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IntrodUctIon

Epigenetics refers to inherited changes in gene expression 
but not altering the DNA sequence. Aberrant DNA 
methylation is one of the critical events in epigenetics and 
also plays an important role during tumorigenesis.[1] DNA 
methylation at the fifth carbon (5-methylcytosine [5mC]) 
is a covalent biochemical modification, which mostly is 
located at the position of cytosine‑phosphate‑guanine (CpG) 
dinucleotides.[2] This process is catalyzed by DNA 
methyltransferases (DNMTs) in the presence of a methyl 
donor S‑adenosylmethionine.[3] DNA methylation has 
a pivotal effect on gene expression stability and always 
occurs in repetitive genomic regions that are associated with 
gene transcriptional repression and genomic stability.[1,4] 
During tumorigenesis, the pattern of DNA methylation 
is broken which exhibits global hypomethylation and 

regional aberrant hypermethylation coexisting. These disturb 
genomic stability and lead to aberrant regulation of gene 
expression [Figure 1].[5]

It was not until 2009 that 5‑hydroxymethylcytosine (5hmC) 
as an intermediate base in the process of DNA demethylation 
was unambiguously identified.[6] At the same time, it was 
reported that ten‑eleven translocation (TET) proteins, the 
mammalian paralogs of trypanosome proteins J‑binding 
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protein 1 (JBP1) and JBP2 containing three members (TET1, 
TET2, and TET3), could convert 5mC to 5hmC depending 
on their dioxygenase activity.[7] These findings opened a new 
era of understanding mammalian epigenetics and proposed 
5hmC as the “sixth” base, which is stable and ubiquitous 
in human genome, as well as 5mC.[8] In a variety of human 
malignancies, it is reported that the abnormal expression 
of TET proteins is always accompanied by a decrease in 
5hmC.[9‑11] In this review, we discussed the function of TET1 
and its role in tumorigenesis.

strUctUre of ten‑eleven translocatIon 
ProteIns

Among the three TET protein members, TET1 was the 
first to be identified as a mixed lineage leukemia (MLL) 
translocation partner gene in patients with acute myeloid 
leukemia harboring t(10;11)(q22;q23).[12] The TET protein 
family, as a subfamily of 2‑oxoglutarate (2‑OG) oxygenase 
catalyzers, includes a catalytic domain (CD) that harbors a 
double‑stranded β‑helix fold and a cysteine‑rich domain. 
The dioxygenase activity of the CD is dependent on Fe2+ and 
2‑OG. At the amino terminal of TET1 and TET3, there is 
a CXXC-type zinc finger domain that can bind DNA at the 
CpG site.[13] However, different from that of TET1 and TET3, 
the CXXC domain of TET2 is encoded by a distinct gene, 
IDAX [Figure 2].[7,13]

It is reported that the CD of TET1 plays a key role in 
DNA demethylation, but the function of the CXXC 
domain is underestimated.[14] Recent studies have 
reported that overexpression of TET1‑CD causes 
global DNA demethylation while overexpression of 
TET1 full‑length (TET1‑FL) showed only mild DNA 
demethylation. These different results may be related 
to the preference of the CXXC domain, which targets 
nonmethylated CpG‑dense regions to limit TET1 
demethylation activities because of the rare nature of the 
substrate 5mC. Once the TET1 protein is overexpressed, 
the excess proteins may target the hypermethylation 
region and the less CpG‑dense region to induce mild DNA 
demethylation.[15,16] Therefore, the demethylation activity of 
TET1 is associated with the genomic status of methylation. 

However, the exact site of TET1 during demethylation is 
still unclear.

ten‑eleven translocatIon 1 and dna 
deMethylatIon

Ten‑eleven translocation 1 and active demethylation
There are two pathways involved in DNA demethylation: one 
is replication‑dependent demethylation, known as “passive 
demethylation,” and the other is TET enzyme‑induced “active 
demethylation.” Through the function of dioxygenase activity, 
TETs could iteratively oxidize 5mC to generate 5hmC, and 
then 5‑formylcytosine (5fC) and 5‑carboxylcytosine (5CaC). 
On the other hand, thymine‑DNA glycosylases can either 
decarboxylase 5fC or decarboxylase 5caC and replace it 
with an unmodified cytosine through DNA base excision 
repair enzymes, which finally complete a cycle of dynamic 
cytosine removal [Figure 3].[14,17,18]

