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Abstract 

Structural information about chemical compounds is typically conveyed as 2D images of molecular structures in sci-
entific documents. Unfortunately, these depictions are not a machine-readable representation of the molecules. With 
a backlog of decades of chemical literature in printed form not properly represented in open-access databases, there 
is a high demand for the translation of graphical molecular depictions into machine-readable formats. This translation 
process is known as Optical Chemical Structure Recognition (OCSR). Today, we are looking back on nearly three dec-
ades of development in this demanding research field. Most OCSR methods follow a rule-based approach where the 
key step of vectorization of the depiction is followed by the interpretation of vectors and nodes as bonds and atoms. 
Opposed to that, some of the latest approaches are based on deep neural networks (DNN). This review provides an 
overview of all methods and tools that have been published in the field of OCSR. Additionally, a small benchmark 
study was performed with the available open-source OCSR tools in order to examine their performance.
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Introduction
A vast amount of knowledge is still hidden in the primary 
scientific literature, which is not accessible because the 
information is not properly curated and stored in open-
access databases. Rediscovering this information and 
making it public is a complicated task that many data 
scientists took up as a challenge. This problem cannot 
be solved easily as the data available on chemistry and 
chemical structures are exponentially increasing by the 
day. While there is hope that the knowledge in future 
publications is readily deposited in a semantically well-
annotated form in public archives, there is still a backlog 
of decades of chemical literature to be curated and stored 
in open-access databases.

In the synthetic sciences, natural products research, 
drug discovery and many other fields, there is a renewed 

interest to find more information about the known chem-
ical structures and about the small molecules which are 
already published. Chemical knowledge that is collected 
in a time-consuming and expensive process often does 
not end up as structured information in databases. This 
way it remains inaccessible for re-use and databases may 
remain incomplete.

The literature can contain chemical information in 
various forms. Even though the textual information is 
presented in an unstructured manner, it does contain 
valuable information on the chemical compounds. In 
order to decode this information and create structured 
data, researchers developed chemical Named Entity Rec-
ognition (NER) systems [1]. On the other hand, decod-
ing chemical structure information is a very different 
task with the goal of turning a graphical depiction into a 
machine-readable format. This research field is known as 
Optical Chemical Structure Recognition (OCSR).

The first work on OCSR was done in 1990 [2, 3] but 
the first complete system was published by McDaniel 
and Balmuth in 1992: Their program named Kekulé [4] 
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planted the seed for this new field of research with a vari-
ety of commercial and noncommercial applications being 
released thereafter. The first systems followed similar 
approaches in handling the chemical structure images, 
but differed in implementation details and the accuracy 
of rebuilding the chemical structure from an image. They 
shared rule-based heuristics for treating a segmented 
image of a single chemical structure and methods like 
image vectorization, image disassembly into separated 
components, image thinning, enhancement of the line, 
resolution of components using Optical Character Rec-
ognition (OCR), and eventually the reconstruction of 
the graph representation of the molecule. Unfortunately 
most of the commercial OCSR systems were inaccessible 
to academic researchers.

Closed-source systems were very popular in the early 
1990s. The first complete open-source system called 
Optical Structure Recognition Application (OSRA) [5] 
was published by Filippov and Nicklaus in 2009. OSRA 
helped many early-stage researchers in drug develop-
ment and natural product research. Its success as an 
open-source tool allowed the development of subsequent 
open-source systems such as Imago [5, 6] and the recent 
Java-based tool MolVec [7].

Recent developments in hardware and Deep Neural 
Networks (DNNs) in machine learning led to outstand-
ing achievements in image recognition technologies [8]. 
With the cost of the hardware for machine learning get-
ting lower and the accessibility of open machine learning 
libraries such as TensorFlow [9], Pytorch [10], and Caffe 
[11], barriers to the implementation of machine learning-
based chemical image recognition systems were lowered.

In this review, we have analyzed all the available opti-
cal chemical structure recognition systems published. 
We found only three open-source systems available 
while the rest of them are commercial tools. Some pub-
lications describe methods that were developed without 
any working system ever being published. We discuss the 
algorithms behind these systems, their architectures, and 
how well they perform in real-world situations. For the 
available open-source systems, we carried out a small 
benchmark study and the results are reported here.

A general overview of the systems
Nowadays, the chemical structure depictions published 
in the literature are generally submitted to journals as 
raster images. Older publications often contain whole 
scanned pages from the original printed literature. In 
general, when a chemical structure is drawn using com-
mon structure editors, the file formats are easily inter-
convertible with other machine-readable formats such 
as SMILES [12], connection tables or SDfiles [13]. Once 
the depiction is saved as an image, it is very difficult to 

decode it back into a machine-readable representation of 
the molecule. In order to automatically feed and maintain 
publicly available databases with information about mol-
ecules, the reliable retranslation of the image of a chemi-
cal structure depiction is required.

Ideally, an OCSR system should be able to detect a 
chemical structure printed in the literature and segment 
the structures out of the whole page which also contains 
other graphical elements and text. This segmented struc-
ture should then undergo a preprocessing step such as 
denoising the image to get rid of unwanted pixel informa-
tion and binarization to remove all the RGB (Red, Green, 
and Blue) values that are given to each pixel when they 
are produced. Once the preprocessing is done, the OCSR 
system should extract all relevant features from the input 
image and later use this extracted information to build up 
a meaningful chemical structure.

