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Gutenberg Gait Database, a ground 
reaction force database of level 
overground walking in healthy 
individuals
Fabian Horst   1 ✉, Djordje Slijepcevic   2, Marvin Simak   1 & Wolfgang I. Schöllhorn1

The Gutenberg Gait Database comprises data of 350 healthy individuals recorded in our laboratory 
over the past seven years. The database contains ground reaction force (GRF) and center of pressure 
(COP) data of two consecutive steps measured - by two force plates embedded in the ground - during 
level overground walking at self-selected walking speed. The database includes participants of varying 
ages, from 11 to 64 years. For each participant, up to eight gait analysis sessions were recorded, 
with each session comprising at least eight gait trials. The database provides unprocessed (raw) and 
processed (ready-to-use) data, including three-dimensional GRF and two-dimensional COP signals 
during the stance phase. These data records offer new possibilities for future studies on human gait, 
e.g., the application as a reference set for the analysis of pathological gait patterns, or for automatic 
classification using machine learning. In the future, the database will be expanded continuously to 
obtain an even larger and well-balanced database with respect to age, sex, and other gait-specific 
factors.

Background & Summary
The ability to walk is crucial for human mobility and is closely related to quality of life independent of age and 
sex1–4. The fear of losing the ability to walk is often considered as the most important concern of people after an 
accident or diagnosis, such as stroke5 or Parkinson’s disease6,7, and emphasizes the importance of walking for 
self-determined everyday life. In the healthcare sector, great efforts are made to prevent, diagnose, and rehabili-
tate limitations or even loss of independence due to gait impairments1,3,8. Three-dimensional instrumented gait 
analysis (3DGA) using video- or infrared-based motion capture systems and force plates is frequently used to 
objectively and quantitatively describe human locomotion. Consequently, 3DGA supports clinicians, therapists, 
and researchers in the standardized assessment of gait deviations and the detection of changes caused by ortho-
pedic or physiotherapeutic interventions9,10. An evaluation using instrumented gait analysis is frequently accom-
panied by a large amount of data8,11,12, which are difficult to comprehend due to their multi-dimensional and 
multi-correlated nature13–15. The interpretation of such data can be a challenge even for experienced clinicians. 
Therefore, different approaches have been developed in recent years to facilitate the generation of meaningful 
clinical conclusions from 3DGA data and to support decision-making of clinical experts. Such approaches are 
based on, e.g., gait indexes15, multivariate statistical analysis13, and machine learning (ML)8,11,12,16. The latter are 
able to take into account and combine several time-continuous gait variables at once. These approaches can also 
support more experienced clinicians, whose evaluations are often based on subjective experiences with specific 
patient groups, by providing an objective perspective on the data.

In recent years, several ML-based approaches have been published that can assist clinicians in identifying 
individual gait characteristics17,18 and classifying specific gait patterns into clinically relevant categories16,19, 
e.g., stroke20, Parkinson’s disease21, cerebral palsy22, or specific functional gait disorders23. Although previous 
ML-based approaches provided promising results with respect to classification accuracy, these models have so 
far often been trained and evaluated on relatively small and well-controlled datasets as well as applied to simple 
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classification tasks (e.g., healthy controls vs. Parkinson’s disease). The question of whether it is possible to train 
ML models that meet clinical requirements in terms of robustness, transparency, and generalizability has rarely 
been investigated. This has so far hindered broader clinical application and acceptance of ML models. The avail-
ability of sufficient and high-quality data is an important prerequisite for the training of reliable ML models. 
However, the availability of 3DGA data is often a limitation in practice. Among other authors24,25, we also made 
3DGA data available to the public26–30 in previous studies17,31–34. However, different data processing procedures 
and data structures were used in these studies, making collaborative use of the data difficult. In recent years, a 
rather small number of annotated large-scale datasets have been made publicly accessible35. Publicly available 
datasets can be used to train more robust models. In practice, even with a large-scale dataset, such as GaitRec35, 
data from individuals without gait pathology (healthy controls) represent a bottleneck. One reason for the scar-
city of such data is that most gait analysis laboratories are located at clinics and usually record and examine only 
patients with pathological gait patterns.

