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Abstract

Systemic lupus erythematosus (SLE) is a disease that mostly affects women. Accelerated

atherosclerosis is a high-risk factor associated with SLE patients. SLE associated with

cardiovascular disease is one of the most important causes of death. In this study, we

demonstrated that Lactobacillus paracasei GMNL-32 (GMNL-32), a probiotic species,

exhibits anti-fibrosis and anti-apoptotic effects on the cardiac tissue of NZB/WF1 mice.

Female NZB/W F1 mice, a well-known and commonly used lupus-prone mouse strain,

were treated with or without GMNL-32 administration for 12 weeks. Oral administration of

GMNL-32 to NZB/WF1 mice significantly increased the ventricular thickness when com-

pared to that of NZB/WF1 mice. Administration of GMNL-32 significantly attenuated the car-

diac cell apoptosis that was observed in exacerbate levels in the control NZB/WF1 mice.

Further, the cellular morphology that was slightly distorted in the NZB/WF1 was effectively

alleviated in the treatment group mice. In addition, GMNL-32 reduced the level of Fas death

receptor-related pathway of apoptosis signaling and enhanced anti-apoptotic proteins.

These results indicate that GMNL-32 exhibit an effective protective effect on cardiac cells of

SLE mice. Thus, GMNL-32 may be a potential therapeutic strategy against SLE associated

arthrosclerosis.
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Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disorder that only affects women. SLE

patients may show modulations in cardiac tissue including the pericardium, coronary arteries,

valves, myocardium, and conduction system [1]. The occurrence of Coronary heart diseases in

SLE can be due to many pathophysiologic mechanisms, including arteritis, thrombosis, abnor-

mal coronary flow, embolization, and atherosclerosis [2]. Patients with SLE have a high rate of

coronary heart disease [3], generally as pericarditis and myocarditis and Cardiovascular dis-

ease is considered to be the primary cause of morbidity and mortality in SLE [4]. It has been

reported that women of 44–50 years of age have a 50-fold increased risk of myocardial infarc-

tion [5].

Autoantibodies, including anti-phospholipid antibodies and anti-endothelial antibodies are

known to inflict cardiac damages [4,6–9]. In SLE patients apoptosis has been firmly related

with different autoantibodies such as anti-phospholipids and anti-oxidized low-density lipo-

protein antibodies and the engagement of these autoantibodies with self-tissue is considered to

enact the supplement framework, cell-interceded cytotoxicity, and cardiomyocyte apoptosis

[10,11]. For this reason, restraint of cardiovascular apoptosis is recommended to improve

autoantibody-incited heart injuries in SLE patients.

Several studies have proven that probiotics detain the crucial not only to health and a stron-

ger immune system but also for the treatment of metabolic diseases [12–14]. Lactobacilli com-

prise various probiotic strains that exert beneficial effects through anti-inflammatory actions,

intestinal barrier stabilization, and possible attenuation of liver disorders[15]. Administering

live probiotics in immunocompromised patients is a risky affair. While healthy individuals can

tolerate the presence of effects of probiotics in their gastrointestinal system, patients with mod-

ulated immune response may be at a risk of infection [16]. Many studies have shown that heat-

killed probiotics have greater beneficial effects [17–22].

Recently probiotics have been shown to have the ability to affect metabolic fat and improve

the immune response and stress resistance [23,24]. By decreasing absorption and inflamma-

tory status, Lactobacillus gasseri SBT2055 can able to decrease body weight, obesity, and

adiposity in obese adults who consumed fermented milk with this bacterium for 12 weeks

[25]. To-shimitsu et al. reported that treatment of KKAy mice with the L. plantarum strain

OLL2712 was effective in alleviating metabolic disorders by suppressing chronic inflamma-

tion in the KKAy mice [26]. Likewise, probiotic bacteria may impact various components of

atherogenesis, e.g., Lactobacilli have been appeared to bring down blood cholesterol levels in

both rodents and in humans [27,28], by balancing cholesterol re-absorption from the gut

through its effects on the bile-digestion system. Very few studies have explored probiotic inter-

ventions on atherosclerosis advancements in animal models. Portugal LR et al., [28] treated

the Apoe−/− mouse model with L. delbruecki but observed to no significant changes in the

lesion size. However, the bacterium caused no change in blood cholesterol levels, and the mice

were colonized with L. delbruecki for approximately 4 to 10 weeks of age, which can be consid-

ered moderately early in disease progression [29].