To do this, most OCSR systems follow a common 
method, where the image is vectorized and segmented 
into separate elements. The atom information, printed 
with atom symbols, will be recognized using OCR, while 
the bond information for single, double, triple, edged, 
dashed, or dotted bonds is stored in the lines of the 
depiction which is difficult to interpret. For this purpose, 
the OCSR tools use a line detection algorithm such as a 
Hough transform [14]. The detected line information is 
then analyzed thoroughly to recognize the different line 
types due to line length, width, spacing, thickness, and 
arrangement. With this information, all bonds are iden-
tified. Afterwards, a separate algorithm is used to detect 
the positioning of the atom characters within the bonds. 
Finally, with all the detected information, an algorithm 
rebuilds the complete molecular graph which is post-
processed to get a semantically valid molecule. Once the 
post-process step is over, the output is generated as a 
SMILES string, a connection table, or as an SDfile.

Most of these tools cannot handle a whole scanned lit-
erature page, they usually need an input of an image with 
a single chemical structure. Only a few tools like OSRA, 
Imago, and CLiDE can be used for complete page rec-
ognition. As opposed to the rule-based methods, a few 
machine learning-based methods have been developed: 
These tools completely rely on the recognition of chemi-
cal structures without any hardcoded rules.

Table  1 summarizes information about the available 
tools and methods as well as their differences. In addi-
tion, each approach is reviewed separately for a better 
understanding.

Rule‑based systems
Kekulé
In 1992, one of the first complete working OCSR tools, 
Kekulé [4], was released. Kekulé uses a scanned image 
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provided by a user and vectorizes it. The binary image 
of this chemical structure diagram is used for resolv-
ing the characters and lines. Kekulé applies a rule-based 
approach to generate a connection table and has a graph-
ical user interface that enables the inspection and editing 
of the results.

The workflow consists of scanning, vectorization, 
search for dashed and wedged lines, optical character 
recognition, graph compilation, and post-processing. 
After the final postprocessing step it displays the results 
and allows for editing. During the scanning step, the area 
on a page that contains the structure diagram is selected 
and segmented into a separate TIFF image. Then, the 
image is thinned, vectorized, and smoothed. Dashed and 
wedged lines are identified and treated as connected ele-
ments. For OCR, a multilayer perceptron neural network 
is used after the application of a preprocessing procedure 
for normalization to achieve results with 96% accuracy. 
The resolved characters are corrected with a set of rules 
and typical spelling mistakes (e.g. ‘S’ vs. ‘5′). The result-
ing strings that contain only one character are subse-
quently merged based on their relative position. For the 
graph compilation, all character positions are treated as 
nodes, and all dashed/wedged bonds are treated as edges. 
Then, these elements are removed from the image and 
the remaining molecule skeleton is used for further steps. 
Each remaining vector is assumed to represent a bond 
and each point between two vectors is treated as a new 
node unless there already is a node due to the presence 
of an OCR result. The width of the lines that represent 

the vectors in the original image is analyzed in order to 
recognize stereo information. If multiple vectors con-
nect to the same nodes, the bond order between these 
nodes is increased accordingly. Finally, all the gathered 
information is combined into a single graph. In a post-
processing procedure, superatom labels are resolved (e.g. 
“Ph” to a phenyl group). Additionally, the user is asked 
to provide the label wherever the OCR failed. Circles are 
detected and translated into alternating single and double 
bonds and all bond crossings are evaluated to determine 
whether they represent a node or not. The final results 
are displayed in the GUI and the graphical output can be 
adjusted further by a user.

Optical recognition of chemical graphics (OROCS)
In 1993, a publication about an OCSR tool by IBM was 
released [15]. The workflow consists of nine steps: scan-
ning, separation, vectorization, segmentation, cleanup, 
OCR, structure recognition, aggregation, and post-pro-
cessing. For the scanning of an analog image, a resolu-
tion of 300 dpi is necessary. The image is then divided 
by defining polygon-shaped bounding boxes around 
all connected elements. Then, the program searches 
for all components that are bigger than a threshold that 
is defined according to the maximum character size on 
the page. Sufficiently close components are allocated to 
one another and their bounding boxes are merged. The 
part of the image that is framed by the resulting bound-
ing box is considered to be a chemical structure. After a 
vectorization step, each vector is classified as belonging 

Table 1  Comparison of tools and methods published

a  Precompiled tool is only available commercially

Tool name Programming 
language used

Operating System 
compatibility

Open-source Commercial or free 
availability (2020)

