorts. We downloaded the annotation informa-
tion of the corresponding microarray platform and mapped
the probes to genes based on the annotation information to
remove the probes that match one probe to multiple genes.
If certain number probes matched to one gene, the median
value was taken as the expression value of that gene. Finally,
499, 253, and 97 samples were remained in TCGA,
GSE65858, and GSE41613 cohorts, respectively.

From CellAge database (https://genomics.senescence
.info/cells/), we obtained 279 cellular senescence-associated
genes.

2.2. Molecular Typing Based on Cellular Senescence-
Associated Genes. We next constructed a consistency matrix
by ConsensusClusterPlus to cluster HNSCC samples [24].
The expression data of genes associated with cellular senes-
cence was used as a basis to obtain the molecular subtypes
of the samples. “Pam” algorithm and “1 - Spearman correla-
tion” were determined as a metric distance to perform 500
bootstraps, with each bootstrap consisting of 80% patients
in the training set. Cluster numbers were set from 2 to 10,
and the optimal cluster was determined by cumulative distri-
bution function (CDF) and consensus matrix. Finally, the
confirmed clusters were the molecular subtypes.

2.3. Construction of a CSRS.Score Scoring System. We identi-
fied differentially expressed cellular senescence genes between
subtypes using limma R package [25] and selected prognosti-
cally significant differentially expressed genes through the uni-
variate Cox regression analysis (P < 0:05). LASSO regression
using the glmnet R package [26] and stepwise Akaike informa-
tion criterion (stepAIC) [27] were performed to compress and
reduce the differential genes to obtain prognostic genes associ-
ated with cellular senescence. The CSRS.Score for each sample
was shown as follows: CSRS:Score = Σβi × Expi, where Expi
indicates the gene expression level of prognostic genes and β
i is Cox regression coefficients of the corresponding genes.
CSRS.Score was normalized using z-score, and the threshold
“0” was determined to classify samples into low-risk and
high-risk groups. The Kaplan-Meier (KM) survival analysis
was conducted to assess the overall survival of different molec-
ular subtypes. Significant differences were determined using
the log-rank test.

2.4. Assessment of Immune Infiltration. CIBERSORT algo-
rithm was employed to estimate the proportion of 22
immune cell types [28]. ESTIMATE algorithm was used to
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calculate stromal score and immune score for evaluating
stromal and immune infiltration [29].

2.5. Prediction of Immunotherapy Responsiveness. We used
the TIDE algorithm to validate predicted treatment respon-
siveness. The TIDE algorithm is a computational method for
predicting immune checkpoint blockade responsiveness
using gene expression profiles [30]. TIDE can use gene
expression information to predict cancer sensitivity to
immune checkpoint therapy. The TIDE algorithm evaluates
three immunosuppressive cell types that limit T cell infiltra-
tion in tumors, including M2 tumor-associated macro-
phages (TAMs), tumor-associated fibroblasts (CAFs), and
myeloid-derived suppressor cells (MDSCs). The dysfunction
score of tumor-infiltrating cytotoxic T lymphocytes (CTLs)
(T cell dysfunction) and the exclusion score of CTLs by
immunosuppressive factors (T cell exclusion) can be calcu-
lated by TIDE analysis.

2.6. Gene Set Enrichment Analysis (GSEA). GSEA allows to
calculate the enrichment score of a gene set for annotating
biological function [31]. We used GSEA for Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis in
different molecular subtypes. Gene sets of KEGG pathways
were accessed from the Molecular Signature Database
(MSigDB) [32]. The enrichment scores of aneuploidy,
homologous recombination defect number of segments,
and fraction altered were calculated using GSEA.

2.7. Statistical Analysis. R software (v4.1) was applied to
conduct all statistical analysis. The Kruskal-Wallis test was
performed in testing the significance among four subtypes.
Between high- and low-risk groups, the Wilcoxon test was
performed to test the significance. Log-rank test was con-
ducted in the Cox regression analysis and survival analysis.
ANOVA was conducted in comparing different groups con-
taining multiple subgroups. P < 0:05 was considered as
significant.