Feeding heat-killed L. acidophilus and L. casei had showed ameliorative effect on Candida
albicans-colonized immune-deficient mice, although the immunomodulatory effects of these

candidate probiotic bacteria showed that differences exist between them [30]. Wang et.al,
shown that L. paracasei ssp paracasei F19 (F19) block diet-induced obesity in mice [31]. L.

paracasei has also been known to exhibit cardio-protection in murine models. Our previous

study shows that heat killed L. paracasei effectively improves the cardiac function and inhibits

the myocardial apoptosis in high-fat-diet fed hamsters and rat models. They are also effective

in ameliorating the cardiac as well as hepatic fibrosis effects associated with high calorie-diet
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feeding and are also known to strongly suppress the inflammation mediators [32–34]. In the

present study, we therefore investigate the impacts of L. paracasei GMNL-32 strain on the

hearts of NZB/W F1 mice, with respect to modulation in apoptosis and survival signaling

pathways.

Materials and methods

All the protocols of animal experiments were reviewed and approved by the Institutional

Review Board (IRB), and the Animal Care and Use Advisory Group of the China Medical Uni-

versity, Taichung, and Republic of China.

Preparation of Lactobacillus paracasei GMNL-32 (GMNL-32)

GMNL-32 was stored in the Bioresource Collection and Research Center, Taiwan (BCRC

910220), and the China Center for Type Culture Collection, China (M204012). GMNL-32 was

provided by Gen Mont Biotech Inc., Tainan, Taiwan. GMNL-32 was diluted with PBS and 109

CFU/mouse per day by oral gavage.

Mice and diets

Female NZB/W F1 mice-an outstanding and commonly used lupus-prone mouse strain–was

obtained from the animal center, National Taiwan University, Taiwan and housed in an ani-

mal room at 22 ±2˚C with a 12/12 h light-dim cycle under supervision of the Institutional Ani-

mal Care. The diseased state of mice was determined by observing proteinuria with Albustix

test strips every other week from the age of 12 weeks as previously described [17]. Animals

were separated randomly into two groups (n = 10 each). Group I was the control group mice

that were provided with oral saline solution and group II was orally administered with

GMNL-32 (1 × 109CFU/mL per day). From the 8th week, SLE-developing mice (group II) were

treated orally with GMNL-32, continuously up to the 20th week. After 3 weeks treatment, all

rats were sacrificed by decapitation under terminal anaesthesia and hearts were collected.

Heart tissues of the mice were obtained and stored at– 80˚C until use.

Hematoxylin and eosin staining

The hearts of the test mice were removed, fixed in formalin, dehydrated by alcohol gradient

(100%, 95%, and 75%) and were embedded in paraffin wax. The tissue squares were cut into

0.2 μm-thick slices and deparaffinized by submersion in xylene. The slices were stained with

hematoxylin and eosin (H&E) and washed with water. Each slide was dried using an alcohol

gradient and rinsed twice with xylene. Photomicrographs were acquired using a Zeiss Axio-

phot magnifying lens (Carl Zeiss Microscopy, Thornwood, NY, USA).

DAPI staining and TUNEL assay

For the terminal deoxynucleotidyltransferase2’-Deoxyuridine,5’-Triphosphate (dUTP)- nick

end labeling (TUNEL) assay, the sections were treated with proteinase K, washed in PBS, incu-

bated with permeabilization solution, followed by blocking buffer, and washed two times with

PBS. The sections were then treated for 60 min at 37˚C with terminal deoxynucleotidyl trans-

ferase and fluorescein isothiocyanate-dUTP from an apoptosis detection kit (Roche Applied

Science, Indianapolis, IN, USA). Under light (excitation wavelength of 460 nm) and detection

in the range of 515–565 nm, TUNEL-positive cells (divided DNA) were identified as brilliant

green. The tissue sections were stained with 0.1 μg/mL 4, 6-diamidino-2-phenylindole (DAPI)
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for 5 min, and the cell nuclei were identified by UV light microscopy at 454 nm. Photomicro-

graphs were acquired using a Zeiss Axio photo magnifying instrument.

Tissue protein extraction

Cardiovascular tissue concentrates of the mice were acquired by homogenizing the heart (100

mg/mL). The homogenates were put on ice and then centrifuged at 12,000 g for 40 min. The

proteins in the supernatants were collected and stored at -80˚C for further analyses.