Ongoing 
development

Kekulé C +  +  Windows No Yes No

OROCS C IBM OS/2 No No No

CLiDE Pro C +  +  Windows No Yes Yes

OSRA C +  +  Independent Yesa Yes Yes

ChemReader C +  +  Windows No No No

MolRec Unknown Unknown No No Unknown

Imago C +  +  Independent Yes Yes No

ChemOCR Java Independent No Yes Yes

ChemInfty Unknown Windows No No No

eChem Unknown Unknown No No No

MLOCSR Unknown Only Web interface No Only web interface Unknown

OCSR Unknown Unknown No No Unknown

ChemRobot Unknown Unknown No No Unknown

MolVec Java Independent Yes Yes Yes

MSE-DUDL Python Independent No No No

Chemgrapher Python Independent No No Yes
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to a character, the bond structure, or other elements 
that constitute a chemical structure diagram according 
to a set of rules. The vectors that describe the structure 
itself are cleaned up automatically for certain cases (e.g. 
for the case that a straight line has been interpreted as 
two vectors). Additionally, a user interface enables cor-
recting vectors manually. Subsequently, the molecule 
graph is generated using the information from the vec-
tor image. During this process, each vector is interpreted 
as a bond and each connection point is interpreted as 
an atom. If there is no other label, an atom is assumed 
to be a carbon atom. In order to interpret the remaining 
labels, the coordinates of the vectors that were allocated 
to characters in the original raster image are used for the 
feature-based OCR. The resolved labels are then trans-
lated into the corresponding substructures. If a text ele-
ment is not at a node position, it is considered irrelevant 
and is deleted. After replacing every detected circle with 
alternating single and double bonds, the creation of the 
connection table is complete. Finally, the validity of the 
connection table is verified and it can be manually edited 
in a user interface.

CLiDE
Another OCSR software solution named Chemical Lit-
erature Data Extraction (CLiDE) [16] was released in 
1993. This consisted of a workflow with three phases: the 
recognition phase, the text grouping phase, and the inter-
pretation phase.

During the recognition phase, the outer contours of 
each connected element are determined and approxi-
mated with a polygon. The largest character size is 
estimated based on the distribution of the sizes of the 
elements. Each element is then classified as a character, 
a graphic, or as a dash based on size and relative height. 
The graphic primitives (lines) are recognized by searching 
for two long parallel edges in a polygon with short sides 
at the end that can be approximated as a curve. Eventu-
ally each primitive is saved as the start and end points of 
the two long sides of the corresponding polygon. There is 
a second routine for the identification of dashed bonds. 
The relative position of connected elements that have 
been classified as dashes due to their size is evaluated. 
If the dash objects are aligned on a straight line, the line 
and a single coordinate for each dash are saved.

The OCR is performed with a neural network that has 
been trained for this purpose. Words on a page are then 
grouped based on their relative position to determine 
lines and text blocks. This comprehensive OCR system 
which is technically capable of resolving the text blocks 
has not been included in the initial software package. 
Only the text elements which are associated with chemi-
cal structures are used for further processing.

The interpretation phase is then used to generate the 
connection table of the molecule based on the previously 
identified graphic primitives and the resolved text ele-
ments. Atom and superatom labels are resolved using an 
internal database. The final result can be saved in a mol-
file [13].

Further development of CLiDE
CLiDE Pro [17] is a commercial OCSR tool. The work-
flow begins with the identification of chemical images. 
Therefore, the input image (of a page) is binarized and 
subdivided into connected elements that are described 
by their contours. Elements like words are grouped into 
lines and text blocks, depending on their relative posi-
tion. Other elements are considered to be part of the 
graphics blocks.

The second phase is the generation of a connection 
table that represents the molecule. First, the connected 
compounds in the graphics blocks are classified as 
characters, dashes, lines, graphics, and noise. The clas-
sification is done according to the relative size of the 
connected elements and a row of features, like the pixel 
density and the number of contours. Then, all elements 
that have been classified as lines and graphics are vec-
torized by approximating the contours with a polygon. 
Ideally, a simple line is represented as two long straight 
sides with a couple of short sides at the ends that can 
be approximated as a curve. Each vector in the image 
is described by the start and end points of the two long 
borders that constitute the polygon. Dashed bonds are 
identified differently. If elements which have been previ-
ously classified as dashed can be arranged on a line, they 
are considered to represent a dashed bond. Dashes that 
cannot be allocated to a dashed bond are reclassified as 
characters. For the construction of atom labels, an OCR 
engine is applied to resolve all text character by charac-
ter. These characters are then grouped into words based 
on their relative position. The resolution of the identified 
labels is done using an internal database that contains 
atom and superatom labels and their machine-readable 
representations. This information is combined with the 
previously analyzed graphical elements that constitute 
the structure diagram to generate the connection table of 
the molecule.

Chemical structure depictions commonly contain 
R-group labels. This means that the depiction contains 
a variable (often represented by the character ‘R’) which 
refers to a structural element. The allocation of one 
or more structural elements to the variable is usually 
defined below the structure. CLiDE Pro is capable of pro-
cessing common R-group notation styles. Therefore, text 
blocks that describe the value of R-group variables are 
identified. Each text block is then allocated to a structure 
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diagram based on proximity and the amount and type of 
R-group variables.