Ten‑eleven translocation 1 and hypomethylation status
Apart from induced DNA active demethylation, TET1 
could prevent methylation spreading through maintenance 
of DNA hypomethylation status.[19] It is well established 
that CpG dinucleotide islands (CGIs) are referred to a 
dense CpG content that generally lacks DNA methylation 
while the rest tend to be hypermethylated including the 
dispersed CpGs in gene coding regions and the CpG‑rich 
repetitive heterochromatin regions.[20] Through the CXXC 
binding domain, TET1 prefers to bind hypomethylated, 
high CpG‑dense regions (such as CGIs, gene promoters) 
to prevent DNMT activity and inhibit DNA methylation.[21] 
TET1 also binds to dispersed CpGs, which are always 
methylated in euchromatin and catalyze 5mC to 5hmC, 
limiting the accessibility of DNMTs or methyl‑binding 
proteins (MBPs).[20] Indeed, the overexpression of TET1‑FL 
increased 5hmC accumulation, especially at the edge of 
hypomethylated CGIs, while depletion of TET1 increased 
the spreading of DNA methylation from the edges of 
methylated regions into hypomethylated CGIs. Meanwhile, 

Figure 1: Aberrant DNA methylation regulates gene expression. 
During tumorigenesis, the pattern of DNA methylation is disturbed. 
The promoter of tumor suppressor genes always tends to be 
hypermethylated, resulting in the suppression of gene transcription. 
However, hypomethylation exists in the oncogene’s promoter, which 
finally leads to aberrant gene expression.

Figure 2: Structure of TET proteins. TETs include a CD that harbors 
a DSBH domain and a Cys‑rich domain. At the amino terminal of 
TET1 and TET3, there is a CXXC‑type zinc finger domain. The CXXC 
domain of TET2 is encoded by a distinct gene, IDAX. TET: Ten‑eleven 
translocation; CD: Catalytic domain; DSBH: Double‑stranded β‑helix; 
Cys‑rich: Cysteine‑rich.
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overexpression of TET1‑FL reduced the DNA methylation 
levels in dispersed hypermethylated CGIs and showed 
mild DNA demethylation in genome.[19] These results 
illustrated that besides demethylation activity, TET1 could 
facilitate gene expression through maintenance of DNA 
hypomethylation status at their targets [Figure 4].

Distinct catalytic activity between ten‑eleven 
translocation proteins
Although TET proteins act as dioxygenase to modulate DNA 
methylation status, each TET has a different function in 
building genome‑wide 5mC and 5hmC pattern. In a model 
of pluripotent embryonic carcinoma cell, depletion of TET1 
contributed to widespread 5hmC reduction while TET2 and 
TET3 depletion decreased 5hmC at a subset of TET1 targets. 
These results showed the redundant roles of TET proteins 
in modulating the methylation pattern.[22]

There was also a tendency to target the loci of TET1, which 
has prominent affinity for high CpG density promoters, while 
TET2, especially at low CpG density promoters, tended to 
maintain 5hmC.[15,23] It is evident that 5hmC was enriched in 
distal regulatory regions and gene bodies, such as enhancers, 
exons, and introns.[24,25] When depletion of TET2 or TET3 
took place unexpectedly, there was an accumulation of 
5hmC, particularly in introns of highly expressed genes.[23] 
One explanation for this is that in the demethylation cascade 
reaction, TET2 and TET3 may be mainly involved in the 
formation of downstream cytosine intermediates (5fC and 
5CaC). Once the function of TET2 or TET3 is disrupted, 
5hmC accumulated in many regions of the genome. Given 
that 5hmC mainly accumulates in introns, these results might 
indicate that 5hmC removal from introns is partly due to the 
demethylation function of TET2 and TET3.[13,15,23]

Although the TET protein family is essential for genomic 
methylation pattern, the exact function of each TET protein 
in regulating the 5hmC level is still unclear. It is also 
ambiguous how each TET protein recognizes its target region 
and specifically binds to the DNA sequence. The impact of 
this process on gene splicing fidelity and the rate of gene 
transcription are still elusive.