Western blot

Protein concentrations of the heart tissue concentrates were determined by Lowry’s protein

assay. Proteins were separated by 12% SDS polyacrylamide gel electrophoresis (SDS-PAGE)

with a consistent supply of 75 and were then transferred to a poly vinylidene difluoride (GE

Healthcare Life Sciences, Pittsburgh, PA, USA) membrane using a 50 V current for 3h. The

membrane was treated with 3% bovine serum albumin (BSA) in Tris-buffered saline solution

followed by incubation with primary antibodies to particular proteins (Santa Cruz Biotech-

nology, Santa Cruz, CA, USA). Horseradish peroxidase-labeled secondary antibodies were used

for detection, and pictures were taken with Fujifilm LAS-3000 (GE Health Mind Life Sciences).

Immunofluorescence

After the fixation, rehydration, and blocking of the slides, the primary antibody MMP9 was

added for detection of the lysosomes in heart sections. After that, a goat anti-rabbit IgG sec-

ondary antibody, Alexa Fluor1 488 conjugate (A-11008, Thermo Fisher, USA), was used to

detect the bound MMP9 primary antibody. The cell nuclei were stained with DAPI as the last

step before mounting the sections. The pictures were acquired using an Immunofluorescence

microscope (CKX53, Olympus, Tokyo, Japan).

Masson’s trichrome staining

Masson’s trichrome recoloring the heart tissue from each gathering was put away in 10% for-

malin for 2 weeks, got dried out utilizing a alcohol gradient (75%, 85%, 90%, and 100% liquor,

5 min each) and inserted in paraffin wax. Paraffin sections that were 0.2 μm thick were then

cut from these paraffin-installed tissue squares. The tissue areas were de-paraffinized by dip-

ping in xylene (3 times, 5 min each) and rehydrated utilizing an alcohol gradient (100%, 90%,

85%, and 75% ethanol, 5 min each). Tissue sections were then stained utilizing Masson’s tri-

chrome stain to examine heart morphologic and fibrotic changes; blue staining indicated colla-

gen thickening. The results were acquired using an OLYMPUS microscope.

Statistical analysis

The results indicated are the means ± SD of three independent trials. Statistical analysis was

performed by one-way analysis of variance. For comparison between two groups, Student’s

t-test was used.

Results

GMNL-32 induces weight gain in lupus-prone mice

GMNL-32 nourishing adequately instigated weight pick up in lupus inclined mice groups. The

rate of weight pick up did not altogether contrast between NZB/W F1 control and GMNL-32

treated mice groups, but the whole heart weight was significantly increased in GMNL-32
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treated animals compared to the NZB/W F1 mice. Left ventricular weight (LVW) and the pro-

portions of entire heart weight to tibia length (WHW/Tibia) and left ventricular weight to tibia

length (LVW/Tibia) in the GMNL-32 groups did not show much difference when compared

to the SLE control group (Table 1).

GMNL-32 strain increases the ventricular wall thickness

Histopathological tomography analyses of whole heart tissues were performed using H&E

staining (Fig 1). Images were viewed under a microscope. Fig 1A shows that the left ventricular

wall thickness of the control SLE mice is smaller than that of the SLE + GMNL-32 mice, and

the difference is statistically significant (Fig 1B). From the results of the above cross-section

view, SLE + GMNL-32 tissue wall thickness is greater than the wall thickness of the SLE group.

Cardiac histopathological changes and Fas Death receptor-related

components in NZB/W F1 mice treated with GMNL-32

To explore whether the myocardial design and cardiovascular apoptosis were expanded in the

hearts of NZB/W F1 mice treated with GMNL-32, a histopathological analysis of the left cardiac

tissue was performed with hematoxylin and eosin staining and TUNEL assay. NZB/W F1 mice

group exhibited a more abnormal architecture. In contrast, a less abnormal architecture was seen

in the NZB/W F1 mice + GMNL-32 group compared to the NZB/W F1 mice group (Fig 2A).

