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Abstract

The coronavirus disease-2019 (COVID-19) was first recognized in Wuhan, China, and quickly 
spread worldwide. Between all proposed research guidelines, inhibition of the main protease 
(Mpro) protein of the virus will be one of the main strategies for COVID-19 treatment. The present 
work was aimed to perform a computational study on FDA-approved drugs, similar to piperine 
scaffold, to find possible Mpro inhibitors. Firstly, virtual screening studies were performed on a 
library of FDA-approved drugs (43 medicinal compounds, similar to piperine scaffold). Among 
imported 43 drugs to virtual screening, 34 compounds were extracted. Four top-ranked drugs in 
terms of the highest interactions and the lowest binding energy were selected for the IFD study. 
Among these selections, lasofoxifene showed the lowest IFD score (-691.743 kcal mol-1). The 
stability of lasofoxifene in the COVID-19 Mpro protein active site was confirmed with 100 ns 
MD simulation. Lasofoxifene binding free energy was obtained -107.09 and -173.97 kcal mol-1, 

using Prime MM-GBSA and g_mmpbsa methods, respectively. The identified lasofoxifene by 
the presented computational approaches could be a suitable lead for inhibiting Mpro protein and 
COVID-19 treatment.

Keywords: COVID-19; Mpro protein inhibitors; Molecular dynamic simulation; Induced fit 
docking; Binding free energy; Lasofoxifene.

Introduction

Coronavirus disease 2019 (COVID-19) is 
an emerging developed human infectious from 
coronavirus family, outbreak in Wuhan, China, 
and has been outspreading quickly in China 
and other countries since December 2019 (1). 
The coronavirus family comprises two high 
pathogenic forms; SARS-CoV (Severe Acute 
Respiratory Syndrome in 2002) and MERS-
CoV (Middle East Respiratory Syndrome in 
2012), but the COVID-19 has a significant 
difference from them due to the mutation 

processes (2). According to WHO reports, 
COVID-19 has infected more than 88 million 
and close to 2 million deaths worldwide (10 
January 2021).

The main awful manifestations of 
COVID-19 are fever, cough, severe acute 
respiratory syndrome, and the lack of 
therapeutic protocols (3). 

The coronavirus family includes the 
single-strand, positive-sense RNA genomes 
having 6-12 open reading frames (ORFs). The 
first and largest ORF contains genetic codes 
for two polyproteins termed ppla and pplab, 
which are autoproteolytically cleaved into 15 
or 16 nonstructural proteins (nsp) (4). Among 
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these nsps, a chymotrypsin-fold proteinase, 
the main protease (Mpro), plays a prominent 
role in viral gene expression and replication 
(5). 

The coronavirus Mpro protein is exceptionally 
conserved among the coronavirus family. 
Mpro dimer consists of 3 structural domains; 
domain I (residues 8-101), domain II (residues 
102-184) have an antiparallel β-barrels, and 
domain III (residues 201-303) that is linked to 
domain II using a long loop region (residues 
185–200). COVID-19 Mpro has a cysteine-
histidine catalytic dyad, and its binding site 
is placed in a gap between domains I and 
II. Unlike other viral proteases, Mpro utilizes 
cysteine amino acid instead of serine for 
nucleophilic attacks in the active site (6); thus, 
cysteine-histidine catalytic dyad inhibition 
can stop virus function. 

Due to increasing concerns over the fast 
spread of COVID-19 globally, the rapid 
identification of drug candidates is essential. 
Hence, drug repurposing seems to be very 
impressive to create potent drugs to battle 
coronavirus in a short time (5). In addition, 
high throughput screening of all approved 
drugs on Mpro protein is a costly and time-
consuming process; thus, high throughput 
virtual screening method could be an excellent 
alternative to save time and money. 

