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Abstract

The average geodesic distance L Newman (2003) and the compactness CB Botafogo

(1992) are important graph indices in applications of complex network theory to real-world

problems. Here, for simple connected undirected graphs G of order n, we study the behavior

of L(G) and CB(G), subject to the condition that their order |V(G)| approaches infinity. We

prove that the limit of L(G)/n and CB(G) lies within the interval [0;1/3] and [2/3;1], respec-

tively. Moreover, for any not necessarily rational number β 2 [0;1/3] (α 2 [2/3;1]) we show

how to construct the sequence of graphs {G}, |V(G)| = n!1, for which the limit of L(G)/n

(CB(G)) is exactly β (α) (Theorems 1 and 2). Based on these results, our work points to

novel classification possibilities of graphs at the node level as well as to the information-the-

oretic classification of the structural complexity of graph indices.

Introduction

The average geodesic distance is one of the most important graph indices in applications of

complex network theory [1–7]. According to the definition of graphs, there are hardly any

graph indices that do not rely on transitive dependencies between indirectly connected nodes

and thus on a building block of networking information that is essential for complex networks

and the processes that run on them [8]. In a survey paper [9], discuss 13 studies of clinical con-

ditions investigated using so-called clinical cognitive networks. In nine of these studies, the

patient groups had significantly different average geodesic distance values of their (group-wise

aggregated) lexical networks compared to the control groups. This level of informativeness

was not achieved by any other of the graph indices examined in these studies. In particular,

geodesic distances are analyzed to capture dependencies, over short as well as long distances,

to complement local information captured by cluster values and degree statistics (see [1] for an
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introduction; see [10] for the representational concept of indirect connections of nodes in cog-

nitive networks).

This distance information is also at the core of a variety of graph entropy measures that

characterize nodes via probability distributions based on distances to nodes in their neighbor-

hoods (see [11] for an overview of this research). In addition, node distance statistics play a

prominent role in computing prominence, significance, influence, or other aspects of impor-

tance of nodes in information networks (for example [12], examine, among other things, the

special role of shortest path statistics and related measures such as diameter and eccentricity in

research on Twitter), geospatial networks [13–15], or brain networks [5, 16, 17]. These exam-

ples point to the central relational information quality of geodesic distance, which is at the cen-

ter of the relational definition of entities by reference to their neighborhoods, especially

indirect ones, as first elaborated in structuralism for a number of sciences. To put it the other

way around, relational research approaches, whether in computational sociology [18, 19], lin-

guistics [20–23], chemistry [24–27], or biology [3, 28–30], to name just a few examples, make

network statistics based on the evaluation of shortest paths, such as those evaluated by the

average geodesic distance, indispensable.

In so far as geodesic distance concerns connected vertices, the question arises on how to

additionally capture pairs of disconnected vertices in a network. One possible answer, that was

first given in the context of web research, is the compactness measure [31]. By this measure,

disconnected nodes and disconnected subgraphs contribute to the compactness value of a net-

work as do connected nodes. This approach eliminates the need to focus on, for example, the

largest connected component of a graph. There is a number of studies applying the compact-

ness measure of [31] to answer questions concerning the structure of hypermedia or web-

based systems in general [20, 31–37]. What these applications have in common is that they

rely on the empirical calculation of compactness values rather than theoretically describing

and determining the boundary conditions of their possible manifestations. In this way, they

bypass a theoretical description of the functional relationship between average geodesic dis-

tance and compactness. In this paper, we focus on this research gap. In our previous paper

[38], we conjectured that the limit value of compactness for any sequence of simple connected

undirected graphs lies within the interval 2

3
; 1

� �
and for any number α in the interval 2

3
; 1

� �

one can construct the sequence of graphs for which the limit value of compactness is exactly α.