Additionally, NZB/W F1 hearts stained by TUNEL assay showed increased TUNEL-positive car-

diac cells in the NZB/W F1 mice, whereas decreased TUNEL-positive nuclei were observed in the

GMNL-32 group (Fig 2B). The average percentages of TUNEL-positive cardiac nuclei in the

GMNL-32 groups were 9.91± 1.81 and 8.23± 0.93, (Fig 2C). To determine the Fas death receptor

involved apoptosis in the hearts of NZB/WF1 mice, Western blotting was performed. The levels

of TNF-R1, Fas receptors, and FADDs in the hearts of NZB/W F1 mice group were significantly

increased (Fig 2D). In contrast, TNF-R1, Fas receptors, and FADDs were all found to be reduced

in the GMNL-32 administered group (Fig 2D). The fold change in the ratios of the protein prod-

ucts of TNF-R1, Fas receptors, and FADDs relative to the internal control are shown in Fig 2E.

Changes in cell survival components in the hearts of NZB/W F1 mice

treated with GMNL-32

To examine the variety of cardiovascular survival protein segments in the hearts of NZB/W F1

mice, the levels of PI3K, Bcl-xl, and Bcl2 were examined as shown in Fig 3. The levels of PI3K,

Table 1. Effects of GMNL-32 body and Heart weight on NZB/W F1 mice.

Particulars SLE (n = 10) SLE+GMNL-32 (n = 10)

No of Animals 10 10

Body Weight (BW),g 33.44±5.03 45.01±1.83***

Whole Heart (WHW),g 0.128±0.021 0.155±0.013*

Left Ventricular weight (LVW),g 0.092±0.016 0.107±0.006*

WHW/Tibia g m/m (×104) 73.58±0.0014 72.06±0.0016**

LVW/Tibia, g/mm (×104) 53.26±0.0032 52.31±0.0016**

Values are Mean ± S.E., n = 10

***p<0.001

**p<0.01

* p< 0.05 represent significance when compared to NZB/W F1 mice group.

https://doi.org/10.1371/journal.pone.0185098.t001

Probiotic on cardiac abnormalities in autoimmune diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0185098 September 21, 2017 5 / 14

https://doi.org/10.1371/journal.pone.0185098.t001
https://doi.org/10.1371/journal.pone.0185098


Bcl-xl, and Bcl2 (Fig 3A) were significantly decreased in the hearts from the NZB/W F1 mice.

In contrast, these protein levels were significantly increased in the NZB/W F1 + GMNL-32

group. The relative protein quantification expressed as fold change is show in Fig 3B.

Change in cardiac fibrosis in the hearts of NZB/W F1 mice treated with

GMNL-32

In the hearts of NZB/W F1 Mice, fibrosis proteins MMP-9 and Cox2 were examined by West-

ern blotting (Fig 4). The protein levels of MMP-9 and Cox2 in NZB/W F1 mice were signifi-

cantly increased, whereas in NZB/W F1 mice treated with GMNL-32, the levels of these

proteins were decreased (Fig 4A). Transformation of cardiac fibroblasts into myofibroblasts is

a critical event in the initiation of myocardial fibrosis. Further to detect the effects of GMNL-

32 on the events associated with cardiac remodeling in NZB/W F1 mice, the level of MMP9

was determined by immune-fluorescence staining (Fig 4C). Elevated levels of MMP9 and

CoX2 observed in NZB/W F1 mice group were found to be downregulated in the GMNL-32

treated group.

Change in cardiac collagen accumulation in the hearts of NZB/W F1

Mice treated with GMNL-32

Cardiac tissue sections from the NZB/W F1 control mice and GMNL-32 treated mice NZB/W

F1 mice were stained by Masson’s trichrome staining and the results showed that cardiac

Fig 1. Effect of GMNL-32 on Ventricular wall thickness. A). left ventricular wall thickness measured by imagej software, B). left ventricular wall thickness

significance. Values are Mean ± S.E., n = 10. * p< 0.05 represents significance when compared to NZB/W F1 mice group.

https://doi.org/10.1371/journal.pone.0185098.g001
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cellular arrangement was disordered, with noticeably high collagen accumulation (blue color)

(Fig 5). Supplementation with GMNL-32 probiotics however, rescued the heart tissue as evi-

dent from the reduction in the collagen accumulation.

Discussion

Systemic lupus erythematosus is an immune system inflammatory illness influencing different

organs and is characterized by aggressive inflammation and reduction in the life expectancy.