In order to address this shortcoming, we provide - with the Gutenberg Gait Database - the gait data from healthy 
controls collected in our laboratory over the past seven years. The data is provided in a uniform format to allow for 
a continuously growing and publicly accessible database. The overall goal is to bridge existing gaps in publicly avail-
able gait datasets. Thereby, we aim at creating a basis for reliable ML models that can be used as decision-support 
system in clinical practice and research. Based on this goal, we prepared the processed data in such a way that it 
can be merged and used in conjunction with the GaitRec dataset35. In addition, the size and quality of the database 
allow it to serve as an extension of the study population in gait-related research areas, e.g., shoe and insole research36, 
security systems based on biometric recognition37, gait-based fatigue38 and emotion39 detection in psychological and 
sport-related contexts. In this setting our database can be used in various ways, e.g., as reference data or as source for 
automatic outlier detection. From a more epistemological point of view, the continuously growing database will also 
allow increasing flexibility in dealing with much more diverse questions related to human gait. Questions concern-
ing population-motivated research40, problems of specific groups41, or the complexity of individual case-oriented 
time series31,32 will be put on a broader data-based foundation over time.

The Gutenberg Gait Database provides exclusively force plate data, namely ground reaction force (GRF) and 
center of pressure (COP) signals. The current best practice in clinical gait analysis describes a patient’s gait using 
a combination of force plate data with kinematic and electromyographic data. However, kinematic and electro-
myographic data are prone to several difficulties, such as inconsistencies due to differences in anthropometric 
characteristics of participants, experience of investigators, measurement protocols, and laboratory settings42–44. 
This makes it more difficult to create a homogeneous, large-scale, and high-quality dataset compared to using less 
interference-prone data, such as GRF signals45,46. Therefore, the use of force plate data offers advantages for the 
development of ML models for gait analysis, although the provided information appears to be reduced in com-
parison to kinematic data. However, previous studies23,47 investigating ML methods for automated classification 
of gait impairments based on force plate data showed promising results suggesting their suitability for clinical 
applications.

Methods
Datasets.  The Gutenberg Gait Database combines datasets from five already published studies on human 
gait17,31–34 and data from five unpublished studies. A total sample of 350 participants (142 female, 205 male, and 
3 unknown) aged between 11 and 64 years is included. Prior to the recording, all participants reported that they 
did not have any gait pathology and were not suffering from any injuries or diseases that affected gait. Table 1 
summarizes demographic details for each individual dataset and the total database. Figure 1 shows the overall and 
sex-specific distributions of age, body mass, body height, and walking speed for the database.

All studies (published and unpublished) were carried out according to the Declaration of Helsinki at the 
Johannes Gutenberg-University in Mainz (Germany). All participants were informed about the experimental 
protocol and provided their written informed consent to participate in the study. The approval from the ethical 
committee of the medical association Rhineland-Palatinate in Mainz (Germany) was received.

Dataset ID N Sex (male/female)
Age (years) 
Mean (SD)

Body Mass (kg) 
Mean (SD)

Body Height 
(m) Mean (SD)

Horst et al. (2016)31 1 8 2/6 23.3 (2.4) 65.9 (8.0) 1.73 (0.07)

Horst et al. (2017)33 2 9 6/3 27.4 (3.0) 73.2 (13.3) 1.74 (0.11)

Horst et al. (2017)32 3 128 76/52 23.8 (9.0) 71.3 (13.0) 1.77 (0.08)

Horst et al. (2019)17 4 57 28/29 23.1 (2.7) 67.9 (11.3) 1.74 (0.10)

Burdack et al. (2020)34* 5 33 14/19 25.1 (6.7) 65.1 (9.6) 1.71 (0.09)

Unpublished Study 1 6 38 38/0 28.0 (10.8) 78.2 (9.7) 1.81 (0.04)

Unpublished Study 2 7 26 26/0 24.7 (2.9) 79.8 (8.8) 1.82 (0.07)

Unpublished Study 3 8 25 0/25 23.3 (4.2) 62.6 (7.6) 1.67 (0.05)

Unpublished Study 4 9 23 15/8 24.0 (2.5) 69.1 (10.5) 1.77 (0.10)