In the present paper, we prove these two statements about compactness as well as related state-

ments about the asymptotic behaviour of the average geodesic distance (Theorems 1 and 2). In

this way, we demonstrate an alternative to the prevailing practical evaluation of graph indices

in complex network theory by theoretically elaborating on the functional relationship between

average geodesic distance and one of its relatives, that is, compactness. As outlined in the dis-

cussion of our results, our findings point to novel classification possibilities of graphs at the

node level as well as to the information-theoretic classification of the structural complexity of

graph indices. Based on these considerations and their underlying mathematical basis, which

is the main part of this paper, we want to contribute to the theoretical advancement of complex

networks—beyond their empirical analysis.

The paper is organized as follows. We start with a recollection of some graph-theoretical

notions which we use throughout the paper. We speak of the construction (Definition 3) of a

graph G from two input graphs G1 and G2 as the so-called joining of these graphs by means of

a common node. This operation allows for generating simple connected undirected graphs G
(s, m) with N∍s;m � 1 (see Example 1) that will be used in the proof of Theorem 2. In the next

section we prove Theorem 1 and Theorem 2. Finally, we discuss the implications of our results

(Section Discussion) and draw a conclusion (Section Concluding Remarks).
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Preliminaries

We start with some definitions from graph theory to be used throughout this paper (see [39]

for detailed definitions). Let G be a simple connected undirected graph with the vertex set V =

V(G) and the edge set E = E(G). The order n of G is the number of its vertices (n = |V|). The size
of G is the number of its edges.

The degree deg(v) of a vertex v of a graph G is the number of edges incident to v in G. The

geodesic distance δ(v, w) of two vertices u and v in graph G is the number of edges of the short-

est path in G connecting them. The diameter D(G) of a graph G is the maximum of geodesic

distances in G.

By L(G) we denote the average geodesic distance in graph G = (V, E) [1] (where [X]2 is the

set of all pairs of elements of the set X):

LðGÞ ¼
P
fv;wg2½V�2dðv;wÞ
nðn � 1Þ

: ð1Þ

Further, we denote the numerator of the fraction in (1) by S(G), that is:

SðGÞ ¼
X

fv;wg2½V�2
dðv;wÞ:

ð2Þ

Thus, (1) can be rewritten as:

LðGÞ ¼
SðGÞ

nðn � 1Þ
: ð3Þ

Further, for every vertex c 2 V we denote the sum of n − 1 geodesic distances from c to ver-

tices in V\{c} by ∑(c, G):

Sðc;GÞ ¼
X

u2V

dðc; uÞ ð4Þ

and using this notation we write:

SðGÞ ¼
X

u2V

Sðu;GÞ: ð5Þ

The compactness CB(G) of a graph G = (V, E) with |V| = n> 1 was introduced in [31]. In

[38] it was observed that for connected graphs the formula for CB(G) can be represented as fol-

lows:

CBðGÞ ¼
n

n � 1
�

LðGÞ
n � 1

: ð6Þ

Roughly speaking, for a connected graph G the compactness CB(G) measures the closeness

of all nodes in G to each other. From (6) we see that CB(G)� 1.

Remark 1. From (6) it follows that if we try to get the limit value of compactness CB for some
sequence of simple connected undirected graphs whenever their order n tends to +1 we have

lim
n!þ1

CBðGÞ ¼ 1 � lim
n!þ1

LðGÞ
n � 1

: ð7Þ
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Thus, for b ¼ limn!þ1
LðGÞ
n� 1

, we immediately obtain

lim
n!þ1

CBðGÞ ¼ 1 � b:

Definition 1. The path graph Pm, m� 2, is a simple connected undirected graph with two
vertices of degree 1 (called terminal vertices) and m − 2 vertices of degree 2 (called internal
vertices).

The order n of Pm is equal to m and its diameter D(Pm) = m − 1. The vertices of Pm can be

labeled by the consecutive integers {1, 2, . . ., m} in such a way that the terminal vertices are

labeled by 1 and m, respectively, and for every integer i, 1� i�m − 1, the consecutive vertices

with labels i and i + 1 are adjacent.