The article about CLiDE Pro was published with a test 
set of 454 images which contain 519 chemical structure 
diagrams [17]

OSRA
With the publication of OSRA [5] in 2009, the first open-
source OCSR tool was available. Since its original release, 
OSRA has been continuously improved and refined. Like 
all other tools that were mentioned before, it follows a 
rule-based approach: First, the input image is converted 
to grayscale and binarized. Rectangular areas containing 
chemical structures are defined by their dimensions and 
the ratio of black and white pixels in the selected area. If 
a segmented rectangle is found to contain a lot of noise, 
noise removal and anisotropic smoothing are performed. 
Subsequently, a thinning algorithm is applied before vec-
torizing the image. Based on a set of rules, control points 
and vectors are interpreted as atoms and bonds. Atom 
labels are identified using two OCR systems. Then, aro-
matic, double, and triple bonds are recognized as cir-
cles, or parallel lines that have the average bond length. 
If the development of the thickness of an object can be 
approximated by linear regression, it is interpreted as a 
dashed bond. Multiple small objects within the average 
bond length are interpreted as a dashed bond. Finally, the 
connection table of the molecule is generated by combin-
ing the information that was gathered in previous steps.

For the resolution of the atom and superatom labels, 
OSRA uses a dictionary of the labels (and different spell-
ing varieties) which can be modified by the user. A super-
atom label describes a structural element such as ‘MeO’ 
for a methoxy group. Polymer structures, as well as reac-
tions, can be recognized. By default, every input image 
is processed at three resolutions. OSRA then applies an 
empirically determined confidence estimation function 
and keeps the result with the best confidence value only 
[5, 18]. OSRA can be used as a command-line tool on a 
local machine and an online application.

Due to OSRA being an open-source tool, other devel-
opers were able to implement it in their projects and 
to develop improvements by using it in the backend. 
ChemEx is a tool that combines OSRA in combination 
with a text mining workflow in order to mine natural-
product-related data from scientific publications [19]. In 
2020, the tool ChemSchematicResolver was published 
with Python bindings for OSRA (PyOSRA). ChemSche-
maticResolver implements a segmentation algorithm in 
combination with OCR to allocate the resolved chemi-
cal structure diagrams to their names and labels. It then 
combines the OCSR results with information that was 
gained with the text mining tool ChemDataExtractor 

[20]. The capability of reading labels is also used in 
PyOSRA to resolve common R-group notations and 
implement this information in the resolved chemical 
structure diagram.

ChemReader
ChemReader [21] was published in 2009. The workflow 
begins with a preprocessing step involving noise removal 
and size normalization. Subsequently, characters and 
lines are separated based on their height, area and rela-
tive position to other characters. After the detection of 
lines using an adapted Hough transform, the bond order 
and stereochemical information are determined. There 
is an additional routine for the detection of pentagonal 
and hexagonal structures within the molecule. Addi-
tionally, circles within cyclic structures in the molecule 
are detected. The previously identified characters are 
resolved using OCR. The resulting labels often contain 
errors and are corrected in a consecutive spelling cor-
rection step using a dictionary and a set of rules about 
valid valence. Different candidates are considered for 
each character and evaluated according to a confidence 
score. Finally, a graph representation of the molecule is 
compiled based on the previously detected features. Even 
though the authors announced in 2009 that ChemReader 
would become available as a commercial tool, it has not 
been published yet.

MolRec
In 2009, a researcher from the University of Birmingham 
in the United Kingdom announced that he was work-
ing on an OCSR tool [22] that he intended to release 
openly available once it would reach a sufficient standard. 
The proposed application mainly uses a combination of 
the known techniques which are already in use. It has a 
total of 6 steps. Image binarization is done using Otsu’s 
method [23]. All connected components in the image are 
defined using the grass-fire algorithm [24]. In the next 
step, these components are processed and the characters 
are separated from other (graphical) elements. Wedged 
bonds and the dashed bonds are recognized separately 
using a set of rules. All remaining elements are thinned 
using Hilditch’s algorithm [25]. Then, all line characters, 
their connections, and endpoints are interpreted as the 
bond structure of the molecule. Finally, the extracted 
information about the given molecule is combined in a 
graph representation. Based on this graph, a molecular 
formula and a SMILES string are created.

Three years later, a publication about the OCSR sys-
tem MolRec [26] was released. Here, the workflow also 
begins with binarization, detection of connected compo-
nents, and resolution of characters as well as their subse-
quent removal from the image. After a thinning step, the 
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resulting set of lines and polylines is processed using the 
Douglas-Peucker line simplification [27]. MolRec works 
with the assumption that there is a limited set of geo-
metrical primitives that assemble a chemical structure 
diagram (line segments, arrows, circles, triangles, and 
characters). It then applies a sophisticated set of rules in 
order to interpret these geometrical primitives as a part 
of a molecule. Superatom labels are resolved using a dic-
tionary. The gathered information is compiled in a graph 
representation of the molecule. To our knowledge, Mol-
Rec is neither freely available nor as a commercial tool.

