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Abstract: We focus on several questions arising during the modelling of quantum systems on a phase
space. First, we discuss the choice of phase space and its structure. We include an interesting case of
discrete phase space. Then, we introduce the respective algebras of functions containing quantum
observables. We also consider the possibility of performing strict calculations and indicate cases
where only formal considerations can be performed. We analyse alternative realisations of strict and
formal calculi, which are determined by different kernels. Finally, two classes of Wigner functions as
representations of states are investigated.
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1. Introduction

In the twenties of the twentieth century, the young, brave scientists Werner Heisenberg
and Erwin Schrödinger noticed that ‘old’ quantum theory had reached its end. To make real
progress, it was necessary to propose a completely new formalism. Heisenberg, together
with Born and Jordan [1–3] developed matrix calculus. A few months later, Schrödinger
presented a wave version of quantum theory [4] and proved its equivalence [5] using the
Heisenberg matrix calculus. Quantum mechanics gained its own mathematical language
that was radically different from classical physics, and which has been successfully used to
the present day.

On the other hand, the classical world is a limit of the quantum one. Therefore, it
seems to be natural that an alternative to the Hilbert space version of quantum mechanics,
compatible with classical physics, should exist. A promising candidate is the phase space
formulation of quantum mechanics. The foundations of this approach have been given in
the outstanding publications [6–10]. Several results illustrating the potential of quantum
phase space physics were also achieved [11–18].

A new impulse in the development of phase space quantum mechanics took place
in the 1970s, when F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer
presented an extended version of phase space calculus [19–21].

From that time, phase space quantum mechanics has remained present in the scientific
world. It has developed in parallel as a part of physics and independently as a subdiscipline
of mathematics called deformation quantisation. Among the books and review papers
devoted to the topic, we recommend, e.g., [22–30].

Our review is focused on certain aspects of the phase space version of quantum
physics. First, we discuss a structure of quantum phase space. We analyse which elements
are required in the best known case of symplectic space R2n, what else is demanding on
other types of symplectic manifolds, and finally how to build discrete phase spaces.

Analogous considerations are made for observables. The main task is the construction
of a noncommutative but associative ∗-product representing the multiplication of operators
acting in a Hilbert space. The form of the ∗-product depends on the phase space. In the
case of a symplectic manifold R2n or on a discrete phase space, a strict star calculus is
known. However, in other situations, we have to deal with formal series.
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The question closely related to the ∗-multiplication is a choice of ordering. Since
quantum theory is more general than the classical theory, a fixed classical observable can
be the classical counterpart of several quantum observables. Every quantum observable
from that class is related to its classical limit by a relation called ordering. This statement
implies that there exist several admissible ∗-products related to different orderings. We
analyse physically acceptable orderings and show how they affect the ∗-products.

The last aspect of phase space quantum mechanics investigated in the current article
is the representation of states. We propose two realisations of this task. Thus, we introduce
a Wigner function as a counterpart of the density operator, and we study its fundamental
properties and dependence on the choice of ordering. We discuss its functional action on
observables and provide a time evolution formula for the Wigner function. In the case of
discrete phase space, we construct a Wigner function in an alternative manner with the use
of the trace of a density operator multiplied by a generalised Stratonovich–Weyl quantiser.

2. Some Comments on the Hilbert Space Formulation of Quantum Theory

One of the most significant features of physics is the quantitative description of natural
phenomena. Over centuries, a universal scheme for the practical realisation of this goal
has been determined. It consists of four elements. A basis for the model is some space on
which we describe physical processes. This space is a set of objects usually equipped with
some additional structures, such as a topology, a norm, or a metric. Then, we introduce on
this set some elements representing measurable quantities called observables and elements
determining states. To represent the results of measurements, we establish a mapping from
pairs {observable, state} into real numbers.

The transformations of a physical system, especially a time evolution, are represented
by mappings acting in a set of observables or in a collection of states.

Since our object of interest is quantum mechanics, we will sketch the implementation
of the aforementioned postulates in that discipline. The reader who is more interested in
the topic is encouraged to read, e.g., [31] or [32].