5‑hydroxyMethylcytosIne In hUMan solId tUMor

Similar to 5mC, a depletion of genomic 5hmC has been 
widely reported in cancerous tissues of the prostate, 
breast, and colon compared with normal tissues.[16] Loss 
of 5hmC content has been further confirmed in a broad 
spectrum of solid tumors, such as in cancerous tissues of 
colon/rectum,[8,26] stomach,[26] parathyroid,[27] liver,[9,28,29] 
lung, pancreas, breast, and prostate.[9,29] In solid cancers, 
the low level of 5hmC is associated with poor prognostic 
outcomes and the reduction may be one of the causes 
for the high cumulative recurrence in hepatocellular 
cancer.[28,30] Many studies have reported that the reduction 
of 5hmC in solid tumors is mainly due to the loss of TET1 
expression.[26,31] However, downregulation of TET1 is not 
always accompanied by depleted 5hmC content. It is likely 
that the level of 5hmC is affected by multiple mechanisms, 
including suppression of TET1 and overexpression of 
DNMT.[32]

5hmC not only serves as an intermediate base during DNA 
demethylation but also plays a potential role in epigenetic 
regulation. Previous studies had shown that 5hmC could 
interact with proteins such as the methyl‑CpG‑binding 
domain protein 3, Uhrf1, and MeCP2 and finally influence 
the chromatin structure and gene expression.[33] Kafer et al. 
had reported that 5hmC could localize to DNA damage sites 
and promote genome stability.[34] This finding may explain 
the relationship between low 5hmC levels and cancer. 

Figure 3: DNA methylation cycle. DNMTs catalyze cytosine to generate 
5mC. TET proteins can iteratively oxidize 5mC to 5hmC, 5fC, and 5CaC. 
TDG can decarboxylase either 5fC or 5caC and replace it with an unmodified 
cytosine through BER, which finally completes a cycle of dynamic 
cytosine removal. DNMTs: DNA methyltransferases; TET: Ten‑eleven 
translocation; 5mC: 5‑methylcytosine; 5hmC: 5‑hydroxymethylcytosine; 
5fC: 5‑formylcytosine; 5caC: 5‑carboxylcytosine; TDG: Thymine DNA 
glycosylase; BER: Base excision repair. This figure was modified based 
on the work of Shen et al.

Figure 4: TET1 maintains hypomethylation status. Through the CXXC 
domain, TET1 binds to hypomethylated, high CpG‑dense regions 
to prevent DNMT’s activity and resist methylation. TET1 also binds 
to dispersed CpGs, limiting the accessibility of DNMTs or MBDs. 
MBDs: Methyl‑binding proteins; TET1: Ten‑eleven translocation 1; 
CpG: Cytosine‑phosphate‑guanine; DNMTs: DNA methyltransferases.
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However, little is known about the mechanism of 5hmC 
recognition and the reader of 5hmC.

regUlatIon of ten‑eleven translocatIon 1 by 
MIcrorna
MicroRNAs (miRNAs) are small noncoding RNAs, only 
20–22 nucleotide long, that regulate gene expression at 
the posttranscriptional level and have important roles 
in tumor formation and progression.[35] Zhang et al. had 
reported that TET1 was the direct target of miR‑29a through 
3’‑untranslated region.[36] Further studies have confirmed 
that the miR‑29 family regulated active DNA demethylation 
through direct interaction with TET1 in diverse solid 
tumors.[37,38] Lin et al. had shown that a negative feedback 
of miR‑29‑TET1 was involved in hepatocellular cancer 
development.[39] Moreover, miR‑29b could be induced by 
mitogen‑activated protein kinase (MAPK)‑driven ETS1 
expression and might lead to TET1 downregulation, which 
results in the change of epigenetic modification.[40]

In addition to the miR‑29 family, there are other miRNAs 
involved in TET1 regulation. MiR‑26a can target TET1 to 
inhibit its expression, which is accompanied by a change 
of 5hmC levels.[41] TET1 was also found to be the target of 
miR‑767 whose aberrant activation contributed to decreased 
TET1 activity during tumorigenesis.[42] In hepatocellular 
carcinoma, miR‑494 was upregulated and repressed TET1 
expression, which led to tumor vascular invasion.[43] 
Furthermore, TET1 was the direct target of miR‑520b. In 
hepatocellular cancer, miR‑520b repressed cell proliferation 
by decreasing the expression of TET1.[44] However, in this 
process, TET1 may act as an oncogene, which is different 
from the observation of previous studies.