Further we need the following formulas the proof of which one can easily get in view of (2)

and (4) by means of straightforward calculations:

SðPmÞ ¼
mðm2 � 1Þ

3
ð8Þ

and

Sðc; PmÞ ¼
mðm � 1Þ

2
; ð9Þ

where c is one of the terminal vertices of Pm. So, with (3) and (6) we have

CBðPmÞ ¼
m

m � 1
�

mþ 1

3ðm � 1Þ
¼

2

3
þ

1

3ðm � 1Þ
: ð10Þ

Definition 2. The complete graph Ks of order n is a simple undirected graph with s vertices
such that each pair of distinct vertices is connected by a unique edge.

That is, the average geodesic distance L(Ks) equals 1. Obviously, the following equalities hold:

SðKsÞ ¼ sðs � 1Þ; ð11Þ

Sðc;KsÞ ¼ s � 1 ð12Þ

where c is an arbitrary vertex in the graph Ks. Using (6), we get the following statement about the
compactness CB(Ks) of Ks:

CBðKsÞ ¼
s

s � 1
�

LðKsÞ

s � 1
¼

s
s � 1

�
1

s � 1
¼ 1: ð13Þ

It is worth noting that the complete graph Ks is the only graph for which CB(Ks) equals 1.

Definition 3. Suppose we have two simple undirected connected graphs G1 of order n1 and G2

of order n2. We choose a vertex c1 in G1 and a vertex c2 in G2 and construct a new graph G by
merging c1 and c2 into the so-called common vertex c (that replaces c1 and c2). We speak of the
graph G generated by joining two graphs G1 and G2 by means of a common vertex c.

Note that the new graph G is a simple connected undirected graph of order n = n1 + n2 − 1.

Example 1. Let us take for the graph G1 the graph K3 (see Definition 2) and for the graph G2

the path graph P4 (see Definition 1). Then we choose one of the vertices of K3 as c1 and one of the
terminal vertices of P4 as c2. The graph G is then obtained by joining K3 and P4 by means of the
common vertex c that merges c1 and c2 as exemplified in Fig 1.

We denote the graph G by G(3, 4) where the number 3 is the order of K3 and the number 4

is the order of P4. We see that the order of the graph G(3,4) equals to G = 3 + 4 − 1.
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More generally, we take any vertex c1 of the graph Ks (s> 1) and one of the terminal vertices
c2 of the graph Pm (m> 1) to generate the graph G using the common vertex c (see Definition 3
above). We denote this graph G by G(s, m) also called the fusion graph induced by Ks and Pm
with the order n of G(s, m) is n = s + m − 1.

Proposition 1. Let G be the graph that is constructed by joining two simple undirected con-
nected graphs G1 of order n1 and G2 of order n2 with the common vertex c. Then the following holds:

SðGÞ ¼ SðG1Þ þ SðG2Þ þ 2ðn2 � 1ÞSðc;G1Þ þ 2ðn1 � 1ÞSðc;G2Þ: ð14Þ

The proof of this statement is straightforward using formulas (2) and (4).

Example 2 With Proposition 1 we calculate the sum of all geodesic distances S(G(s, m)) in
the graph G(s, m), where G1 = Ks, G2 = Pm, n1 = s and n2 = m. So, from (14) we have:

SðGðs;mÞÞ ¼ SðKsÞ þ SðPmÞ þ 2ðm � 1ÞSðc;KsÞ þ 2ðs � 1ÞSðc; PmÞ

where c = {c1, c2} is a common vertex such that c1 2 V(Ks) and c2 2 V(Ps). With (11), (12), (8)

and (9) we get

SðGðs;mÞÞ ¼ sðs � 1Þ þ
mðm2 � 1Þ

3
þ 2ðm � 1Þðs � 1Þ þ 2ðs � 1Þ

mðm � 1Þ

2
¼

¼ ðs � 1Þðsþm � 2þm2Þ þ
mðm2 � 1Þ

3
:

ð15Þ

Main results

Theorem 1. Given any undirected connected simple graph G of order n> 2 which is not isomor-
phic to the path graph Pn we have CB(G)> CB(Pn) or, equivalently, L(G)< L(Pn).