Imago
In 2011, a second open-source OCSR tool was pub-
lished—Imago [5, 6]. As the other tools, it implements a 
similar rule-based approach: The input image is blurred, 
binarized, and segmented into connected items. Dashed 
bonds are recognized separately and removed from the 
image for further processing. Then, the remaining objects 
are allocated to a symbols layer which contains the atom 
and superatom labels and a graphics layer that contains 
the bonds. This classification is based on the width to 
height ratio of the elements and a set of rules. The ele-
ments in the graphics layer are processed to create the 
graph representation of the molecule. Therefore, the 
graphics elements are thinned, junctions are removed, 
a smoothing algorithm is applied and the image is vec-
torized. After the merging of close nodes, all edges are 
interpreted as bonds. Parallel lines are detected and the 
bond order is adapted correspondingly. All labels from 
the symbols layer are resolved and linked to the nodes, 
and the stereo information from the previously removed 
dashed bonds is added. Imago uses a dictionary of super-
atoms and common abbreviations. It can be used from a 
user interface or as a command-line tool for batches of 
images.

chemOCR
chemOCR [28] is an extension of the work done by 
Mark Zimmerman and Maria-Elena Algorri [29, 30] as it 
uses the earlier established method from these publica-
tions. The method uses its own pattern recognition algo-
rithms combined with a support vector machine (SVM) 
to detect and interpret an image containing a chemical 
structure.

chemOCR is written in Java. At the backend, it uses a 
set of algorithms that were previously developed by the 
same authors and a set of rules which they propose to 
process any type of image regardless of its drawing type.

chemOCR has multiple modules incorporated into an 
overall OCSR workflow. The tool accepts a PDF docu-
ment or an image that consists of chemical structures. 

PDF documents are converted into separate bitmap 
images and processed further. The images which con-
tain structures and other information such as text 
blocks, tables, and reactions will undergo a preprocess-
ing step where all components not related to chemical 
structures are removed from the image. The authors 
claim that the tool works better with images that only 
contain the chemical structure. In the next steps, 
images are enhanced, the connected components with 
the connecting text areas are identified, an OCR mod-
ule detects the characters attached to the structure, 
and the chiral bonds which are represented by wedged 
bonds are detected. In the final preprocessing step, the 
image is converted into a set of vectors.

The vectorized image with the detected compo-
nents is then used in the reconstruction of the chemi-
cal structure. This procedure is divided into two main 
tasks. First, an expert system analyzes all the informa-
tion from the preprocessing steps, using an algorithm 
that determines the orientation of the graph and anno-
tates the connected components. The second task is the 
assembly of the molecule based on the annotated com-
ponents and a set of rules in a stepwise manner until 
the complete structure is reconstructed.

All reconstructed chemical structures will be further 
processed by a post-processing step where the frag-
ments of the chemical structures will get split, saved 
as separate structures in an SDfile and the final set of 
results will be displayed. Later on, a validation step is 
carried out on the reconstructed chemical structures 
to give an overall confidence score on the final results. 
According to the developers, the tool has a 65.6% accu-
racy (656 structures were correctly reconstructed out 
of 1000 unique images) and is currently available as 
commercial software.

ChemInfty
ChemInfty [31] was developed as a robust solution to 
resolve chemical structures in Japanese patents. The 
input image is binarized and smoothed. Additionally, 
text captions are removed. Characters are resolved 
using a custom OCR engine. If characters are resolved 
with a high confidence level, they are removed from the 
image. Then, the image is thinned and crossing points 
and bending points are identified. The remaining ele-
ments are divided into lines and curves. After a bond 
recognition step, the elements are grouped and the 
“most suitable combination” is determined. Then, the 
remaining characters are resolved by using a custom 
OCR engine. According to the authors, ChemInfty has 
the advantage of dealing with characters in labels that 
touch the lines in the structure diagram.
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eChem
eChem [32] was developed as a helper tool for chemistry 
students. The main goal of the application is to help stu-
dents to understand chemical structures and how to use 
them in reactions.

The OCSR in this application is used as a module, 
which processes a chemical structure and the data gener-
ated from this module will be forwarded to other mod-
ules for further processing.

The application comes with multiple modules for the 
user to use. The user can either upload a soft copy of a 
chemical structure or a scanned copy, this will be pro-
cessed by the chemical structure name recognizer mod-
ule of the system to translate the raster image into a 
computer-readable file format. The transformation of 
images to a computer-readable file format is somewhat 
similar to the work done by Mark Zimmerman in 2007. 
The input images are resized and denoised to set an opti-
mal value of the resolution. They get segmented into 
separate components based on their pixel connectivity. 
The separated characters rather than bonds are detected 
using the Microsoft Office Document Image Library. 
Then, the bonds (lines) are detected using a modified 
version of the Hough transform. The detected bonds are 
separated into single, double, or triple bonds depend-
ing on their overall thickness. The recognized characters 
combined with the recognized structure are used to gen-
erate a SMILES string. Invalid SMILES strings are recog-
nized in a spell checker algorithm before the final output 
is generated.

This application further has a component to help 
the user with generating chemical reactions from the 
detected structures. In order to use this component, the 
user needs to define all the reactants used in the desired 
reaction. The reaction component follows a knowledge 
base that is predefined to carry on with the reaction steps 
which helps to generate the final output.

The authors didn’t state any availability of this method 
as open-source software.

Markov logic networks for OCSR
MLOCSR [33] is an OCSR method that follows a pipe-
lined design strategy which is a combination of low level 
and high-level processing. The workflow is divided into 
three modules. The first module is a low-level extractor 
that extracts the graphical entities and text elements. 
Then, a high-level module uses a Markov Logic network 
[34, 35] in order to clean up the noisy low-level data and 
to add more information using a knowledge base. The 
last module processes the previously produced informa-
tion and assembles a graph that represents the depicted 
molecule.