It is not just that TET1 could be regulated by miRNAs 
but TET1 could also regulate the miRNA level through its 
demethylation activity.[39,45] Hence, it is complex and critical 
to comprehend the regulation mechanisms that orchestrate 
transcriptional regulation and posttranscriptional regulation 
during tumor development and progression.

MUltIPle fUnctIons of ten‑eleven 
translocatIon 1
Ten‑eleven translocation 1 in embryonic stem cells
During early embryonic development, genome‑wide DNA 
demethylation has been observed, as well as hypomethylated 
housekeeping and developmental gene promoters.[22,46] 
Many works have proven that TET1 is highly expressed 
in embryonic stem cells (ESCs) and responsible for 5hmC 
maintenance.[47‑49] TET1 is also the key enzyme to maintain 
ESC and induce pluripotent stem cells, which shows its 
essential role in stemness circuits.[50] TET1 depletion would 
repress the expression of pluripotency factors Oct4, Nanog, 
and Sox2 through its demethylation activity and finally 
lead to ESCs differentiation.[49] Furthermore, Neri et al. 
showed that TET1 was also regulated by the factors Oct3/4, 

Nanog, and Myc.[48] Thus, the integration of TET1 into the 
pluripotency transcriptional network may help understand 
the molecular regulation of ESC development.

Besides promoting gene expression, TET1 also contributes 
to transcriptional repression in ESCs. In mouse ESCs, 
TET1 could repress the expression of developmental 
regulators and somatic lineage differentiation genes, which 
are polycomb‑targeted genes, through the recruitment of 
Polycomb repressive complex 2 (PRC2).[15] Genome‑wide 
analyses in ESCs have shown that 5hmC is enriched at 
regulatory elements such as gene bodies, enhancers, and 
promoters.[51] 5hmC was especially located at the start 
sites of genes whose promoters are marked by H3K27me3 
and H3K4me3.[47] H3K27me3 is the key modification 
in PRC2‑regulated developmental regulators, which are 
associated with low expression. The hypomethylation status 
made sure that TET1 could interact with PRC2 and form a 
PRC2 complex to repress gene expression.[52] Further study 
showed that TET1 was downregulated by PRC2 through 
H3K27me3 histone mark.[48] However, the functional 
interaction between TET1 and PRC2 may be indirect because 
of the failure to coimmunoprecipitate TET1 with PRC2.[15,24] 
Thus, the mechanistic interplay between Tet1 and PRC2 is 
still unclear. Moreover, coimmunoprecipitation uncovered 
that TET1 also bound with Sin3a at nonhydroxymethylated 
transcription start sites to form a repressive complex.[52] 
These studies suggest that TET1 contributes to epigenetic 
plasticity throughout development and differentiation.

Dual functions of ten‑eleven translocation 1 during 
tumorigenesis
Ten‑eleven translocation 1 suppresses tumorigenesis
Decreased expression of TET1 has been reported in multiple 
malignancies.[26,53,54] Although depletions, frame shifts, and 
nonsense/missense somatic mutations of TET2 were found in 
myelodysplastic syndromes, myeloproliferative neoplasms, 
and leukemia,[55‑57] loss‑of‑function mutations of TET1 are 
rarely reported in hematological system diseases as well as 
in solid tumors.[7,46] Besides mutations, decreased expression 
of TET1 had been reported in a variety of solid cancers, 
which was accompanied by a reduction of global 5hmC and 
accumulation of aberrant DNA methylation.[9‑11,30,53,58] These 
suggested that the change of TET1 in tumor tissues made a 
great contribution to carcinogenesis and tumor progression.

Recent studies have shown that TET1 was significantly 
decreased in colorectal tumor tissues compared with 
normal tissues.[53] Neri et al. reported that TET1 silencing 
was correlated with the proliferation of cancer cells and 
promoted the growth of tumor xenografts even at later 
stages. This process was due to the dioxygenase activity of 
TET1. Through binding to the DKK gene inhibitors of the 
WNT signaling, TET1 could maintain the hypomethylation 
of target genes. Loss of TET1 led to the inactivation of 
the inhibitors of the WNT pathway by hypermethylation, 
resulting in a cascade activation of the WNT pathway and 
finally increased cellular proliferation.[59]
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Ichimura et al. reported that TET1 was silenced by DNA 
methylation, which was an early event in CpG island 
methylator phenotype (CIMP) carcinogenesis and more 
frequent with CIMP‑positive (CIMP‑P) than CIMP‑negative 
patients. CIMP‑P is a subgroup of colorectal cancer (CRC) 
that shows multiple methylated CpG islands.[54,60] Therefore, 
CIMP is a critical molecular feature in the regulation of specific 
gene expression, particularly transcription factor, and also 
presents characteristic manifestations during tumor initiation 
and progression.[61,62] In CIMP‑mediated tumorigenesis, 
TET1 was inactivated through hypermethylation even in 
precancerous tissue, which was associated with a large 
number of methylated genes and less metastasis.[54] Given 
that CIMP could be used as a biomarker in response to 
therapy and treatment outcomes, TET1 methylation may be 
used as a novel target in cancer treatment.[62]