Proof. We note first that if the graph G contains a cycle then we remove one of the edges of

this cycle and get another connected undirected simple graph G0 of the same order n for which

we have

LðG0Þ > LðGÞ:

So we may assume that G contains no cycle.

Suppose that the diameter D of the graph G is equal to k< n − 1 (k = n − 1 implies G is iso-

morphic to the path graph Pn). That means that in our graph G there is a simple path (with no

Fig 1. Graph G = G(3, 4) obtained by joining G1 = K3 and G2 = P4 with a common vertex c.

https://doi.org/10.1371/journal.pone.0259776.g001
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repeating vertices) of length k. We enumerate the vertices of this path just as we have done in

the previous section (Definition 1). So we have the vertices A1, A2, . . ., Ak+1 where A1 and Ak+1

are terminal vertices of our path and the other ones are internal vertices. Clearly the degree of

the terminal vertices A1 and Ak+1 in G is equal to 1 because our path is the largest simple path

in the graph G. If the vertex A2 has degree 2 we take the next vertex A3 and so on till we get the

vertex Ai of degree greater than 2 in the graph G. If there is no such vertex in our path then our

graph is clearly isomorphic to Pn (recall that G is connected).

So let a vertex Ai be the first vertex of degree greater than 2 in the graph G. It means that all

vertices A2, A3, . . .Ai−1 have degree 2 in the graph G and there is a vertex B which is adjacent to

the vertex Ai and does not belong to our largest path. Now we remove the edge connecting the

vertices B and Ai and join then the vertices A1 and B with an edge.

Thus we get a new graph G0 without cycles for which the diameter D is greater that the

diameter of the the graph G because the largest simple path of G0 contains at least one edge

more than the largest simple path of G. In view of i> 1 we have

LðG0Þ > LðGÞ:

Further we repeat this procedure with our new graph G0 and so on till we get the path graph

Pn. It will be less than n − k steps and after each step we obtain a new graph for which the diam-

eter (the average geodesic distance L) is greater than the diameter (the average geodesic dis-

tance), respectively, of the next-to-last graph. Thus, our Theorem is proved.

So, we may say now that the graph Pn is the least compact graph among all the simple con-

nected undirected graphs of the same order n. On the contrary, the graph Kn is the most com-

pact graph (CB(Kn) = 1). By means of (10) we see immediately that for any simple connected

undirected graph G of order n that is not isomorphic with either Pn or Kn, the following holds:

nþ 1

3
¼ LðPnÞ > LðGÞ > LðKnÞ ¼ 1

or, equivalently,

2

3
þ

1

3ðn � 1Þ
¼ CBðPnÞ < CBðGÞ < CBðKnÞ ¼ 1

Hence, the limit value of compactness CB(G) (of L(G)/n) for any sequence of simple con-

nected undirected graphs {G} lies in the interval [2/3;1] ([0;1/3]), respectively. We show now

that any number α 2 [2/3;1] (β 2 [0;1/3]) can be a limit value of compactness (L(G)/n), respec-

tively, for some graph family.

Theorem 2. For every number α 2 [2/3;1] there exists a sequence of simple connected undi-
rected graphs for which the limit value of compactness is exactly α.