The currently used realisation of the mathematical model of quantum mechanics was
proposed by Dirac [33,34] and von Neumann [35]. A modern rigorous version can be seen,
e.g., in [36] or [37]. Let us state the main facts about this attempt.

According to the mentioned realisation of quantum theory, the stage is a separable
Hilbert space H, which is further extended to a rigged Hilbert space. Since H is by
definition a unitary space, it is equipped in a natural way with a norm, angles between
vectors, a metric, and a topology. Its topological basis is countable. Since, by definition, a
Hilbert space is complete, every Cauchy sequence inH is convergent.

The dimension of the separable Hilbert space can be finite or infinite. According to the
Riesz–Fisher theorem, every separable Hilbert space of infinite dimension is isomorphic to
the Hilbert space of the square summable series l2, and every finite dimensional Hilbert
space of dimension dimH = n is isomorphic to Cn. Taking into account how different
physical systems are modelled on isomorphic vector spaces, we can see that information
about a certain physical system contained in its Hilbert space is very limited.

On the other hand, one can emphasise certain features of a set under consideration
by choice of the realisation of the Hilbert space, such as the space of square integrable
functions L2(R) on a 1-D axis or L2(R3) on a 3-D volume.

For systems in which two or more disjoint features are modelled, e.g., a spin and a
spatial motion, the total Hilbert space is represented by the tensor product of the respective
Hilbert spaces

H = Hspin ⊗Hspace.

However, these endeavours do not enrich the information contained in spaceH as such.
Let us make a brief review of the assumptions about measurable quantities. Observ-

ables are represented by self- adjoint linear operators defined on some dense subspaces
of H. An extended discussion of this postulate can be found in [38]. The eigenvalues of
quantum observables are real, and their eigenvectors constitute bases ofH; therefore, by
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performing a series of measurements related to quantities and performing a complete set
of observables, we gain the maximal information about a state. Thus, the characteristics of
the system under consideration are given by observables rather than by the Hilbert space.

Among all linear operators acting inH, we chose a special class of of bounded linear
operators B(H) defined on the whole Hilbert space. This set constitutes a noncommutative
∗-A algebra with unity. The involution ’∗’ is implemented by operation of the Hermitian
conjugate. Set B(H) contains operators representing measurable quantities. Algebra B(H)
is also a Lie algebra with the Lie bracket being the commutator of operators

[Â, B̂] = ÂB̂− B̂Â. (1)

In the third step—namely the construction of states—we perform following [39]. The
starting point is the ∗-A algebra from the preceding paragraph.

By a quantum state, we mean every linear positive functional f over algebra ∗-A
satisfying the normalisation condition, i.e., a functional, for which the following relations
hold

∀ Â , B̂ ∈ B(H) ∀ a , b ∈ C f (aÂ + bB̂) = a f (Â) + b f (B̂), (2)

∀ Â ∈ B(H) f (Â† Â) ≥ 0 (3)

and
f (1̂) = 1. (4)

A practical realisation of this functional action is given by the trace of product of the
given operator Â with a special operator $̂ known as a density operator.

f (Â) := Tr($̂Â), Â ∈ B(H), (5)

A detailed analysis of properties of the density operator $̂ is presented in Section 6. The
physical meaning of functional action (5) is revealed in a formula determining the average
value of quantity Â 〈

Â
〉

:= Tr($̂Â).

To make our view panoramic, we remember that transformations, especially the time
evolution, are represented by unitary operators according to the rule

Â′ = ÛÂÛ−1. (6)

The Hilbert space formulation of quantum theory is widely accepted, and we will refer
to it throughout the paper. It works for simple systems. The fundamental reason seems to
be the versatility of the Hilbert spaces on which we model the systems. In classical physics,
the phase space of a particle moving on a sphere and of a free particle are different. In
quantum mechanics, these two cases are represented on the same (up to an isomorphism)
Hilbert space. Currently, we have, at our disposal, a method of introducing Cartesian
position operators and conjugated momenta operators; however, there is no method of
building analogous operators in curvilinear coordinates. Overcoming this serious obstacle
is necessary to quantise systems with constraints or with curved phase spaces.