3. Results

3.1. Molecular Typing Based on Cellular Senescence-
Associated Genes. First, we extracted the expression of cellu-
lar senescence-associated genes from TCGA cohort. Then,
the univariate Cox regression analysis was performed, and
we obtained 28 genes associated with prognosis (Table S1)
(P < 0:01). Then, based on the expression data of 28
prognosis-related cellular senescence-associated genes, we
clustered 499 HNSCC samples into four clusters (molecular
subtypes) through the determination of the CDF and the
CDF delta area (Figures 1(a) and 1(b)). The consensus
matrix showed that four clusters were independently distrib-
uted for most samples (Figure 1(c)). KM survival curves dis-
played that four molecular subtypes had significant
differences of overall survival (P < 0:01, Figure 1(d)), with
C4 having the most favorable prognosis and C1 having the
highest proportion of dead samples (P < 0:05, Figure 1(e)).
In addition, C1 also had a higher proportion of advanced
stages of T stage, N stage, and AJCC stage (Figure S1).

3.2. Genomic Characteristics and Enriched Pathways of
Molecular Subtypes. We explored the differences of genomic
alterations in the TCGA cohort (acquired from previous
research, [33]) among the four molecular subtypes. C1 sub-
type showed higher score of aneuploidy, homologous recom-
bination defects, number of segments, and fraction altered
(Figure 2(a)). However, no significant difference was shown
in tumor mutation burden. In addition, we also analyzed
the frequency of gene mutations among molecular subtypes
(Figure 2(b)). TP53 had the highest mutation frequency of
81.3% and over a half samples had TP53 mutation. Missense
mutation contributed the majority of gene mutation, while
nonsense mutation was the most in CDKN2A.

Next, we analyzed whether differential enriched path-
ways exist in the different molecular subtypes by GSEA. 37
pathways were identified to be significantly enriched in the
C1 subtype in the TCGA cohort. The enriched pathways
mainly include cancer-related pathways, such as small cell
lung cancer, ECM receptor interaction, and Wnt signaling
pathway (Figure S2). The results suggested that cellular
senescence-associated genes were possibly involved in
cancer-related pathways and inflammatory pathways.

3.3. Immunological Characteristics and Immunotherapy/
Chemotherapy Responses in Different Molecular Subtypes.
We used immune cell signatures to assess immune cell infil-
tration in different subtypes to evaluate their immune char-
acteristics. CIBERSORT revealed that 16 of 22 immune cells
had a significant difference among four subtypes, such as
regulatory T cells, CD8 T cells, resting memory CD4 T cells,
and M0 macrophages (P < 0:05, Figure 3(a)). C1 had the
lowest stromal score and immune score, while C4 had the
highest scores (P < 0:0001, Figure 3(b)), indicating higher
immune infiltration in C4. We considered that differential
immune characteristics of four subtypes may result in differ-
ent immune responses to immunotherapy.

Therefore, we assessed the expression of immune check-
point genes in different molecular subtypes. We could see
that the majority immune checkpoints were differentially
expressed among four subtypes (Figure 3(c)), suggesting that
the different subtypes may differentially response to immune
checkpoint blockade. Not surprisingly, TIDE analysis
revealed different responses of four subtypes to immune
checkpoint inhibitors. As shown in Figure 3(d), the highest
TIDE score was shown in C1, indicating that C1 was more
probably to escape from immunotherapy. A higher propor-
tion of MDSCs and CAFs may result in a higher T cell exclu-
sion and unsatisfied immune response (Figure 3(d)). In
addition, we also analyzed the predicted response of differ-
ent molecular subtypes to four chemotherapeutic drugs
(paclitaxel, docetaxel, cisplatin, and 5-fluorouracil). C1 and
C2 subtypes are more sensitive to paclitaxel, docetaxel, and
cisplatin drugs (Figure 3(e)).

3.4. Identification of Key Cellular Senescence-Associated
Genes. We then used limma package to screen differentially
expressed cellular senescence-associated genes between C1
and non-C1, C2 and non-C2, C3 and non-C3, and C4 and
non-C4 molecular subtypes based on the conditions of false
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discovery rate ðFDRÞ < 0:05 and jlog 2ðfold changeÞj > 1.
232 DEGs were identified by the above intersection. And
77 prognostic genes were confirmed by the univariate Cox
regression analysis including 31 “risk” and 46 “protective”
genes (Figure 4(a)). Next, LASSO regression was conducted
to compress the 77 prognostic genes. As shown in
Figure 4(b), the coefficients of the prognostic genes tended
to zero as lambda increased, and the optimal model was
confirmed when lambda = 0:0275 (Figure 4(c)). StepAIC

was further performed to optimize the model with the least
number of prognostic genes. Finally, we identified eight
key cellular senescence-associated genes related to prognosis
(Figure 4(c)), including PYGL, KRT8, AREG, MAGEA4,
DES, EPHX3, CDKN2A, and SPINK6.