Proof. We first note that, given Remark 1, it suffices to prove that for any number β in the

interval [0;1/3] there exists a sequence of simple connected undirected graphs G for which

lim
n!þ1

LðGÞ
n � 1

¼ b

holds, where n is the order of G. To prove this, we consider the graphs G = G(s, m) of order n =

s + m − 1 defined above. With (3) we have

LðGðs;mÞÞ ¼
SðGðs;mÞÞ

ðsþm � 1Þðsþm � 2Þ
:
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In Example 2, we expressed S(G(s, m)) by means of (15). Hence,

LðGðs;mÞÞ ¼
ðs � 1Þðsþmþm2 � 1Þ þ

mðm2 � 1Þ

3
ðsþm � 1Þðsþm � 2Þ

ð16Þ

holds. Now we construct the desired sequence of graphs. For a constant number p 2 (0; +1)

which is not necessary rational we set s = [pm] where [pm] is an integer part of the number

pm, or equivalently, s = pm − �m with �m (0� �m< 1) being a fraction part of the number pm.

In the case that s = [pm]2{0, 1}, we set s = 2 (this can happen if m is not large enough).

So the sequence of graphs G = G(pm − �m, m), m = 2, 3, . . ., is well defined and we have

with recollection that the order n of graph G = G(pm − �m, m) is n = pm − �m + m − 1 the fol-

lowing:

lim
m!1

LðGðpm � �m;mÞ
pm � �m þm � 2

¼ lim
m!1

ðpm � �m � 1Þðpm � �m þmþm2 � 1Þ þ
mðm2 � 1Þ

3

ðpm � �m þm � 2Þ
2
ðpm � �m þm � 1Þ

¼ lim
m!þ1

=m3 p �
�m
m
�

1

m

� �
p
m
�
�m
m2
þ

1

m
�

1

m2
þ 1

� �

þ
1

3
�

1

3m2

� �

=m3 1þ p �
�m
m
�

1

m

� �

1þ p �
�m
m
�

2

m

� �2

¼
pþ

1

3

ð1þ pÞ3
:

This means that for each constant p> 0 and the corresponding sequence of graphs G = G
(pm − �m, m) with the order n = pm − �m + m − 1 it holds that:

lim
n!þ1

LðGÞ
n � 1

¼
pþ

1

3

ð1þ pÞ3

We see that the function y ¼ f ðpÞ ¼ pþ1
3

ð1þpÞ3
is defined for all p� 0, has the negative derivative

f 0ðpÞ ¼ � 2p
ð1þpÞ4

for p> 0 and f0(0) = 0. Hence, f(p) is monotonously decreasing for p� 0 and has

its maximum which is 1

3
at the point p = 0.

So the plot of the function y = f(p) can be represented as shown in Fig 2. We note that the

function y = f(p) maps one-to-one the interval [0;+1) onto the interval 0; 1

3

� �
which implies

that for every number b 2 0; 1

3

� �
there is the only number pβ such that for the corresponding

sequence of graphs G = G([pβm], m) the following holds:

lim
m!1

LðGð½pbm�;mÞÞ
½pbm� þm � 2

¼ b: ð17Þ
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Discussion

As mentioned in the introduction, the average geodesic distance L is an important graph index

in many applications of complex network theory to real-world problems. Consequently, our

starting point to analyze the compactness measure was formula (6) which describes the com-

pactness of a connected graph as a function of L. Using this measure, one obtains an estimate

for the distance structure of a graph that includes all node pairs even in disconnected graphs,

given a penalty factor for disconnected nodes, as done in [2]. That is, while L does not change

when adding nodes to a graph without linking them by considering only its largest connected

component, CB actually decreases under the perspective of considering all vertices. Moreover,

if one adds a connected graph G0 to a graph G without connecting any of its vertices to any of

the vertices in G, there are V(G0) × V(G) many additional pairs of vertices that contribute non-

zero values to the compactness of the resulting graph. This makes compactness a candidate for

studies of modular, possibly disconnected networks. In [40], for example, the authors examine

the graph representations of the semantic memories of persons with Asperger syndrome,

which reveal a so-called hyper-modular lexicon structure different from that of the control

group. The compactness measure here opens a perspective on distance structure analysis

beyond L in particular when the modules are disconnected.