Recently, some dietary molecules from 
edible herbs and vegetables such as piperine, 
apigenin, curcumin, quercetin, and genistein, 
previously known as anti-viral, were evaluated 
as anti-COVID-19 agents (7). Their binding 
energy values in the COVID-19 Mpro protein 
active site were calculated using the molecular 
docking method. Among those, chromene 
scaffold demonstrated the lowest binding 
energy in EGCG (-6.99 kcal/mol), myricetin 
(-5.38 kcal/mol), and quercetin (-5.29 kcal/
mol) compounds. Curcumin was another 

compound that showed low binding energy in 
COVID-19 Mpro active site (-6.04 kcal/mol). 
Piperine was another compound with a -5.16 
kcal/mol binding energy in the Mpro protein 
active site. The virtual studies based on 
quercetin and curcumin scaffolds have been 
performed with COVID-19 Mpro protein (8, 9). 

Some FDA-approved drugs similar to the 
piperine scaffold (Figure 1) were extracted 
as a drug library in this study. Then virtual 
screening was performed on the drug library 
to find potential drugs as COVID-19 Mpro 
inhibitor. Induced fit docking and MM-
GBSA calculation were performed to consider 
ligand and receptor flexibility and computing 
the binding free energy. Also, a molecular 
dynamic simulation was employed to confirm 
the stability of the best-chosen compound as 
anti-COVID-19 in the dynamic environment. 

Experimental

Creating data library
The FDA-approved drugs (43 medicinal 

compounds) with at least 40% similarity with 
piperine scaffold were extracted from Drug 
Bank (www. drug bank. ac). The 3D structure 
of all compounds was drawn in Marvin Sketch 
v5.7, ChemAxon (10), and kept in a PDB 
format. 

Docking simulation study
Forty-three drugs were subjected to 

molecular docking studies. The molecular 
docking process was steered using the 
AutoDock4.2 software package (11). The 
PDB file of Mpro protein was obtained from the 
Protein Data Bank (PDB ID 6lu7) (6). Protein 
preparation was started with the elimination of 
all water molecules, ligands, and ions. After 
affixing polar hydrogens, the partial atomic 
charge was computed by the Kollman method, 

 

 

 

 

 
 
 
 
 
Figure 1. The chemical structure of piperine.  

   

Figure 1. The chemical structure of piperine. 
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and the pdbqt file was kept (10). The pdbqt 
file of ligands was created by calculating the 
Gasteiger-Marsili charge (12). A grid box with 
the dimension of 50 × 50 × 50 Å (x, y, and z) 
was expanded on the protein binding pocket 
with a 0.375 nm spacing for each dimension; 
then, grid maps were made by Autogrid 4.2. 

All docking parameters were unchanged 
except for the number of Lamarckian job, the 
initial population, and the maximum number 
of energy evaluations, respectively 50, 150, 
and 25 × 105. Finally, the docking process was 
performed by AutoDock 4.2. Docking results 
were analyzed in terms of conformation 
and binding energy in the active site of the 
Mpro protein. The best drugs with the lowest 
binding energy and the highest interaction in 
the binding pocket were chosen. The drug-
protein interactions were imagined using 
AutoDockTools 1.5.6 and PyMOL Tcl (13). 

Induced fit docking
Protein structure preparation
The atomic coordinates of Mpro protein 

were obtained from the RCSB protein data 
bank (PDB ID 6lu7) and were prepared 
using Schrodinger’s protein preparation 
wizard module (14, 15). The Mpro protein 
was provided by removing crystallographic 
water molecules, adding all hydrogen atoms 
to protein, allocating bond orders, generating 
disulfide. To process the maximum degree of 
hydrogen bond interactions, 180° spins of the 
terminal angle of Asn and Gln amino acids were 
allocated. Finally, a restrained minimization 
was carried out using optimized potentials for 
liquid simulations (OPLS-2005) force field 
to optimize the geometry and minimize the 
energy of the Mpro protein (16). After energy 
conversion, the minimization was done, and 
the RMSD score got a maximum cut-off of 
0.420 Å. 