The MLOCSR workflow begins with the preprocess-
ing of the image in order to extract low-level entities 
like graphical primitives and text elements. Therefore, 
the input raster image is binarized and a smoothing 
algorithm is applied. Then, the bounding boxes of all 
connected components are determined. Subsequently, 
textual and graphical elements are separated. Based on 
the identified text elements, the text height is estimated. 
This information is used to filter the input for the OCR 
engine. After the removal of text elements, the remain-
ing image is vectorized by applying a contour-based tech-
nique, and different kinds of lines (e.g. dashed or wavy 
lines) are classified.

The extracted graphical primitives need to be inter-
preted in order to assemble a connection table that 
represents the molecule that is depicted in the origi-
nal chemical structure diagram. Since the information 
extracted by the low-level module is noisy, it needs to be 
modified based on more information about the composi-
tion of atoms and bonds in a molecule. Due to the com-
plexity of this problem and the clear rules defining the 
valid assembly of a molecule, a Markov logic network is 
used to assign probabilities to mappings of elements that 
result in a representation of a molecule. The rules which 
are incorporated in the Markov logic network are saved 
as a knowledge base.

Finally, using the resulted output from the Markov 
logic network, the entities are reassembled to form a 
valid chemical structure. This structure is first generated 
as a connection table and then converted into a molfile. 
The tool is not distributed as an open-source software 
but a web version of it is available for the public.

OCSR
Another OCSR tool (name: OCSR) [36] was proposed 
in 2015. The workflow begins with a grayscale conver-
sion and binarization of the input image. Characters are 
resolved using OCR. A procedure for the detection of 
wedge bonds is implemented. A thinning algorithm is 
applied and the image is vectorized. Recognized charac-
ters are merged to form atom and superatom labels. The 
gathered information is combined in an adjacency matrix 
or a string representation of the molecule. To our knowl-
edge, this tool is not available.

Chemrobot
In 2017, a US patent for the OCSR tool Chemrobot [37] 
was filed. The workflow begins with the conversion to 
grayscale, a binarization and a smoothing step of the 
input image. Circles within cyclic structures in the chem-
ical structure diagram are recognized as aromatic bonds 
and OCR is used to identify characters. A thinning algo-
rithm is applied and edges of the molecular graph are 
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detected. After the detection of double and triple bonds, 
the result is compiled in common output formats. The 
authors claim that the tool is suitable for the interpreta-
tion of hand-drawn structures from noisy input images.

MolVec
MolVec [7] is an open-source Java-based tool developed 
by a group of scientists from NIH. The tool is an attempt 
to solve the common problem researchers were having 
using other public tools. MolVec attempts to simplify its 
use by being a self-contained, lightweight standalone tool 
that does not require any programming skills. MolVec 
is completely programmed in Java, it needs JAVA 8 or 
higher to run locally. It can be used as a command-line 
tool, through the Java API, a user interface or online [7]. 
As it is open-source software, developers who would like 
to modify the tool can access it on GitHub. It currently 
only accepts images with a single chemical structure, 
but it can handle any type of image resolution. Further 
development to recognize separate structures is currently 
ongoing work. So far, the researchers have not published 
a scientific paper about their work so that there is not 
much information about the algorithms running behind 
the scenes. According to the developers, the algorithm 
consists of binarization, line thinning and shape, fea-
ture, node and edge detection. The detected elements are 
adjusted and assembled based on a set of rules.

Machine‑learning‑based systems
Two new deep learning methods in OCSR have been 
implemented recently. In 2003, Gkoutos et  al. [38] used 
a Kohonen network [39] in the backend to distinguish 
chemical structure images from non-chemical images 
such as photographs. Additionally, a support vector 
machine (SVM) [40] based classification is included in 
ChemOCR. A complete machine learning-based OCSR 
method has not been published until 2019. In the follow-
ing section, the two published methods which use deep 
learning for OCSR purposes are summarized. Since they 
are closed-source systems, neither of them was available 
for testing.

MSE‑DUDL
In 2019, Staker et al. [41] presented a data-driven, deep 
learning based approach for OCSR called Molecular 
Structure Extraction from Documents Using Deep Learn-
ing (MSE-DUDL). The system uses two types of networks 
in the backend: a segmentation network and a structure 
prediction network. The segmentation network is used to 
scan through the images containing chemical graphs and 
other elements such as text blocks, tables, reactions. It 
then identifies the chemical structure diagrams and seg-
ments them out from the images. This network follows a 

convolutional neural network (CNN) architecture based 
on an open-source implementation of U-Net which was 
used by Ronneberger et al. [42] for their work on biomed-
ical image segmentation. This architecture has the abil-
ity to support full-resolution detection and a fine-grained 
segmentation. The network has a contacting path where 
the input gets transformed (downsampling) into a latent 
representation, and an expansive path where the latent 
representation is expanded (upsampling) until it matches 
the resolution of the input image. The final predicted 
output is used to obtain pixel masks which helps the net-
work to do the extraction of the images. The network was 
trained on a manually curated set of images that were 
extracted from documents and edited. The model had 
380,000 parameters and was trained for 4 days on a single 
graphics processor unit (GPU).