3.5. Validation of the Eight-Gene Prognostic Model. We cal-
culated and normalized the cellular senescence-related sig-
nature score (CSRS.Score) for each sample according to the
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Figure 1: The TCGA cohort molecular typing based on cellular senescence-associated genes. (a) CDF curve for TCGA cohort samples. (b)
CDF delta area curve for TCGA cohort samples. The vertical axis represents the relative change in area under CDF curve, and the horizontal
axis represents the category number k. (c) At consensus k = 4, heat map of sample clustering. (d) KM curve of the four subtypes. (e) Survival
status differences in different subtypes. ∗P < 0:05.
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Figure 3: Immune characteristics and immunotherapy/chemotherapy differences between molecular subtypes. (a) The TCGA cohort
differences in 22 immune cell scores between molecular subtypes. (b) Differences in ESTIMATE immune infiltration between molecular
subtypes in the TCGA cohort. (c) Differentially expressed immune checkpoints between subtypes in the TCGA cohort. (d) Differences in
TIDE analysis results between different subgroups in the TCGA cohort. (e) The box plots of the estimated IC50 for paclitaxel, docetaxel,
cisplatin, and 5-fluorouracil in the TCGA cohort.
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eight-gene model. We classified the samples as the high-risk
group if the score was greater than 0 and as the low-risk
group if the score was less than 0. The distribution of
CSRS.Score for samples in the training set (TCGA cohort)
is shown in Figure 5(a). The high-risk group had an obvi-
ously higher proportion of dead samples and had a signifi-
cantly short overall survival. We analyzed the prognostic
predictive classification efficiency for 1 year (AUC = 0:72),

3 years (AUC = 0:72), and 5 years (AUC = 0:72), as shown
in Figure 5(b). The KM survival curve showed that the over-
all survival of two risk groups was significantly different
(P < 0:0001), and higher CSRS.Score had worse overall sur-
vival in the training cohort (Figure 5(c)). We further vali-
dated the robustness of the eight-gene model in two
validation cohorts (GSE65858 and GSE41613), and the sim-
ilar results were observed (Figures 5(d)–5(g)). For the
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Figure 4: Identification of key cellular senescence-associated genes. (a) A total of 77 promising candidates were identified among the DEGs.
(b) Trajectory of each independent variable with lambda. (c) Confidence interval under lambda. (d) LASSO coefficient distribution of gene
signature correlated with the senescence.
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Figure 5: Continued.
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performance of CSRS.Score in different clinical features,
samples were also clearly divided into two risk groups with
differential overall survival (P < 0:0001, Figure S3).

3.6. CSRS.Score Was Correlated with Immune Infiltration
and Immunotherapy/Chemotherapy Responses. To further
explore the immune characteristics between two risk
groups, we analyzed the estimated proportion of 22
immune cells in high- and low-risk groups in the TCGA
cohort (Figure 6(a)). Some immune cells were differently
enriched in high- and low-CSRS.Score subgroups, such as
M1 macrophages, activated CD4 memory T cells, and
CD8 T cells. Overall, the high-risk group had lower immune
infiltration than the low-risk group according to ESTI-
MATE analysis (Figure 6(b)). The correlation analysis
between CSRS.Score and 22 immune cells demonstrated
that CSRS.Score was significantly correlated with resting
CD4 memory T cells, M0 macrophages, mast cells, CD8 T
cells, follicular helper T cells, and regulatory T cells
(P < 0:001, Figure 6(c)).