Compounds preparation
The 3D structure of compounds was 

optimized using the LigPrep part of the 
Schrodinger suite 2015 (17). The most 
probable ionization state was generated at the 
cellular pH value of 7.4 using the Epik tool 
(18). Finally, the compound with the lowest 
energy conformer was optimized using the 
OPLS-2005 force field (16). 

Induced fit docking
Induced fit docking (IFD) is a powerful and 

precise method to compute ligand and receptor 
flexibility (19). To understand the protein-
ligand interactions of the docked compound, 
we performed the induced fit docking in the 
Schrodinger software suite (20). The IFD 
protocol was carried out in three successive 
steps. Firstly, optimized ligand and rigid 
protein were introduced to the IFD module. 
The docking box was specified to include 
all residues within the radius 30 Å from the 
ligand center. A van der Waals scaling of 0.7 
and 0.5 was utilized for non-polar atoms of 
the protein and ligand, respectively. The Glide 
SP mode did the initial docking, and 20 ligand 
postures were maintained for protein structural 
modifications. Secondly, each of the ligand 
poses was subjected to side-chain and backbone 
refinement. All residues with at least one atom 
within 5 Å of each corresponding ligand pose 
were inserted into a conformational search 
and minimization using the Prime program 
(15). The refined complexes were arranged 
by prime energy. Finally, the new receptor-
ligand conformations within 30 kcal/mol of 
minimum energy were introduced to Glide 
redocking. The more desirable the binding 
affinity identified with, the more negative the 
Glide Score. The visualization of the best pose 
of protein-ligand complexes was done using 
PyMOL Tcl.

MM-GBSA calculation
The best obtained ligand-Mpro complex 

from IFD was further investigated with MM-
GBSA procedure in the prime segment of 
Schrödinger suite 2015 (15). MM-GBSA 
technique is introduced as a valuable and 
effective method to computing the binding free 
energy (ΔGbind) between ligand and receptor 
with more precision. In this method, molecular 
mechanical (MM) energies are considered 
with a continuum solvent generalized Born 
(GB) model for polar solvation and a solvent-
accessible surface area (SASA) for non-polar 
solvation (21). The binding free energy of the 
docked ligands is calculated according to the 
following equations (22, 23):
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The validation docking was carried 
out and interactions between N3 (N-[(5-
methylisoxazol-3-yl)carbonyl]alanyl-L-valyl-
N-1-((1R,2Z)-4-benzyloxy)-4-oxo-1-{[(3R)-
2-oxopyrrolidin-3-yl]methyl}but-2-enyl)-L-
leucinamide, crystallography ligand) and Mpro 
protein was compared with the crystallographic 
poses in PDB: 6lu7. The binding pocket of N3 
was investigated as the following: the catalytic 
His163 and Cys145 residues in the bottom of 
the packet formed two hydrogen bonds, and 
hydrogen bonds were seen between Gly143 
and Glu166 amino acids in the edges pocket 
with N3. The main hydrophobic amino acids 
that sat around N3 were His41, Phe140, 
Lue141, Asn142, Ser144, His164, Met165, 
His172, and Gln189, as seen in Figure 2 (6). 
The root-mean-square deviation (RMSD), 
between the valid conformations and its 
crystallography conformation, was obtained 
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To predict new Mpro inhibitors, a structure-
based virtual screening (VS) study was carried 
out over created library from the Drug Bank 
web server. Docking runs were done for all 
43 drugs similar to the piperine scaffold, and 
its results were organized in terms of binding 
energy and fundamental catalytic interactions. 
Thirty-four of them were sat in the Mpro active 
site, but between them, four drugs (curcumin, 
lasofoxifene, alvimopan, and donepezil) 
with the lowest binding energy were selected 
for further investigation. Among these four 
drugs, curcumin structurally showed the 
most similarity to the piperine scaffold. In 
lasofoxifene, alvimopan, and donepezil 
structures, saturated rings are piperidine or 
pyrrolidine rings, the same as piperidine ring 
in piperine structure.