The prediction network follows an encoder-decoder 
architecture where the encoder encodes the images con-
taining chemical graphs to a fixed-length latent space 
using a CNN and then the decoder uses a recurrent neu-
ral network (RNN) to decode them back to a sequence 
of SMILES characters. The CNN is architecturally similar 
to the ImageNet [43] architecture and the RNN follows 
the sequence to sequence learning network [44] used for 
the English to French translation model. The model was 
trained on 57 million images generated using the Indigo 
toolkit [45] with molecules retrieved from PubChem [46] 
and on another dataset of 1.7 million images generated 
by Indigo using molecules retrieved from the publicly 
available data from the United States Patent and Trade-
mark Office (USPTO) [47, 48]. This model had 46.3 mil-
lion parameters and training took 26 days on eight GPUs.

After training the networks, the authors tested the 
models using a validation dataset which is 10% of the 
Pubchem dataset and 25% of the USPTO dataset, and 
they observed a high accuracy on both datasets. The 
whole system works well in a complete end-to-end fash-
ion with reasonable accuracy as stated by the authors. 
Unfortunately, the method is not available as an open-
source tool.

Chemgrapher
Chemgrapher [49] is a deep-learning OCSR method 
implemented in a modular style. It analyzes a given 
image of a chemical structure in order to rebuild it as 
a computer-readable graph representation. The main 
motivation behind this method is to have a deep learn-
ing model for optical compound recognition. Primarily, 
the model can be divided into two sub-sections. The 
first section deals with segmentation and the second 
section deals with the location recognition for atoms, 
bonds and charges, with the resulting output being pro-
cessed by a separate algorithm to build the chemical 
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graph. All these networks are based on CNNs. The seg-
mentation networks follow the idea of dilated convolu-
tion described by Yu and Koltun [50].

The segmentation network was trained on chemical 
structure images generated with RDKit [51] based on 
data retrieved from CHEMBL [52]. The output of the 
segmentation network is used as an input for the clas-
sification networks to locate atoms, bonds and charges.

Every network was checked individually for accu-
racy and it is stated that the classification networks 
perform much better than the segmentation networks. 
The overall accuracy of the model is determined by the 
resulting chemical graphs. According to the authors, 
the system outperforms OSRA.

4.	 A subset (450 images and SDfiles) of a dataset pub-
lished with ChemInfty (see above) based on data 
from the Japanese Patent Office (JPO), obtained from 
the OSRA online presence [53]. (Note that this data-
set contains many labels (sometimes with Japanese 
characters) and irregular features, such as variations 
in the line thickness. Additionally, some images have 
a poor quality and contain a lot of noise.)

The TIFF images were converted to PNG images 
with a resolution of 72 dpi to assure comparability, as 
MolVec and Imago both showed problems handling 
those TIFF files in batch mode.

The command-line version of Imago [56] was exe-
cuted without installation by running the following 
command in the directory with the executable file:

Comparison of the open‑source OCSR tools
Materials and methods
In order to compare the results of the three available 
open-source OCSR tools Imago (version 2.0), MolVec 
(version 0.9.7) and OSRA (version 2.1.0), multiple data-
sets which are freely available online were analyzed 
according to the validation procedure of the OSRA 
developers [53]. The datasets were:

1.	 A set of 5719 images of chemical structures and the 
corresponding molfiles (based on data from the 
USPTO) obtained from the OSRA online presence 
[53].

2.	 The dataset (UOB) of 5740 images and molfiles of 
chemical structures developed by the University of 
Birmingham, United Kingdom, and published along-
side MolRec [54].

3.	 The Conference and Labs of the Evaluation Forum 
(CLEF) test set of 961 images and molfiles published 
in 2012 [55].

MolVec was downloaded as a jar file with all of its dependencies. It was executed from the command-line by 
running:

OSRA was installed in an Anaconda environment 
using the Conda recipe for PyOSRA which was pub-
lished by Ed Beard [57]. This was done analogously to 
the installation instructions in the ChemSchematicRes-
over documentation [58]. We used the PyOSRA envi-
ronment because compiling OSRA from source code 
is excessively complex as it has a lot of dependencies 
that need to be compiled from their own source code as 
well. There is the option to obtain a commercial license 
to get a precompiled version of the software.

OSRA was then executed on the test data set by run-
ning the following shell command in the directory with 
the images. Here, it is necessary to specify the location 
of the dictionaries for superatoms and common spell-
ing corrections.
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Discussion
In the years 1992–1993, the first developments in the 
field of OCSR were reported. These early developments 
were commercial, but there have been open solutions 
since 2009. In this review, we analyzed all freely available 
tools used in OCSR. Additionally, we summarized the 
methods which have been described but never became 
available as testable software. There are different OCSR 

Table 2  Time elapsed and accuracy reported for the open-
source OCSR tools

Dataset MolVec 0.9.7 Imago 2.0 OSRA 2.1

USPTO
(5719 images)

Time (min) 28.65 72.83 145.04

Accuracy 88.41% 87.20% 87.69%

UOB
(5740 images)

Time (min) 28.42 152.52 125.78

Accuracy 88.39% 63.54% 86.50%

CLEF 2012
(961 images)

Time (min) 4.41 16.03 21.33

Accuracy 80.96% 65.45% 94.90%

JPO
(450 images)

Time (min) 7.50 22.55 16.68

Accuracy 66.67% 40.00% 57.78%
Fig. 1  a Accuracy (Right: higher the better) and b Total time for 
processing (Left: lower the better)

The accuracies of the tools listed in Table  2 below 
correspond to perfectly recognized structures accord-
ing to a perfect match of the Standard InChI strings 
[59] that were created based on the OCSR results and 
the reference files.