We further explored the immune response of two risk
groups to immunotherapy. The expression of most immune
checkpoints was differential between high- and low-risk
groups (Figure 6(d)). TIDE prediction showed that the

high-risk group had higher scores of two immunosuppres-
sive cells (MDSC and CAF) probably contributing to higher
T cell exclusion score and TIDE score (Figure 6(e) and
Figure S4A-B), indicating that the high-risk group was
more liable to escape from immunotherapy. In addition
to immunotherapeutic response, we also assessed the
response of two risk groups to chemotherapeutic drugs (pac-
litaxel, docetaxel, cisplatin, and 5-fluorouracil). The results
showed that the high-risk group was more sensitive to pacli-
taxel, docetaxel, cisplatin, and 5-fluorouracil (Figure S4C-E).

3.7. CSRS.Score Incorporates Clinicopathological Features to
Further Improve Survival Prediction. We constructed a deci-
sion tree based on clinical information and CSRS.Score, and
only stage, gender, and CSRS.Score were remained in the
decision tree (Figure 7(a)). Four subgroups including low,
median, high, and highest were determined with differential
overall survival (Figure 7(b)). Only highest subgroup con-
sisted of high-risk samples (Figure 7(c)) and highest sub-
group had the most proportions of C1 and C2 subtypes
(Figure 7(d)). Univariate and multifactorial Cox regression
analyses illustrated that CSRS.Score was the most significant
prognostic factor and age and stage were also independent
risk factors (Figures 7(e) and 7(f)). Then, we established a
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Figure 5: Clinical prognostic modeling and validation. (a) The distribution of survival status, CSRS.Score, and survival time corresponding
to senescence-related genes expression in the TCGA cohort. (b) ROC curve with AUC for CSRS.Score classification in the TCGA cohort. (c)
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Figure 6: Continued.
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nomogram based on the three independent risk factors for
predicting 1-year, 3-year, and 5-year survival (Figure 7(g)).
The predictive accuracy of the nomogram was validated by
calibration curve (Figure 7(h)). The predicted overall survival
of 1 year, 3 years, and 5 years fitted with the observed overall
survival, indicating the reliability of the nomogram. Decision
curve analysis showed that the nomogram reached relatively
high net benefit compared with others (Figure 7(i)). Both
nomogram and CSRS.Score had a higher AUC than other
clinical features (Figure 7(j)), proving a favorable performance
for predicting prognosis in HNSCC patients.

4. Discussion

A number of evidences prove that senescence-dependent
changes are associated with proinflammatory properties
and are involved in the chronic inflammatory microenviron-
ment. Increased levels of inflammation and immune cell
infiltration with senescence-dependent changes may lead to
tumor formation and malignancy, and their function in
HNC is unknown [34]. Exploring the molecular mecha-
nisms of cellular senescence-associated genes is important
to determine the role of senescence-dependent changes in
HNC. To date, few studies have systematically investigated
the molecular mechanisms of cellular senescence-associated
genes in HNC and the association between cellular
senescence-associated genes and HNC prognosis. We used
cellular senescence-associated genes to identify four molecu-
lar subtypes by consensus clustering, and these four molecu-
lar subtypes differed significantly in prognosis and several
clinical features.

Senescence and tumor microenvironment are closely
related in tumor progression and invasion. There is an
obvious difference of immunity between elder patients
and younger patients, where younger patients have more
abundant T cells in tumor tissue than elder patients.
Senescence leads to a declining immune system which is
referred to as immune senescence [35]. It is suggested that
tumor-infiltrating CD4+ and CD8+ T cells are reduced in
old mice compared to young mice and old mice are more
infiltrated with neutrophils and macrophages [36]. Our
results showed that CD8 T cells and activated memory

CD4 T cells were lower enriched in C1 subtype, while M0
macrophages were extremely higher enriched. C1 also per-
formed a lower stromal and immune infiltration than other
subtypes. GSEA results revealed that the immune-related
pathways were suppressed in the C1 subtype, which was con-
sistent with its immune features. Therefore, we inferred that
cellular senescence-associated genes may play a large role in
immune-related pathways and tumor infiltration.