Curcumin, extracted from a plant called 
“turmeric,” with the lowest binding energy, 
acts as a lipoxygenase inhibitor and prevents 
tumor invasion by irreversibly binding CD13/
aminopeptidase. Turmeric is commonly 
consumed as a color food, and its root is also 
used in a few medicinal products to treat pain 
and inflammation, such as osteoarthritis. The 
medicinal properties of turmeric have been 

http://www.webmd.com/osteoarthritis/default.htm
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known for thousands of years, but curcumin 
from natural dietary or synthetic sources 
gained first approval by the Food and Drug 
Administration (FDA) in 2013. 

Lasofoxifene is a selective estrogen receptor 
modulator (SERM) with a non-steroidal 
structure that selectively binds to estrogen 
receptors α and β. The European Commission 
approved it in March 2009. Lasofoxifene could 
be used for postmenopausal osteoporosis 
treatment to decrease the risk of both vertebral 
and nonvertebral fractures. 

Alvimopan competitively binds to the 
μ-opioid receptor as a selective antagonist. 
FDA licensed alvimopan in 2008 to speed up 
the time to upper and lower gastrointestinal 
recovery following surgeries. 

Finally, donepezil increases the 
accessibility of acetylcholine at the synapses 
by binding reversibly to acetylcholinesterase 
and inhibiting the hydrolysis of acetylcholine. 
Donepezil gained approval by FDA in 2004 
and could be used to treat confusion (dementia) 
related to Alzheimer’s disease. 

Induced fit docking analysis 
Although molecular docking simulation 

using Autodock software is highly favored in 
presenting the ligand poses within the protein 
active site, the protein is considered rigid in 
docking calculations. In this study, the IFD 

method was carried out to account for both 
ligand and receptor flexibility. 

The validation of the IFD model was 
carried out before the docking simulation. The 
IFD-generated N3 model (cyan, Figure 3) and 
the native structure of N3 (yellow, Figure 3) in 
N3/Mpro complex (6lu7) were superimposed, 
and RMSD of 2.34 Å was obtained for entire 
heavy atoms (excepting the hydrogen atoms). 
Therefore, the IFD module could be predicting 
the binding interactions between inhibitors 
and Mpro protein. 

IFD was performed between Mpro protein 
and the four obtained drugs with the lowest 
binding energy by Autodock. The IFD results 
are reported in Table 1. The GlideScores 
in the curcumin-Mpro and lasofoxifene-
Mpro complexes were obtained lower than 
alvimopan and donepezil complexes. It 
suggests that the binding affinity of curcumin 
and lasofoxifene complexes is also lower than 
alvimopan and donepezil complexes, the same 
as the calculated binding affinity by Autodock. 
The IFD generated interactions between 
curcumin and lasofoxifene with Mpro protein 
are shown in Figure 4. IFD results show that 
curcumin interacted with Cys145, Gly143, 
Glu166, Ser144, Leu141, and Arg188 of 
Mpro protein via hydrogen bonds lasofoxifene 
formed hydrogen bonds only with Cys145, 
Gly143, and Glu166 amino acids. As seen in 

 

 

 

 

 

 

 

 

 

 

Figure 2. The main interactions between N3 ligand and Mpro protein.  

   

Figure 2. The main interactions between N3 ligand and Mpro protein. 



130

Abbasia M and Sadeghi-aliabadi H / IJPR (2021), 20 (4): 125-136

 

 

 

 

 

 

 

 

 

 

Figure 3. The binding sites of 6lu7 with ligand N3: native N3 (yellow), IFD-generated N3 model 

(blue). 

   

Table 1. IFD results for the four obtained drugs with the lowest binding energy by Autodock.  
 