3. The Structure of Quantum Phase Space

In contrast to the Hilbert space approach to quantum physics, in classical mechanics,
we deal with constraints or with curvature without problems and the mathematical ap-
paratus of differential geometry used for that purpose is well developed. Since classical
physics is a limit of quantum mechanics, it is natural that a mathematical model common
for these two theories should exist, and that, in the frame of this calculus, we would be able
to analyse quantum effects with constraints or with complicated geometry. In this section,
we begin construction of that description.
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Following the observations from the previous paragraph, we first consider systems
that are classically modelled on phase space R2. The generalisation of the presented results
on phase space R2n is straightforward.

The original problem, stated and partially solved by Dirac, was to propose a procedure
of assigning linear operators acting in the Hilbert spaceH and representing measurable
quantities to some functions on phase space R2. As it is well known, this procedure, called
quantisation, consists of two steps. In the first step, we propose self-adjoint operators of
position q̂ and momentum p̂. It is required that they satisfy the commutation relation

[q̂, p̂] = ih̄1̂. (7)

Having operators of position and momentum, we can build an algorithm enabling us to
find an operator on the Hilbert spaceH representing the function A(p, q) on the classical
phase space. This mapping is called the generalised Weyl application [40] and is expressed
by the formula

Â = WP (A(p, q)) =
1

(2π)2

∫
R2

Ã(λ, µ)P(h̄λµ) exp[i(λ p̂ + µq̂)]dλdµ, (8)

where P(h̄λµ) is some function and

Ã(λ, µ) :=
∫
R2

A(p, q) exp[−i(λp + µq)]dpdq

is the Fourier transform of the function A(p, q). It is required for function A(p, q) to have
the Fourier transform, which reduces the class of objects to which the generalised Weyl
application can be applied. However, in practical physical problems, measurable quantities
represented by rapidly growing functions of p and q appear rarely.

By direct calculation, one can see that, e.g.,

∀ n ∈ N WP (pn) = P(0) p̂n , WP (qn) = P(0)q̂n

but
WP (p · q) = P(0)q̂ p̂− h̄

2
P ′(0)− ih̄

2
P(0).

One usually assumes that classically measurable quantities called observables are
represented by smooth real functions on the phase space (as in quantum mechanics). Earlier,
we said that quantum observables are implemented by self-adjoint operators; to ensure that
real functions turn in self-adjoint operators via the Weyl application, we need to require the
function P(h̄λµ) to be real. A possible choice of that function, equivalent to the selection
of operator ordering, will be discussed later in Section 5.

In the literature (see [41,42]), formula (8) is often written with the use of the generalised
Stratonovich–Weyl quantiser or the Fano operators also called the generalised Grossmann–
Royer operator Φ̂P (p, q) as

WP (A(p, q)) =
1

2πh̄

∫
R2

A(p, q)Φ̂[P ](p, q)dpdq, (9)

where Φ̂[P ](p, q) is an operator valued function on plane R2 of the form

Φ̂[P ](p, q) :=
h̄

2π

∫
R2
P(h̄λµ) exp{iλ( p̂− p) + iµ(q̂− q)}dλdµ. (10)

On a 2n-dimensional space, R2n relations (9) and (10) transform into

WP (A(p1, . . . , qn)) =
1

(2πh̄)n

∫
R2n

A(p1, . . . , qn)Φ̂[P ](p1, . . . , qn)dp1 · · · dqn, (11)
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with the generalised Stratonovich–Weyl quantiser equal to

Φ̂[P ](p1, . . . , qn) :=
h̄n

(2π)n

∫
R2n
P(h̄

n

∑
j=1

λjµj)

× exp{i
n

∑
j=1

λj( p̂j − pj) + i
n

∑
j=1

µj(q̂j − qj)}dλ1 · · · dµn. (12)