Unpublished Study 5 10 3 — — 72.4 (7.8) —

Total 10 350 205/142 24.2 (7.0) 70.7 (12.0) 1.76 (0.09)

Table 1.  Demographic details of individual datasets and the total database. *For dataset 2 and dataset 5 the 
experimental protocol was identical. In the analysis conducted by Burdack et al. (2020)34, the data from both 
datasets were analysed together.
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Data recording & Experimental protocol.  Bi-lateral analog force plate signals were recorded by asking 
participants to walk at their preferred (self-selected) walking speed on a level and approximately 10 m long walk-
way. Two force plate configurations were used: (i) an inline configuration using two centrally embedded force 
plates (Kistler, Type 9287CA, Switzerland) and (ii) a staggered configuration using two force plates (Kistler, Type 
9286AA, Switzerland) integrated in a wooden walkway.

For both force plate configurations, the analog force plate signals were amplified (Kistler, Type 5233 A, 
Switzerland) and converted to digital signals using a sampling frequency of 1,000 Hz. A data acquisition system 
(Kistler, Type 5695, Switzerland) with a 16-bit analog-digital converter (Measurement Computing Corporation, 
Type USB-2533, USA) was used with a signal input range of ±10 V. Depending on the underlying experimental 
protocol, the walking speed was either estimated using (i) two light barriers with two photoelectric sensors (Imhof 
Timing, Germany) at a sampling frequency of 1,000 Hz or (ii) the three-dimensional pelvis marker trajectories cap-
tured by nine infrared cameras (Qualisys AB, Type Oqus 310, Sweden) at a sampling frequency of 250 Hz.

Participants were asked to perform gait trials to familiarize with the experimental setup and to determine an 
individual starting position for the gait analysis session. The number of familiarization trials differed between the 
experimental protocols. The exact number is specified for each study in Table 2. This procedure has already been 
shown to minimize the impact of targeting the force plates on the observed gait variables48,49. In addition, the 
participants were instructed to look at a symbol (neutral smiley) on the opposing wall of the laboratory to direct 
their attention away from the force plates and ensure a natural walk with an upright body position.

During one gait analysis session, participants walked until a predefined number of valid gait trials were availa-
ble. These gait trials were defined as valid by the assessor if the participant walked “naturally” (e.g., with respect to 
force plate targeting) and both force plates were hit cleanly. The predefined number of gait trials per session varied 
between the experimental protocols and ranged from 8 to 20 gait trials. The exact number for each experimental 
protocol is specified in Table 2. Depending on the experimental study design, one to eight gait analysis sessions 
were recorded per participant.

Fig. 1  Frequency distribution of age, body mass, body height, and walking speed for all (upper panel), female 
(middle panel), and male (lower panel) participants. The distributions are based on the values of the initial session 
of each participant. For the waking speed, the mean values of the gait trials of the initial session are shown.
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Data processing.  The three-dimensional GRFs (vertical, anterior-posterior, and medio-lateral) and the 
two-dimensional COPs (anterior-posterior and medio-lateral) were calculated based on the analog force plate 
signals. The database provides unprocessed (raw) and processed (ready-to-use) GRF and COP signals during 
the stance phase. The data processing procedure was coordinated with Horsak et al.35 so that the processing of 
the data in the Gutenberg Gait Database is identical to the GaitRec dataset. Thereby, we were able to prevent the 
obstacles that often exist in practice when using different datasets jointly. The main benefit for the community is 
the combined use of both data sources. We have, thus, eliminated a major disadvantage of the GaitRec dataset, 
namely ensuring that the number of healthy control participants is no longer a bottleneck.

For both settings, i.e., unprocessed and processed data, following pre-processing steps were performed. The 
offset of each analog force plate signal was corrected using the mean value of the first ten frames. The analog force 
plate signals were down-sampled to 250 Hz. The orientation of the medio-lateral and anterior-posterior GRF and 
COP signals were unified. Thus, medial and anterior forces were transformed to positive and lateral and posterior 
to negative values.