All the processing was done on a Linux workstation 
running with Ubuntu 20.04 LTS, which has 2 Intel(R) 
Xeon(R) Silver 4114 CPUs capable of handling 40 
threads and with 64 GB of RAM.

Results
As shown in Table  2, MolVec processes the images sig-
nificantly faster than its competitors. All three tools 
performed fairly well on the given set of images. As 
illustrated in Fig.  1, the proportion of accurate results 
produced by MolVec and OSRA with the UOB, CLEF 
and JPO datasets was approximately 20% higher than in 
the results produced by Imago. The lower overall per-
formance of all three tools with the JPO dataset is likely 
due to the lower quality of the depictions, the presence 
of labels and other irregular features. The extraordinar-
ily good performance of OSRA on the CLEF dataset is 
a notable observation. The examination of the images in 
the dataset reveals a set of well-segmented, clean chemi-
cal structure depictions which is seemingly handled espe-
cially well by OSRA.
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tools being used in industry and the gold standard has 
never been set.

Out of all the tools reviewed here, we only used the 
three freely available open-source tools for our bench-
mark study to see how well they perform, how fast they 
are, and how accurately they recognize the chemical 
structure. The results indicate that all three tools per-
form well on the USPTO dataset. MolVec is significantly 
faster than the other two tools and has the additional fea-
ture of a pre-implemented parallelization function. For 
the OCSR-assisted manual extraction from documents, 
Imago offers a user interface that enables the selection of 
the desired segment which contains a structure. OSRA 
gives the user a wide variety of adaptable options in order 
to optimize the extraction for custom purposes. For the 
processing of documents, it has a segmentation algorithm 
without a user interface. MolVec has a user interface 
without a page reader but the developers are working on 
integrating this function in future versions.

Most of the discussed methods are not implemented 
in any available tools. They are simply methods describ-
ing a certain algorithm the authors developed, or in some 
research articles they are presented as a prototype, but 
the corresponding tools were never published. In prac-
tice, this is a huge lost potential in this field as researchers 
are not able to access the implementation of thoroughly 
planned and executed ideas.

The majority of the tools follow a common rule-based 
approach which is based on the interpretation of the ele-
ments in the vectorized image as nodes and edges in a 
graph representation of the molecule. Many tools seem 
to mirror each other’s ideas and add some modifica-
tions in the algorithms while the basic workflow mostly 
remains the same. Only two OCSR methods address the 
implementation of deep neural networks as the backbone 
of their tool and neither of them is not openly available.

The recently published ChemSchematicResolver com-
bines text mining with OCSR in order to retrieve all the 
information possible from the printed literature. A major 
problem in the field of automated generation and cura-
tion of databases is the missing linkage of the information 
mined by OCSR tools to the corresponding names. To 
our knowledge, ChemSchematicResolver is the first tool 
that addresses this problem to enable the mining of infor-
mation on a large scale and in an unsupervised manner. 
As it uses a Python implementation of OSRA, this devel-
opment also represents a good example for constructive 
synergies in the open-source community.

We could see that none of the openly available tools 
works perfectly. This may make things difficult for 
researchers when the combination of multiple tools is 
necessary for a better overall result. There are no tools 
available having all of the following features—OCR based 

complete page reader, image segmentation, batch pro-
cessing, and natural language processing (NLP). Addi-
tionally, the interpretation of R-group labels remains an 
unsolved problem when the allocation of structural ele-
ments to the R-group variables is presented elsewhere in 
the text or in tables.

There is a need for a completely automated, feature-
rich, reliable OCSR application that can process complete 
documents in order to directly create database entries 
and it should allow a user to cross-reference the mined 
information with the already existing data.

Conclusion
The move to open-access, high-quality scientific informa-
tion systems creates a demand for automatic curation of 
knowledge from the printed scientific literature. In chem-
istry, this includes the translation of images of chemical 
structures into a machine-readable format, which is one 
of many steps towards the development of more com-
plete curation systems.

Within the last decade we have observed increased 
activity in this field. We see that rule-based systems were 
mostly developed, but there were also two deep learn-
ing based solutions. The first ever open-source tool 
OSRA was released in 2009 and it is still being devel-
oped. There are two alternative open-source tools apart 
from OSRA,  Imago and MolVec. Our examination of 
the performance of the three open-source tools showed 
an average accuracy of above 80% for OSRA and MolVec 
which can be considered acceptable. Nevertheless, there 
is potential for further improvements.

This review is an attempt to give an overview of three 
decades of research in the field of OCSR. We have dis-
cussed the development and improvements of methods 
that allow the automated extraction of chemical infor-
mation from the literature. In particular, the freely avail-
able tools open up opportunities for the combination of 
OCSR tools with text mining to achieve the complete 
automated extraction of chemical information from the 
literature.
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