Hereditary, hormonal, and natural elements creating chronic inflammation are considered

as causes of SLE. In its course, the illness affects different organs, including the lungs, heart,

kidneys, mind, fringe nerves and skin [35,36]. SLE has a female dominance (9:1) and has a

Fig 2. Effect of GMNL-32 on hematoxylin staining and Fas-induced apoptosis pathway signaling. A). Histopathological analysis of tissue section

slides stained by hematoxylin and eosin staining B). Recolored apoptotic cells of cardiovascular areas with TUNEL test in NZB/W F1 mice encouraged with

supplementation. C).The rates of apoptotic cells were computed. The pictures of myocardial design were amplified 100 times. Protein products of TNF-R1,

Fas, and FADD in the left ventricles of hearts from NZB/W F1 mice encouraged with GMNL-32 were measured by Western blotting investigation. α-tubulin

filled in as an inward control. D).The relative protein evaluation of TNF-R1, Fas, and FADD on the premise of fold change. Bars exhibit the rate of TUNEL-

positive cells relative to add up to cells (10 mice X10 scope field number in each gathering) and show mean esteems (SD ± * p< 0.05 represents significance

when compared to NZB/W F1 mice group.

https://doi.org/10.1371/journal.pone.0185098.g002

Probiotic on cardiac abnormalities in autoimmune diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0185098 September 21, 2017 7 / 14

https://doi.org/10.1371/journal.pone.0185098.g002
https://doi.org/10.1371/journal.pone.0185098


prevalence of 15–50/100,000 people, with side effects generally showing up between the second

and third decades of life [37]. Early mortality in SLE is ascribed to either renal failure because of

uncontrolled disease or high vulnerability to infections, while late mortality is because of cardiac

complications and hematological malignancies [38,39]. The effect of contaminations and high

infection impact on mortality has decreased drastically in the most recent decades. Not with

standing, cardiovascular disease (CVD) has emerged as an essential contributor to mortality

[40], as has been proven by the high occurrence of myocardial localized necrosis in young

women with SLE [40]. Our results reveal that there was a significant increase in body weight in

NZB/W F1 mice groups treated with GMNL-32 however there was no significant change

observed in the heart weight or the left ventricle weight. Body Weight loss is a well-known effect

in patients with active SLE however weight gain may also be noticed in the patients due to corti-

costeroid treatment provided against inflammation[9]. In our SLE model, GMNL-32-treatment

caused weight gain may reflect the reduction in the pathological effects of SLE either in the form

of reduced autoimmunity or due to reduction in the mediators of inflammatory. Observation on

increased ventricular mass in SLE patients has been associated with hypertension and modula-

tion in LV are not observed in normotensive patients [41]. In our results there was no significant

difference observed in the whole heart weight or the left ventricle weight.

Fig 3. Effect of GMNL-32 on survival signaling proteins. A). Protein products of PI3K, Bcl-xl, and Bcl2 in the hearts from NZB/W F1 mice treated with

GMNL-32 were measured by Western blotting analysis. α-tubulin filled in as an inside control. B). the relative protein quantification of PI3K, Bcl-xl, and Bcl2

on the basis of α –tubulin. * p< 0.05 represents significance when compared to NZB/W F1 mice group.

https://doi.org/10.1371/journal.pone.0185098.g003

Probiotic on cardiac abnormalities in autoimmune diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0185098 September 21, 2017 8 / 14

https://doi.org/10.1371/journal.pone.0185098.g003
https://doi.org/10.1371/journal.pone.0185098


CVD in SLE is thought to occur as the consequence of increase in the conventional risk fac-

tors of CVD along with disease progression. Concerning that, a systemic investigation and

meta-analysis on 17,187 SLE patients for a subsequent time of eight years demonstrated that

Fig 4. Effect of GMNL-32 on MMP9 and COX2 levels. A). Protein products of MMP9 and COX2 in the

hearts from NZB/W F1 mice treated with GMNL-32 were measured by Western blotting analysis. α-tubulin

filled in as an inward control. B). the relative protein measurement of MMP9 and COX2 on the basis of α
-tubulin. * p< 0.05 represents significance when compared to NZB/W F1 mice group.(B) Panel A shows the

immunofluorescence images of MMP-2 in NZB/W F1 mice and GMNL-32 treatment.

https://doi.org/10.1371/journal.pone.0185098.g004
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CVD events happened in 25.4% of the patients [36]. The pathological variations in the heart

include histopathological changes, cellular apoptosis, and elevated fibrotic lesions in the heart

tissue. In this study, L. paracasei strain GMNL-32 diminished apoptosis in the heart tissues of

NZB/W F1 mice and potentially enhanced cardiac function. The finding gives some convinc-

ing insight into the probiotic potential of L. paracasei strain GMNL-32 and reveals the protec-

tive effect of GMNL-32 against cardiovascular apoptosis related in SLE.