For the unprocessed (raw) data, we determined the signals in the following way. The stance phase was deter-
mined using a vertical GRF threshold of 25 N. The cropped GRF signals of the stance phase were used to calculate 
the COP signals.

Dataset ID
Force Plate 
Configuration

Walking Speed 
Estimation Method

Gait Analysis 
Sessions

Familiarization 
Trials

Gait Trials 
per Session

Total Number of 
Gait Trials

Horst et al. (2016)31 1 inline infrared cameras 8 20(4)** 15 949

Horst et al. (2017)33 2 inline infrared cameras 6 20(5)** 15 806

Horst et al. (2017)32 3 staggered light barriers 1(2)* 5 10 1,737

Horst et al. (2019)17 4 inline infrared cameras 1 20 20 1,130

Burdack et al. (2020)34 5 inline infrared cameras 6 20(5)** 15 2,959

Unpublished Study 1 6 inline — 1 10 10 377

Unpublished Study 2 7 staggered light barriers 1 5 8 233

Unpublished Study 3 8 inline — 1 10 15 374

Unpublished Study 4 9 inline infrared cameras 1 5 10 231

Unpublished Study 5 10 inline — 1 5 8 23

Total 10 mixed mixed 1–8 5–20 8–20 8,819

Table 2.  Data recording and experimental protocol details of the individual datasets. *Forty-seven out of one 
hundred and twenty-eight participants attended a second gait analysis session. **Numbers in parentheses 
() represent the number of familiarization trials performed by participants before follow-up sessions in 
experimental protocols with repeated gait analysis sessions.

Variables Associated file Format Dimension Unit Description

Vertical GRF GRF_F_V-RAW_*.csv double 1 × n Newton Unprocessed vertical ground 
reaction force

Anterior-posterior GRF GRF_F_AP-RAW_*.csv double 1 × n Newton Unprocessed breaking and 
propulsive shear force

Medio-lateral GRF GRF_F_ML_RAW_*.csv double 1 × n Newton Unprocessed medio-lateral 
shear force

COP anterior-posterior GRF_COP_AP_RAW_*.csv double 1 × n Meter Unprocessed COP coordinate 
in walking direction

COP medio-lateral GRF_COP_ML_RAW_*.csv double 1 × n Meter Unprocessed COP coordinate 
in medio-lateral direction

Vertical GRF GRF-F_V_PRO_*.csv double 1 × n Multiple of body weight Processed vertical ground 
reaction force

Anterior-posterior GRF GRF_F_AP_PRO_*.csv double 1 × n Multiple of body weight Processed breaking and 
propulsive shear force

Medio-lateral GRF GRF-F_ML_PRO_*.csv double 1 × n Multiple of body weight Processed medio-lateral 
shear force

COP anterior-posterior GRF_COP_AP_PRO_*.csv double 1 × n Meter Processed COP coordinate in 
walking direction

COP medio-lateral GRF_COP_ML_PRO_*.csv double 1 × n Meter Processed COP coordinate in 
medio-lateral direction

Walking Speed GRF_walking_speed.csv double 1 × n m
s

Measured walking speed

Table 3.  Description of the data stored in the “GRF_*.csv” files. “*” for the associated file name is a 
placeholder for “right” and “left” (adapted from Horsak et al.35). n is either the number of frames during one 
step across the force plate for the unprocessed data (“RAW”) or a time-normalized vector of 101 points for the 
processed (“PRO”) data. Note that the first four columns of each file hold the DATASET_ID, SUBJECT_ID, 
SESSION_ID, and TRIAL_ID.
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For the processed (ready-to-use) data, we filtered the GRF signals using a second-order Butterworth bidirec-
tional low-pass filter at a cut-off frequency of 20 Hz. The stance phase was determined based on the filtered GRF 
signals using a vertical GRF threshold of 25 N. For the processed COP signals, we filtered the unprocessed (raw) 
COP signals as well with a second-order Butterworth bidirectional low-pass filter at a cut-off frequency of 20 Hz. 
Furthermore, we cropped the filtered COP signals with a vertical GRF threshold of 80 N to avoid artifacts in 
COP calculation at small GRF signal values. In addition, the medio-lateral COP signals were mean-centered and 
anterior-posterior COP signals zero-centered. Each GRF and COP signal was time-normalized to 101 data points, 
corresponding to 100% stance phase. The GRF signals were normalized to the body weight, measured before each 
gait analysis session. The whole data processing was performed within the Matlab 2019a (The MathWorks, Inc., 
Natick, Massachusetts, USA) framework.