Furthermore, Wu et al. showed that suppression of 
TET1 expression was essential in KRAS‑induced tumor 
transformation. KRAS protein is a member of the 
RAS proteins family, which is indispensable for cell 
proliferation, differentiation, and survival.[63,64] Hyperactive 
RAS will drive cellular transformation and promote cell 
proliferation through the activation of RAF–MEK–ERK 
and phosphatidylinositol‑3‑kinase–AKT cascades.[65] Studies 
have shown that ERK pathway activation would silence the 
tumor suppressor genes by hypermethylating their promoters 
through repressed TET1 expression[63] and elevated 
DNMT transcription.[64,66] These processes finally led to 
malignant transformation and promoted cell proliferation. 
On restoration of the TET1 level in KRAS‑transformed 
cells, tumor suppressor genes were reactivated and colony 
formation was inhibited.[63] Therefore, TET1‑dependent 
demethylation plays an important role in KRAS‑mediated 
transformation.

In addition to promoting cell proliferation, decreased 
expression of TET1 also facilitated cell invasion and 
cancer metastasis in certain tumors through its dioxygenase 
and DNA‑binding activities.[9,11,58,67] Hsu et al. reported 
that TET1 inhibited tumor invasion in prostate and 
breast cancers through maintenance of the level of tissue 
inhibitors of metalloproteinase (TIMP) family proteins 2 
and 3. TIMPs are the endogenous regulators of the matrix 
metalloproteinase (MMP) proteins.[11,68] MMPs are key 
players in the regulation of cell invasion.[69] TIMP proteins 
are the inhibitors of MMPs through interacting with MMPs 
or decreasing the level of MMPs and finally alleviating cell 
invasion.[11,68,69] Through binding to CpG‑rich regions of 
TIMP2/3, TET1 facilitated the expression of TIMP2/3 by its 
dioxygenase activity through repression of DNA methylation 
and suppressed tumor progression and invasion.[11]

TET1 regulated the ability of tumor invasion also through the 
high mobility group AT‑hook2 (HMGA2)/TET1/homeobox 
A9 (HOXA9) signaling pathway and was associated 
with poor prognosis in breast cancer.[10,11] HMGA2 is a 
chromatin remodeling factor that is highly expressed in 
ESCs and can regulate the expression of transcriptional 

enhancers.[70] Compared with normal somatic cells, HMGA2 
is overexpressed in most malignant tumors and promotes 
tumor invasion and metastasis.[71] In gene expression array 
analysis, knocking down HMGA2 increased TET1 expression 
in breast cancer. Through its demethylation activity, TET1 
bound to the promoter of HOXA genes, inhibited their 
methylation, and then stimulated their expressions, which 
finally led to diminished growth and migration of cancer 
cells in mouse xenografts. Furthermore, TET1 could also 
demethylate itself by binding to its own promoter region 
and then enhance its expression level. Previous studies 
had shown that HMGA2 was an independent marker of 
poor prognosis in triple‑negative breast cancers.[72] Further 
analysis of survival showed that patients with HMGA2 low 
expression and TET1/HOXA9/7 high expression had a fair 
overall survival.[10] Further study showed that TET1 could 
inhibit migration and invasion in lung carcinoma.[67]

All the above results illustrate that TET1 could act as a 
tumor suppressor gene through its demethylation activity 
or maintenance of its target genes’ hypomethylated status. 
These data also indicate that TET1 might have different 
functions in different organs.