Regardless of the definition of CB as a function of L for connected graphs, compactness is an

informative measure that captures more structural information than L alone in the case of dis-

connected graphs: it points a way to extend the latter to cover both connected and disconnected

graphs. This motivates applying CB wherever L is already applied, as mentioned in the introduc-

tion: a previously untapped opportunity for applications of the compactness measure in com-

plex network theory. However, by our research, we also know that 2

3
is a lower bound for the

compactness of a connected graph. This raises the question of graph indices which, while refer-

ring to L, capture the disconnectedness of nodes by exhausting the entire unit interval.

Fig 2. Plot of the function y = f(p).

https://doi.org/10.1371/journal.pone.0259776.g002
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Notwithstanding the latter research perspective, our results indicate a particular relation-

ship between values above this lower bound. More specifically, according to Theorem 2 we

have shown that for any simple connected graph G of order n for which L(G) = β(n − 1), there

exists a sequence of fusion graphs

S ¼ Gð½pb2�; 2Þ; . . . ;Gð½pbm�;mÞ

derived from a sequence of pairs of graphs

P ¼ ðK½pb2�; P2Þ; . . . ; ðK½pbm�; PmÞ

such that Eq (17) holds. In this way, the geodesic structure of G as represented by L is repro-

duced by the latter sequence S of fusion graphs. In other words, in the limit, a certain sequence

of graphs, each arising from the fusion of a fully connected graph and a path graph, is isomor-

phic to G with respect to L. From this point of view, several research questions arise, two in a

narrower sense and one in a broader sense, the latter offering a broader perspective for extend-

ing our approach:

1. In a narrower perspective, we can consider the sequence P as a kind of decomposition

where the sequence K½pb2�; . . . ;K½pbm� is associated with G’s subnetwork of dense neighbor-

hoods, while the sequence P2, . . ., Pm is associated with G’s subnetwork of remote neighbor-

hoods: the smaller pβ, the smaller the order of the graphs K½pbm� in P, the higher the average

distances between the nodes in G and vice versa. Moreover, there must be a smallest n0 asso-

ciated with an m0 such that n� n0 = [pβm0]+ m0 − 1, henceforth called division number of

G and denoted by N ðGÞ ¼ n0. This division number gives rise to further interpretations.

For example, in a labeled variant of G, nodes at shorter average distances from each other

can then be assigned to K½pbm0 � (henceforth called dense nodes), while those with larger dis-

tances are lined up in Pm0 (so-called remote nodes). In this way, the nodes of G are parti-

tioned into two sets according to the decomposition S and m0 (except for the vertex of G
([pβm0], m0) by which the component graphs are fused). From this perspective, our

approach to proving Theorem 2 is related to a special kind of graph clustering approach

which distinguishes two classes of vertices. Let us take this perspective one step further:

dense and remote vertices can be specified according to their contribution to the compact-

ness of a graph. Deleting remote vertices will hardly influence this compactness, while delet-

ing the former will have higher impact. From this point of view, we gain access to

information about the stability of networks—as an alternative to information provided, for

example, by centrality measures (e.g. betweenness centrality—[41]). In the same line of

thought, adding a node to G causes it to be classified as either dense or remote. This per-

spective (on the addition or deletion of nodes and their effects on information flow)

in turn bridges to the theory of percolation in complex networks [42]: for a set of nodes

V0 = {vn+1, . . ., vn+k} added stepwise to a graph G of order n with division number n0, we

finally obtain a series of division numbers N ¼ ðnþ 1Þ
0
; . . . ; ðnþ kÞ0, which characterize

their classification into dense and distant nodes depending on the graphs G1, . . ., Gk result-

ing from these additions. The series N can then be viewed as characterizing the effect of

adding and linking the nodes from V0 to G and may finally be used for comparing the

impacts of processing different vertex sets V0, V0 0, . . .