The shape of argument of function P will be explained in Section 5.
An observation crucial for our purposes is that in the case when a classical counterpart

of our quantum system is modelled on the phase space R2n, one can use a transformation
inverse to the generalised Weyl application to construct a phase space image of quantum
mechanics. One of the equivalent forms of this transformation known as the generalised
Weyl correspondence for n = 1 is given by the expression

W−1
P (Â)(p, q) =

1
(2π)2

∫
R4

dp′dq′dλdµP−1(h̄λµ)

× exp
(
− ih̄λµ

2

)
exp

[
iλ(p− p′) + iµ(q− q′)

] 〈q′|Â|p′〉〈
q′|p′

〉 . (13)

From formula (13), we can deduce that, indeed, the space on which we build quantum
theory is R2. By |p′

〉
, |q′
〉
, we mean eigenvectors of operators of momentum p̂ and position

q̂ referring to the eigenvalues p′, q′, respectively. The operators p̂, q̂ are taken in Cartesian
coordinates so that they satisfy the commutation rule (7).

As one can check easily, e.g.,

∀ n ∈ N W−1
P ( p̂n) = P−1(0)pn , W−1

P (q̂n) = P−1(0)qn

but
W−1
P (q̂ p̂) = P−1(0)pq +

ih̄
2
P−1(0)− h̄

2
P−1′(0).

By construction of the generalised Weyl correspondence, we can see that the space R2,
on which an alternative approach to quantum world is proposed, has to be classical phase
space R2. Thus, this space is a symplectic manifold and, in canonical coordinates (p, q),
related with the operators p̂, q̂. By the generalised Weyl correspondence, the symplectic
form is represented by expression

ω = dp ∧ dq.

The existence of the symplectic structure enables us to calculate the volume of any domain
of a symplectic manifold. As a differentiable manifold, the phase space is a topological
space. It can be covered with one chart, in which the global coordinates are p and q. R2 is
also a vector space; however, this fact plays a minor role.

Let us make some additional comments about formula (13). These remarks will be
useful in the context of systems represented in finite dimensional Hilbert spaces.

Generalised eigenvectors of self-adjoint unbounded operators p̂, q̂ constitute two
bases ofH : {|p

〉
}∞

p=−∞ and {|q
〉
}∞

q=−∞, respectively. These bases are orthonormal〈
p′|p

〉
= δ(p− p′) ,

〈
q′|q
〉
= δ(q− q′).

The reader interested in the mathematically strict formulation of the aforesaid properties is
encouraged to look into, e.g., [38].

The decompositions of the operators of momentum and position in the bases consti-
tuted by their eigenvectors lead to the formulas
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p̂ =
∫
R

p|p
〉〈

p|dp and q̂ =
∫
R

q|q
〉〈

q|dq. (14)

Starting from the operators p̂ and q̂, we introduce two families of unitary operators:

exp(iλ p̂) and exp(iµq̂), λ, µ ∈ R (15)

where λ, µ ∈ R. These operators appear in the generalised Weyl application (8) and satisfy
the following commutation rule

exp
(
− ih̄λµ

2

)
exp(iλ p̂) exp(iµq̂) = exp

(
ih̄λµ

2

)
exp(iµq̂) exp(iλ p̂)

= exp{i(λ p̂ + µq̂)} =: Û (λ, µ). (16)

With the use of the operators Û (λ, µ), the Weyl correspondence turns into

W−1
P (Â)(p, q) =

h̄
2π

∫
R2

dλdµ P−1(h̄λµ) exp{i(λp + µq)}Tr
{

Â Û †(λ, µ)
}

. (17)

Now, we extend our former results on systems that are classically are modelled on
symplectic manifolds that are different from R2n. Among them are systems with constraints
and objects living in curved configuration spaces. The fundamental difference between
these systems and the ones discussed before is a local character of the coordinates p and q.
Therefore, we cannot use the Fourier transform and, thus, our formulas for the generalised
Weyl application (8) as well as for the generalised Weyl correspondence (13) are useless.
For discussion on the problem with the Stratonovich–Weyl quantiser for an arbitrary
Riemannian manifold see [43] and the references therein.