Ten‑eleven translocation 1 promotes tumorigenesis
Although many studies have reported that TET1 played an 
important role in the suppression of malignant transformation, 
some studies have shown its oncogenic effects on the 
development of tumors. Huang et al. reported that TET1 
played an essential oncogenic role in MLL‑rearranged 
leukemia.[73] In MLL‑rearranged leukemia, MLL‑fusion 
proteins target TET1, which was significantly upregulated, 
leading to the accumulation of global 5hmC level. In 
addition, in vitro and in vivo functional studies showed that 
TET1 coregulated with MLL fusion proteins to prompt 
oncogenic target gene expression including HOXA9, 
myeloid ecotropic viral integration 1/pre‑B‑cell leukemia 
homeobox3 genes.[73] Hence, TET1 plays an indispensable 
oncogenic role in MLL‑rearranged leukemia.

Not only in hematological malignancies but also in solid 
cancers, TET1 could drive tumor malignancy depending 
on or independent of its demethylation activity. Indeed, 
the length of CD is only a small part of the whole length of 
TET1. There may be other functions of TET1 that regulate 
the growth and development of cells.[74] Recent advances 
have shown that TET1 is involved in the change of hypoxia 
reaction and participates in tumor progression.[75] Hypoxia 
microenvironment is a pathophysiologic outcome of tumor 
progression because of inadequate supply of oxygen. 
Tumor hypoxia would lead to tumor proliferation, change 
of cell behavior, metastasis, and epithelial‑mesenchymal 
transition (EMT).[76] Hence, tumor hypoxia is a negative 
prognostic factor for tumor progression and hypoxia‑activated 
prodrugs may provide a new way to target tumor therapy.[77]

When exposed to hypoxia microenvironment, the conversion 
of 5mC into 5hmC was deregulated by the aberrant TET1, 
resulting in breast tumor‑initiating cell (BTIC) properties. As 
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a response of hypoxia, TET1 was upregulated and increased 
genomic DNA hydroxymethylation drove tumor necrosis 
factor‑alpha (TNF‑α) expression. The expression of TNF‑α 
would activate its downstream p38‑MAPK effector pathway, 
which was an essential pathway for building BTIC properties 
and EMT promotion.[78] During tumor growth, the hypoxic 
microenvironment is created, which induces malignant 
progression such as angiogenesis, aggressive tumor invasion, 
and proliferation. Hypoxia‑inducible factors (HIFs), which 
are response to hypoxia, are central molecules mediated by 
transcriptional regulation.[76] A growing number of studies 
have demonstrated that hypoxia increased genomic 5hmC 
levels, particularly in hypoxia‑responsive genes.[76,79] Tsai et al. 
showed that TET1 was regulated by hypoxia/HIF‑2, which 
then regulated the expression of hypoxia‑responsive genes 
in CRC. On depletion of TET1, hypoxia‑induced EMT was 
mitigated. Using RNA‑seq and 5hmC‑seq, the insulin‑induced 
gene 1 (INSIG1), one of the genes involved in cholesterol 
metabolic process, was identified as a TET1 target gene, which 
contributed to hypoxia‑induced EMT. Independent of its 
enzymatic activity, TET1 could act as a coactivator to enhance 
INSIG1 transcription activity by interacting with HIF‑2α 
through the CXXC domain. Overexpression of the TET1 
catalytically inactive mutant, hypoxia‑induced EMT was 
rescued in TET1 knockdown cells, which further confirmed 
that TET1 could serve as a transcription coactivator in addition 
to its demethylation function.[80] Hence, TET1 contributes to 
hypoxia‑inducible tumorigenesis and regulates the expression 
of the target genes. Further investigation may focus on the 
function of TET1 in a hypoxia microenvironment and its role 
in EMT in malignancy. It is necessary to comprehensively 
evaluate the correlation between TET1 and cancer.

Altogether, these studies have shown that TET1 regulates 
gene expression in a multilayered manner, which includes 
acting as transcription factor and regulating the 5hmC 
level. Therefore, the exact role and the underlying 
molecular mechanism of TET1 during cancer development 
and progression are complicated and need to be further 
investigated in more detail.

conclUsIons

Since 2009, the TET protein family has been recognized as a 
demethylation enzyme, whose expression level and regulatory 
mechanism have been widely discussed. Altered expression 
levels of TET1 and 5hmC have been found in a broad range of 
cancers. Considering the multiple functions of TET1, its exact 
role is still unclear and needs more investigation. Furthermore, 
the ways of deregulation of TET1 in different cancers are 
complicated and we still need more evidence before TET1 
can be used as a therapeutic tool to treat cancers.
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