Compounds 
Main amino acids in 
hydrogen bonding 

interactions 
(distances) 

Main amino acids in 
active cite Glide score Glide Emodel IFD score 

Curcumin 

Cys145 (2.66 Å), Gly143 
(2.06 Å), Glu166 (2.04 
Å), Ser144 (1.99 Å), 

Leu141 (2.19 Å), Arg188 
(2.53 Å) 

His41, Asn142, His163, 
His164, Met165, 

Gln189 
-10.795 -87.579 -684.229 

Lasofoxifene 

Cys145 (2.16 Å), Gly143 
(1.96 Å), Glu166 (2.24 

Å) 

His41, Phe140, Leu141, 
Asn142, Ser144, 
His164, His163, 
Met165, Gln189 

-10.766 -99.022 -691.743 

Alvimopan 

Cys145 (2.08 Å), Gly143 
(2.65 Å), Glu166 (1.94 
Å), Leu141 (2.28 Å), 

Arg188 (2.66 Å), His41 
(2.24 Å) 

Phe140, Asn142, 
Ser144, His164, His163, 

Met165, His172, 
Gln189 

-8.42 -84.909 -672.998 

Donepezil 

His163 (2.63 Å), His164 
(2.14 Å) 

Cys145, His41, Asn142, 
His172, Phe140, 
Leu141, Glu166, 
Ser144, Met165, 

Gly143 

-7.85 -63.289 -674.228 
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Figure 3. The binding sites of 6lu7 with ligand N3: native N3 (yellow), IFD-generated N3 model (blue).

Table 1. IFD results for the four obtained drugs with the lowest binding energy by Autodock. 
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Figure 4B, Glu166, with a negative charge, 
sat close to pyrrolidinium ion (the distance: 
1.58 Å), and an ion bond could be formed 
between negative and positive charges. The 
ion bond formation could be a reason for the 
lasofoxifene GlidScore value that is close to 
the obtained value of curcumin. The docking 
affinity of lasofoxifene (IFD score = -691.743) 
was better than curcumin, alvimopan, and 
donepezil with IFD scores of -684.229, 
-672.998, and -674.228, respectively. 

Prioritization of IFD-studied compounds 
based on MM-GBSA method

Combining more energy terms such as 
surface accessibility area and solvation 

energy with a suitable force field can make 
more satisfactory accuracy for the ligand 
binding energy computing (21). Thus for 
each four selected compounds, the Prime 
MM-GBSA method was done on the state 
with the bottommost obtained GlideScore 
from IFD studies. The calculated ΔGbind of 
the compounds and the contribution of main 
energy components (coulomb, covalent, 
hydrogen bonding, lipophilic binding, the 
generalized born electrostatic solvation, and 
van der Waals) were reported in Table 2. The 
same as IFD results, lasofoxifene showed the 
lowest ΔGbind. This suggests that lasofoxifene 
is the most stable ligand in the Mpro protein 
binding pocket. In Table 2, the free energy 

 

 

Figure 4. The IFD generated interactions. A) 3D and 2D interactions between curcumin and 

covid-19 Mpro protein; B) 3D and 2D interactions between lasofoxifene and covid-19 Mpro 

protein. 

   

Figure 4. The IFD generated interactions. A) 3D and 2D interactions between curcumin and covid-19 Mpro protein; B) 
3D and 2D interactions between lasofoxifene and covid-19 Mpro protein.
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components revealed that the lipophilic and 
van der Waals interaction energies (ΔGLipo and 
ΔGvdW) have the most significant contribution 
in the ligands binding energy. The binding 
energy contribution of the main amino acids 
in the active site is shown in Table 3. In 
Mpro protein active site, the contribution of 
lipophilic interactions is more than hydrogen 
bond interactions. The contribution of His163 
and Glu166 was more than other amino acid 
residues in the binding pocket. 

Molecular dynamic simulation analysis
According to Table 1, lasofoxifene showed 

the lowest binding energy among all 34 
extracted drugs with two main hydrophilic 

interactions (hydrogen bonds with Cys145 and 
His163). MD simulation of lasofoxifene was 
performed to ensure its stability in the binding 
pocket of Mpro protein. Recently curcumin was 
introduced as Mpro inhibitor (31); therefore, it 
was chosen as a reference and compared its 
interaction modes with lasofoxifene.