Taking into account our earlier remarks about the universality of the Hilbert space
H, we assume however, that a Hilbert space representation of these systems may be built
onH.

Since we predict that there exists a mapping

SW : A(M)→ BB(H)

between a linear space of functions A(M) on a phase space M and some subspace,
say BB(H), of the vector space of all linear operators acting in the Hilbert space H ,
we can impose some natural restrictions on the mapping SW known as the generalised
Stratonovich–Weyl application.

Commonly accepted conditions implemented in this mapping are the following:

1. Mapping SW establishes a one-to-one correspondence between elements of the two
linear spaces A(M) and BB(H). Since we do not know whether manifold M is
the phase space of the classical counterpart of our system, this demand offers an
opportunity to investigate a structure of spaceM.
To achieve this goal, we introduce an inverse operation

SW−1 : BB(H)→ A(M)

known as the generalised Stratonovich–Weyl correspondence. At this moment, we
do not discuss the problem of whether the mappings SW, SW−1 establish an isomor-
phism between the potential algebras A(M) of functions and BB(H) of operators,
which will be built on the linear spaces A(M) and BB(H).
Since, for our purposes, the generalised Stratonovich–Weyl correspondence is more
useful, we will present the next assumptions for it.

2. Mapping SW−1 is C-linear.
3. SW−1(1̂) = 1, i.e., the constant function equal to 1 on the whole phase space is a

counterpart of the identity operator acting in the Hilbert spaceH.
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4. The image of a self-adjoint operator in the generalised Stratonovich–Weyl correspon-
dence is a real function. We extend this requirement to the form

SW−1(Â†) = SW−1(Â).

Unfortunately, requirements 1–4 are not sufficient to reveal the structure of the phase
spaceM, on which functions belonging to the set A(M) are defined. Hence, we are not
able to prove that the classical phase space is suitable for the quantised set. Thus, we
usually assume the classical phase space to be also the quantum one. We are also aware of
exceptions, like sets whose classical phase space is a cylinder S1 ×R. A detailed analysis
of this situation can be found in [44–47].

At the end of this section, we will discuss a phase space representation of quantum
systems modelled on finite dimensional Hilbert spacesH(s+1) where s + 1 = dimH(s+1) <
∞. This part is based on our previous papers [48,49] (see also the list of references therein).
The idea of the construction of phase space for sets of this kind is an adaptation of a scheme
arising from the generalised Weyl correspondence on R2n.

First, we choose a a basis{∣∣0〉, ∣∣1〉, . . . ,
∣∣s〉},

〈
n
∣∣n′〉 = δnn′ , n, n′ = 0, 1, . . . , s (18)

inH(s+1). An alternative system of vectors spanning this Hilbert space is

∣∣φm
〉

:=
1√

s + 1

s

∑
n=0

exp(inφm)
∣∣n〉,〈

φm
∣∣φm′

〉
= δmm′ , m, m′ = 0, 1, . . . , s.

(19)

Real numbers φm enumerating versors are defined as

φm = φ0 +
2π

s + 1
m, m = 0, 1, . . . , s, φ0 ∈ R.

One can put φ0 = 0, and we do that.
Let us introduce two self-adjoint operators known as the Schwinger operators, whose

eigenvalues are numbers n and φm. Projective operators
∣∣n〉〈n∣∣, ∣∣φm

〉〈
φm
∣∣ project vectors

fromH(s+1) on the eigenstates of these two operators.

n̂ :=
s

∑
n=0

n
∣∣n〉〈n∣∣ , φ̂ :=

s

∑
m=0

φm
∣∣φm

〉〈
φm
∣∣. (20)

Operators n̂ and φ̂ do not commute because

[n̂, φ̂] =
2π

s + 1

s

∑
l=0

s

∑
m = 0
m 6= l

l −m

exp
(

2i(l−m)π
s+1

)
− 1

∣∣φm
〉〈

φl
∣∣.

Having those operators, we introduce two families of the unitary operators:

V̂ := exp
(

i
2π

s + 1
n̂
)

and Û := exp(iφ̂) (21)

fulfilling the conditions V̂s+1 = 1̂ and Ûs+1 = exp
{

i(s + 1)φ0

}
1̂, respectively.