Data Records
All published data are fully anonymized and are available online from figshare50. As already pointed out, we 
decided to follow the data processing procedure and data structure as well as the naming of the files accord-
ing to the GaitRec dataset35. The data records consist of twenty files containing the GRF data for each gait trial 
(see Table 3) and one file containing the measured walking speed for each gait trial. In addition, we provide 
one file containing metadata for each gait analysis session, including additional participants’ information, e.g., 
class label, sex, age, body mass. All files are available as comma-separated value files (.csv). The twenty GRF 
data files are organized according to the following naming convention: “GRF-type-processing-side.csv”. The type 
denotes, whether the file holds the vertical (“F_V”), anterior-posterior (“F_AP”), medio-lateral (“F_ML”) or the 
anterior-posterior or medio-lateral COP (“COP_AP”, “COP_ML”) time-series. Processing denotes, if the files 
hold the unprocessed (raw) data (“RAW”) or the processed (ready-to-use) data (“PRO”). The side denotes, if the 
data are from the “left” or “right” body side. The common prefix for all files is “GRF-”. An example filename 
is: “GRF_F_V_RAW_left.csv”.

Each of the “GRF-type-processing-side.csv” files is structured as a matrix with T rows × K columns (T = 8,819; 
K = 105 for “PRO” and K = 216 for “RAW”). Each row holds the data of one gait trial. The first column identifies 
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Fig. 2  Visualization of vertical (left panel), anterior-posterior (central panel), and medio-lateral (right panel) 
force components of the body weight (BW)-normalized GRF measurements per dataset. Mean and standard 
deviation signals (calculated per dataset) are highlighted as solid and dashed colored lines.
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each dataset (“DATASET_ID”), the second column each participant (“SUBJECT_ID”), the third column each 
gait analysis session (“SESSION_ID”), and the fourth column each single gait trial within a session (“TRIAL_
ID”). The remaining columns contain the values of the GRF signals for each gait trial. Note that due to the 
non-normalized nature of the data and the resulting different time-series lengths in the “RAW” files, non-available 
numbers have been replaced by “NaN” to maintain a constant matrix-dimension.

The file holding the measured walking speed for each gait trial is named “GRF_walking_speed.csv”. The 
file is structured as a matrix with T rows × L columns (T = 8,819; L = 5). Each row holds the data of one gait trial. 
The first column identifies each dataset (“DATASET_ID”), the second column each participant (“SUBJECT_
ID”), the third column each gait analysis session (“SESSION_ID”), and the fourth column each single gait 
trial within a session (“TRIAL_ID”). The fifth column contains the measured walking speed for each gait trial 
(“WALKING_SPEED”). The walking speed was not measured in datasets 6, 8, and 10. Non-available numbers 
have been replaced by “NaN” to maintain a constant matrix-dimension.

The metadata file, which contains additional participant and session-related information is named “GRF_
metadata.csv” (see Table 4). The file is structured as a matrix with S rows × M columns (S = 661; M = 21). 
Here, the first three columns hold the DATASET_ID, SUBJECT_ID, and SESSION_ID, the other columns 
hold information such as sex, body mass, and age (see Table 4 for more details). Non-available numbers have been 
replaced by “NaN” to maintain a constant matrix-dimension.

Technical Validation
The force plates and the measurement equipment were calibrated by the manufacturer (Kistler, Switzerland) 
and regularly checked and serviced during laboratory practice. No specific procedure (e.g., such as the CalTester 
method) was used.

In addition, on each day when measurements were conducted, the proper functioning of the force plates and 
measuring equipment was ensured by the following procedure: (i) A 30 s recording without load on the force 
plates was taken and ensured that the signal noise was below ±1 N. (ii) The assessor performed a weight measure-
ment to verify the proper amplification of the analog channels. (iii) The assessor walked along the 10 m analysis 
walkway with one foot contact on each force plate and verified that the GRF signals showed the characteristic 
curves.