After 100 ns simulations, the MD 
trajectories were analyzed. RMSD was 
calculated to determine the conformational 
stability of Mpro protein in all simulation 
times. As illustrated in Figure 5a, the RMSD 
profile of backbone atoms in Mpro-lasofoxifene 
and Mpro-curcumin complexes showed small 
variations about 0.35 nm and 0.25 nm, 
respectively. By analyzing the RMSD plots 

 
Table 2. The outcomes of binding free energy for the selected compounds using Prime-MM-GBSA calculations. 
 

Entry ∆GBinding ∆GCoulomb ∆GCovalent ∆GHbond ∆GLipo ∆GSolvGB ∆GvdW 
Curcumin -65.978 40.909 -25.380 0.012 -45.334 -3.162 -40.750

Lasofoxifene -107.086 9.012 2.627 -0.298 -83.099 8.103 -49.746
Alvimopan -50.841 -16.943 27.281 0.434 -50.572 18.863 -36.112
Donepezil -49.525 23.517 4.184 -1.298 -40.009 -7.419 -36.127

 
 
  

Table 3. The main amino acids contribution to the binding free energy of the compounds, using Prime-MM-GBSA calculations. 
 

Amino Acids Compounds Lipo Energy H-bond Energy Total Energy 

His41 

Curcumin -7.54 -0.31 -46.78
Lasofoxifene -6.27 -0.25 -45.78
Alvimopan -5.96 -0.11 -45.06
Donepezil -6.68 -0.15 -45.63

Leu141 

Curcumin -2.87 -0.36 -26.70
Lasofoxifene -3.05 -0.35 -26.05
Alvimopan -4.03 -0.36 -31.06
Donepezil -3.18 -0.35 -26.97

Gly143 

Curcumin -1.21 -0.21 -36.60
Lasofoxifene -1.26 -0.16 -37.78
Alvimopan -1.07 -0.01 -30.43
Donepezil -1.32 -0.18 -37.17

Ser144 

Curcumin -4.53 -0.60 -42.53
Lasofoxifene -4.41 -0.63 -41.38
Alvimopan -4.42 -0.67 -43.53
Donepezil -4.59 -0.60 -43.09

Cys145 

Curcumin -4.50 -0.24 -39.71
Lasofoxifene -4.51 -0.25 -40.00
Alvimopan -4.09 -0.13 -39.58
Donepezil -4.64 -0.14 -37.10

His163 

Curcumin -7.07 -0.38 -53.79
Lasofoxifene -6.96 -0.38 -54.58
Alvimopan -7.07 -0.40 -53.93
Donepezil -7.21 -0.38 -56.03

His164 

Curcumin -7.60 -0.25 -42.83
Lasofoxifene -7.52 -0.63 -40.14
Alvimopan -7.04 -0.27 -44.16
Donepezil -7.06 -0.27 -42.33

Glu166 

Curcumin -3.55 0.00 -54.26
Lasofoxifene -4.17 -0.01 -57.26
Alvimopan -4.80 -0.50 -59.28
Donepezil -3.53 0.00 -55.46

 
  

Table 2. The outcomes of binding free energy for the selected compounds using Prime-MM-GBSA calculations.

Table 3. The main amino acids contribution to the binding free energy of the compounds, using Prime-MM-GBSA 
calculations.
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of lasofoxifene and curcumin (Figure 5b), it 
can be recognized that both drugs were almost 
entirely superimposed during the simulation. 
RMSD plots suggest that both complexes 
were stable during simulation time. 