2. Our results show that given a number α 2 [2/3;1], we can construct a graph series with this

number as the compactness of this series in the limit. In other words, for compactness as
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the focal graph index and its associated range of values, we induce the existence of a graph

series that approximates any desired compactness value in that range. This consideration

leads to the idea of creating graph series also in the context of other graph indices by focus-

ing on specific elements from their value ranges. In this sense, our research opens a perspec-

tive for a way of looking at graphs that starts from desirable values of graph invariants to

generate graphs with these values.

3. Under Theorem 2, L appears as a graph index that does not distinguish G and the sequence

S. And because of the functional dependence of compactness on L studied here, the same

assessment holds analogously for CB. Thus, to regain this distinguishability, we can ask in a

further perspective about graph indices other than L, to what extent they can be represented

by decompositions of the kind considered here. More precisely, we can ask for graph indi-

ces ι that cannot be reconstructed by sequences of type S but require, for example, more

than just two graphs per fusion, graphs which are at the same time more complex than fully

connected graphs and path graphs. We may ask, for example, how to reproduce measures

of graph entropy as considered by [43]. Obviously, the more such graphs are required per

fusion and the more complex these component graphs, the more complex the reproduction

of ι. This kind of complexity may be an indicator of the expressiveness or informativeness

of ι with respect to the structure of networks. It is probably not reasonable to try to extend

this complexity to the highest possible number of vertices required for the fusion of the cor-

responding component graphs. However, we can still ask for sufficiently complex graph

indices that require more than two component classes of sufficient complexity each for the

corresponding decomposition. In this way, our approach to proving Theorem 2 can also be

seen as naturally related to the qualification of graph indices regarding their structural

information value: the more graph classes are needed for the kind of reconstruction exem-

plified by Theorem 2 and the higher their algorithmic complexity in the sense of [44], the

higher the structural information value of that index. At the same time, our approach of

functionally linking graph indices (and thus, for example, reconstructing CB as a function

of L), gives reason to relate such qualifications to classes of such indices.

These considerations open different perspectives on the theoretical and, to some extent, the

future practical relevance of the relationship between average geodetic distance and compact-

ness, for which we have laid a foundation in this paper. This concerns the classification of

nodes, the effects of their deletion and insertion on this classification, the construction of

graph series to study specific elements of the range of values of graph indices, and the evalua-

tion of the information complexity of such indices. In future work, we aim to elaborate these

research perspectives.

Concluding remarks

In this article we proved that for each sequence of simple connected undirected graphs the

limit value of compactness and of the average geodesic distance divided by n, n!1, lies in

the interval [2/3;1] and [0;1/3], respectively. Second, we proved that for every number α 2 [2/

3;1] (β 2 [0;1/3]) one can construct a sequence of simple connected undirected graphs for

which the limit value of compactness (L(G)/n) is exactly α (β). It is worth noting that in order

to construct such a sequence we need only two (classes of) graphs Pm (the least compact) and

Ks (the most compact) connecting them by means of a common vertex and varying the param-

eters s and m accordingly. In this way, we arrive at the interpretation that the structural infor-

mation value of compactness can be reconstructed by instances of two elementary graph

classes. On the one hand, this insight reduces the interpretation load associated with observing
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certain compactness values in real networks, since we consider all complex connected graphs

from the perspective of the fusion of two simpler graph-like building blocks. On the other

hand, our research opens a perspective on the reconstruction of related measures (e.g., central-

ity measures) by analogy with compactness. This leads to a new way of characterizing graph

indices according to their structural information value, or the structural complexity they repre-

sent, by asking for the simplest possible graph classes that allow for the desired decomposition

into graph series. The reason is that the fewer graph classes are needed for such a reconstruc-

tion and the lower their algorithmic complexity (cf. Chaitin:1987), the lower the structural

information value of the corresponding index. To deepen this research perspective in future

work, we will extend our approach to other graph indices to determine the component graph

classes associated with them in the latter sense and the graph series based thereon. This will be

done not only for the purpose of deriving the corresponding index values under the limit per-

spective, but also for the purpose of determining the structural complexity of these indices.
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