For an impression of data integrity, the processed data for each dataset is shown in Fig. 2 (GRF) and Fig. 3 
(COP).

Categories/Variables Format Unit Description

Identifiers

DATASET_ID integer — Unique identifier of a dataset

SUBJECT_ID integer — Unique identifier of a participant

SESSION_ID integer — Unique identifier of a gait analysis session

Labels

CLASS_LABEL* string — Annotated class labels

CLASS_LABEL_DETAILED* string — Annotated class labels for subclasses

Participant Metadata

SEX binary — female = 0, male = 1

AGE integer years Age at recording date

HEIGHT integer centimeter Body height in centimeters

BODY_WEIGHT double kg m

s2
Body weight in Newton

BODY_MASS double kg Body mass

SHOE_SIZE double EU Shoe size in the Continental European System

AFFECTED_SIDE* integer — left = 0, right = 1, both = 2, none = NaN

Trial Metadata

SHOD_CONDITION* integer — barefoot & socks = 0, normal shoe = 1, orthopedic shoe = 2

ORTHOPEDIC_INSOLE* binary — without insole = 0, with insole = 1

SPEED* integer — slow = 1, self-selected = 2, fast = 3 walking speed class

READMISSION* integer — indicates the number of readmission = 0 L n

SESSION_TYPE* integer — initial = 1, control = 2, initial after readmission = 3

SESSION_DATE string — date of gait analysis session in the format “DD-MM-YYYY hh:mm”

Train-Test Split Information

TRAIN* binary — is part ( = 1) or is not part ( = 0) of TRAIN

TRAIN_BALANCED* binary — is part ( = 1) or is not part ( = 0) of TRAIN_BALANCED*

TEST* binary — is part ( = 1) or is not part ( = 0) of TEST

Table 4.  Description of the information stored in the metadata file (adapted from Horsak et al.35). *The 
metadata items highlighted by an asterisk were included primarily to ensure a consistent data structure between 
the Gutenberg Gait Database and the GaitRec dataset35.

https://doi.org/10.1038/s41597-021-01014-6


7Scientific Data |           (2021) 8:232  | https://doi.org/10.1038/s41597-021-01014-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

Usage Notes
The data are stored in *.csv files and can be easily imported into any software framework for further data anal-
ysis. We provide two scripts that allow a straightforward data import for Matlab (The MathWorks, Inc., Natick, 
Massachusetts, United States, 2019a) and Python (Python Software Foundation, 3.7). Additionally, two scripts 
(for Matlab and Python) are available for merging the GaitRec dataset35 and the Gutenberg Gait Database. For the 
GaitRec dataset the DATASET_ID is set to 0. Since the metadata files and the data files have the same structure, 
a simple consolidation can be achieved. The GaitRec dataset has a bottleneck in terms of healthy control partic-
ipants. Merging the two datasets can compensate for this limitation and allow the data to be much more useful 
for future research. Merging the two data sources would increase the number of healthy controls from 211 to 561, 
which approximately corresponds to the cardinality of the gait disorder classes: hip (N = 450), knee (N = 625), 
ankle (N = 627), calcaneus (N = 382).
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Fig. 3  Visualization of zero-centered anterior-posterior (left panel) and mean-centered medio-lateral (right 
panel) components of the COP measurements per dataset. Mean and standard deviation signals (calculated per 
dataset) are highlighted as solid and dashed colored lines. We carefully inspected the gait trials where the signals 
differed considerably and made sure that these differences were not the result of measurement or calculation 
errors. Using the kinematic data, we were able to verify that the deviating signals were from gait trials of forefoot 
or midfoot walking participants.
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Code availability
A custom script for tracing and replicating the used processing of the force plate data in Matlab (The MathWorks, 
Inc., Natick, Massachusetts, United States, 2019a) and custom scripts for importing and merging (with the 
GaitRec dataset) the data in Matlab (The MathWorks, Inc., Natick, Massachusetts, United States, 2019a) and 
Python (Python Software Foundation, 3.7) are publicly available at figshare50.
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