Rg was calculated to evaluate the 
compactness of the protein. Variations of 
protein flexibility were obtained by RMSF, as 
are demonstrated in Figure 6. The oscillations 
of both complexes were superimposed (Figure 

6a), except in residues 45-60 in the Mpro-
lasofoxifene complex. This indicates that the 
central regions of the protein, such as Cys145, 
His163, and His41, in both complexes 
were more stable during MD simulation. 
The Rg values of both complexes were 
identical, and their conjunction was kept in 
all simulation time, as represented in Figure 
6b. Average values of RMSD, RMSF, and Rg 
were calculated at 0.225, 0.090, and 2.204, 

 

 

 

  Figure 5. RMSD plots of Mpro protein inhibitors. (a) Backbone atoms RMSD of Mpro-

curcumin (purple) and Mpro-lasofoxifene (green) complexes. (b) RMSD plot of curcumin and 

lasofoxifene. 

   

Figure 6. (a) The RMSF plot of Mpro-curcumin (purple) and Mpro-lasofoxifene (green). 

(b) The gyration radius plot of Mpro-curcumin and Mpro-lasofoxifene. 

 

 

 

 

 

 

 

 

 

 

Figure 5. RMSD plots of Mpro protein inhibitors. (a) Backbone atoms RMSD of Mpro-curcumin (purple) and Mpro-laso-
foxifene (green) complexes. (b) RMSD plot of curcumin and lasofoxifene.

Figure 6. (a) The RMSF plot of Mpro-curcumin (purple) and Mpro-lasofoxifene (green).(b) The gyration radius plot of 
Mpro-curcumin and Mpro-lasofoxifene.
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respectively, for Mpro- lasofoxifene complex. 
The average values of RMSD, RMSF, and Rg 
of Mpro- curcumin complex were also obtained 
from 0.193, 0.089, and 2.213, respectively. 

The binding free energy has also been 
recalculated for Mpro-curcumin and Mpro-
lasofoxifene complexes using the g_mmpbsa 
program. The obtained average binding 
energy components are reported in Table 3. 
The results showed that Mpro-lasofoxifene 
binding energy was lower than Mpro-curcumin 
binding energy checked by both programs 
(MMGBSA and g_mmpbsa). The contribution 
of each main amino acid in the binding energy 
has shown in Table 4. 

Conclusion

Since inhibition of Mpro protein has been 
known as a critical strategy for COVID-19 
treatment, highly effective Mpro inhibitors 
have been investigated with various in silico 
and traditional methods. In this study, virtual 
screening with different computational 
methods has been introduced to predict new 
Mpro inhibitors. According to this method, 
virtual screening was first performed on 43 
drugs (similar to piperine scaffold). Finally, 
34 medicinal compounds were extracted 
with therapeutic effects against osteoporosis, 
Alzheimer’s, cancer, and reduced heart 
rate. Among extracted drugs, curcumin, 
lasofoxifene, alvimopan, and donepezil 
demonstrated the lowest binding energy and 
the most interactions with the COVID-19 Mpro 
protein active site. Among extracted drugs, 
lasofoxifene, as a third-generation SERM 
with high selective affinity for both ERa and 
ERb subtypes, was the best in terms of binding 
energy and the critical interactions with amino 
acids. An induced-fit docking method was 
performed to consider the flexibility of both 
ligand and receptor. The obtained score from 
IFD confirmed molecular docking results, and 

the IFD score of lasofoxifene was observed 
lower than others (-691.743 kcal mol-1). 
Lasofoxifene binding free energy, calculated 
by two programs including Prime MM-GBSA 
and g_mmpbsa, showed the lowest value; 
-107.09 and -173.97 kcal mol-1, respectively. 
And finally, MD simulation investigations on 
the finest docked pose of lasofoxifene-Mpro 
and curcumin-Mpro complexes were employed 
to reveal the overall stability of the two 
complexes. RMSD, RMSF, and Rg results 
obtained from MD simulation revealed that 
lasofoxifene and curcumin exhibited the best 
stability in the Mpro active site. As a result, 
lasofoxifene or its close derivatives can be 
considered promising drugs for the treatment 
of COVID-19.
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