Despite the fact that L. paracasei has been considered to be effective against various patho-

logical conditions little is known about how the L. paracasei strain balances the immune sys-

tem, atopic ailments and autoimmunity improvement. Presently, only limited studies are

available characterizing the impacts of probiotics in murine or human models of atopy and

autoimmunity. Therefore, it is essential to investigate the impact of probiotics in different trial

and clinical atopic and immune system disease models [42–48]. The L. paracasei strain has

been shown to deliver ideal probiotic impacts [29]. Past reviews have demonstrated that L.

paracasei diminishes reactive oxygen species to protect against hepatocyte injury [33] and

attenuates the production of pro-inflammatory cytokines [49,50]. The protective effects of L.

paracasei in decreasing serum lipid, lipid oxidation and keeping the arrangement of the cas-

pase-9 apoptosome [51] were previosuly reported. Another report demonstrated that L. para-
casei lessens cardiovascular break down and apoptosis incited by Ca2+by means of decreasing

MAPK and apoptotic signaling segments [52,53]. Altogether, decreased apoptotsis positive

cells were distinguished in heart tissues of the GMNL-32 group compared to the NZB/W F1

mice. Both Fas-and mitochondria-dependent mediators such as TNF-R, Fas ligand, and

FADD, were altogether diminished in heart tissues of the GMNL-32 treated mice groups when

compared to the NZB/W F1 mice group. Additionally, reduced fibrosis and diminished

fibrotic signaling molecules, such as MMP-9 and COX2, were seen in the heart tissues of the

GMNL-32 group compared to the NZB/W F1 mice. Matrix metalloproteinase-9 (MMP-9) has

been hypothesized with the pathogenesis of immune system infections including SLE. Differ-

ent examinations have detailed that hoisted MMP-9 movement assumes urgent part being

Fig 5. Effect of GMNL-32 on collagen accumulation. Masson trichrome staining shows fibrosis of hearts

from NZB/W F1 mice treated with GMNL-32.

https://doi.org/10.1371/journal.pone.0185098.g005
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developed of SLE in both human and lupus-inclined mice. COX-2 is likewise known to assume

crucial parts being developed of incendiary ailments and related with the pathogenesis of SLE.

COX-2 and MMP-9 expression is managed by inflammation and a useful connection between

COX-2 action and MMP-9 generation has been portrayed in various cell sorts, including endo-

thelial cells, proposing COX-2 and related MMP-9 as vital helpful focuses for heart anomaly

hindrance. Late reports have highlighted the mutual pathology of cardiovascular diseases and

SLE, both of which speak to incendiary issue. A few reports have additionally given truly nec-

essary understanding into the malicious effect that select treatments (counting cyclo-oxyge-

nase-2-specific inhibitors) may have as far as the danger of cardiovascular illness in SLE [54].

Further MMP9 levels can be correlated with the level of collagen accumulation and risk of car-

diac remodeling after cardiac injury [55]. Our results clearly show that GMNL-32 provide car-

dio–protective effects in SLE diminishing the pathways of cardiac apoptosis. The initiation of

the PI3K/Akt pro-survival pathway plays an important role in cardio protection [56]. In the

present review, the levels of survival protein expression were too low in NZB/W F1 mice,

whereas L. paracasei strain GMNL-32 treatment in mice caused a change in the expression of

these ACE and anti-apoptotic proteins, particularly Bcl-2, Bcl-xl. The PI3K/Akt flagging path-

way may be involved in the regulation of the expression of antiapoptotic proteins in L. paraca-
sei strain GMNL-32-treated mice. L. paracasei has been known to be effective in the treatment

of organ disorders, particularly, against liver injury, and in cardio protection [33]. Nonetheless,

L. paracasei GMNL-32 uncovers the effects on cardiovascular tissue by diminishing the histo-

pathological changes, Fas-subordinate apoptosis, fibrosis, and fibrotic aggregations in the

heart tissues of NZB/W F1 mice and also by expanding cardiovascular survival flagging seg-

ments in NZB/W F1 mice. These discoveries may provide significant information for under-

standing the cardiovascular protective function of L. paracasei GMNL-32 and suggest the

capability of GMNL-32 in treating SLE patients with CVD.
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