Based on the DEGs among different subtypes, we con-
firmed a total of eight key cellular senescence prognosis-
related genes including CDKN2A, PYGL, KRT8, AREG,
MAGEA4, DES, EPHX3, and SPINK6. CDKN2A has been
shown to mediate the antitumor effects in HNSCC through
cell cycle arrest [37]. Low CDKN2A expression predicts
unfavorable prognosis in HPV-negative HNSCC indepen-
dent of other clinical factors [38], which is accordant with
our result that CDKN2A is lower expressed in high-risk
group. PYGL is significantly associated with overall survival
in HNC patients and may be an independent risk factor for
HNSCC prognosis [39]. Keratin 8 (KRT8) overexpression
enhanced cell proliferation and migration in gastric cancer
and lung cancer, while its decreased expression markedly
inhibited cell proliferation, migration, and EMT process
[40, 41]. A multiscale integrated analysis figured out KRT8
as a pan-cancer early biomarker [42]. Amphiregulin (AREG)
is a ligand of epidermal growth factor receptor (EGFR),
which is underlined to function in several aspects of cancer-
ogenesis including cancer cell growth, invasion, metastasis,
angiogenesis, and resistance to apoptosis [43].

Additionally, the correlation of molecular subtypes with
gene mutations was analyzed, and a significant correlation
between the two was detected. The common TP53 and
CDKN2A were mutated at a high frequency in the four sub-
types. We further evaluated the degree of clinical response of
conventional chemotherapeutic drugs paclitaxel, docetaxel,
cisplatin, and 5-fluorouracil to CSRS.Score subgroups, and
the results showed that high-CSRS.Score to paclitaxel, doce-
taxel, cisplatin, and 5-fluorouracil was more sensitive. The
results suggest that different subgroups have different
degrees corresponding to different chemotherapeutic drugs,
and perhaps our screened aging-related genes can be used
as biomarkers of clinical drug treatment response.
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Figure 6: Immune characteristics between two risk groups in the TCGA cohort. (a) The quantity of 22 immune cells analyzed by
CIBERSORT. (b) The TCGA cohort immune score and stromal score evaluated by ESTIMATE software. (c) Correlation analysis on
CSRS. Score and 22 immune cells in the TCGA cohort. (d) The level of immune checkpoint genes in two risk groups. (e) TIDE analysis
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0:05.
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Although the prognostic risk model based senescence-
associated genes was illustrated to have robust performance
in several independent cohorts, this study did not validate
the model in the wet experiments. More clinical HNSCC
samples should be included to support the reliability and
accuracy of the eight prognostic biomarkers in the future.

5. Conclusion

In this study, we developed a prognostic risk model with cellu-
lar senescence-associated genes that has great potential as a
biomarker for HNSCC patients and provides insights into indi-
vidualized immunotherapy for head and neck cancer patients.
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Figure S1: clinicopathological characteristics between molec-
ular subtypes. (A–I) Clinicopathological characteristics of
molecular subtypes in the TCGA-HNSC cohort, where the
lower half is the proportion and the upper half is the statisti-
cal significance of the difference in distribution between the
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Figure 7: CSRS.Score combined with clinicopathological characteristics to further improve prognostic models and survival prediction. (a)
Full-scale annotations of patients including gender, CSRS.Score, age, grade, and TNM stage were applied to develop a survival decision tree
for optimizing the risk stratification. (b) Among the four subgroups, significant differences in overall survival could be found. (c, d)
Comparative analysis between different subgroups. (e, f) Univariate (e) and multivariate (f) Cox analysis of CSRS.Score and
clinicopathological features. (g) A nomogram was developed based on age, CSRS.Score, and stage. (h) Calibration curves for 1, 3, and 5
years for the columnar graph. (i) Decision curve analysis of the nomogram, CSRS.Score, and other clinical features. (j) Compared with
other clinicopathological features, the nomogram exhibited the most powerful capacity for survival prediction.
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two-log10 (P value). Figure S2: results of GSEA analysis of
pathways between different molecular subtypes in the TCGA
cohort. Figure S3: KM curves between high- and low-risk
groups of CSRS.Score in different clinical features in the
TCGA cohort. Figure S4: response differences to immuno-
therapy/chemotherapy in two risk groups. (A, B) TIDE anal-
ysis results between two risk groups in the GSE65858 (A) and
GSE41613 (B) cohorts. (C–E) The box plots of the estimated
IC50 for paclitaxel, docetaxel, cisplatin, and 5-fluorouracil in
the TCGA cohort, GSE65858, and GSE41613 cohorts. Table
S1: a list of 28 prognostic cellular senescence-associated genes
used for molecular subtyping. (Supplementary Materials)
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