These operators satisfy the commutation relation analogous to the operators exp(iλ p̂)
and exp(iµq̂), i.e.,

exp
(
−i

πkl
s + 1

)
ÛkV̂ l = exp

(
i

πkl
s + 1

)
V̂ lÛk =: D̂(k, l), k, l ∈ Z. (22)



Entropy 2021, 23, 581 8 of 26

Therefore, we can propose an explicit correspondence between some operator Â acting in
the Hilbert spaceH(s+1) and a function A(φm, n) of two discrete real arguments φm and n.

A(φm, n) =
1

s + 1

s

∑
k,l=0
K−1(k, l) exp

{
i
(

kφm +
2π

s + 1
ln
)}
× Tr

{
Â D̂†(k, l)

}
. (23)

Function A(φm, n) is defined on a discrete phase space (a grid)
{
(φm, n)

}s
m,n=0 denoted by

Γ(s+1). Therefore, we see that a phase space counterpart of H(s+1) is a lattice Γ(s+1). The
grid, of course, is not a differentiable manifold.

Kernel K(k, l), like the function P(h̄λµ), is responsible for the choice of ordering. Th
question of physically acceptable orderings will be discussed later.

As an example, we consider the case when s = 1. Thus, bases of the Hilbert space
H(2) are:

{∣∣0〉, ∣∣1〉} and alternatively
{∣∣φ0

〉
= 1√

2

(∣∣0〉+ ∣∣1〉), ∣∣φ1
〉
= 1√

2

(∣∣0〉− ∣∣1〉)}. The

fundamental operators n̂ and φ̂ are equal to

n̂ =
∣∣1〉〈1∣∣ , φ̂ = π

∣∣φ1
〉〈

φ1
∣∣.

According to the rule (23), the function representing operator n̂ equals

n(φm, n) =
[

n(φ0, 0) n(φ0, 1)
n(φ1, 0) n(φ1, 1)

]
=

1
2

[
K−1(0, 0)−K−1(0, 1) K−1(0, 0) +K−1(0, 1)
K−1(0, 0)−K−1(0, 1) K−1(0, 0) +K−1(0, 1)

]
.

Exactly as in the case of the phase space R2n, a relation between some functions on
grid Γ(s+1) and a class of linear operators acting on the Hilbert spaceH(s+1) is a bijection.
Thus, the inverse formula to ( 23) exists and is of the form

Â =
1

s + 1

s

∑
m,n=0

A(φm, n)Ω̂[K](φm, n), (24)

where the Stratonovich–Weyl quantiser equals

Ω̂[K](φm, n) :=
1

s + 1

s

∑
k,l=0
K(k, l) exp

{
−i
(

kφm +
2π

s + 1
ln
)}
D̂(k, l). (25)

For objects that are modelled on the Hilbert spaceH⊗H(s+1) and for which the gen-
eralised Weyl correspondence works, the respective phase space is the Cartesian product
R2n × Γ(s+1). As it is easy to check, the bijection between some class of linear operators and
functions on R2 × Γ(s+1) is given by the pair of relations

A(p, q, φm, n) =
h̄

2π

1
s + 1

s

∑
k,l=0

∫
R2

dλdµ(P(h̄λµ)K(kl))−1

× exp{i(λp + µq)} exp
{

i
2π

s + 1
(km + ln)

}
Tr
{

Â Û †(λ, µ)D̂†(k, l)
}

(26)

and

Â =
1

(2π)2(s + 1)2

s

∑
k,l,m,n=0

∫
R4

dλdµ dpdqP(h̄λµ)K(kl)×

exp{−i(λp + µq)} exp
{
−i

2π

s + 1
(km + ln)

}
A(p, q, φm, n)Û (λ, µ)D̂(k, l). (27)

For the motivation of putting K(k, l) = K(kl) see Section 5. As one can see, the aforemen-
tioned bijection is based on the Fourier transform and the discrete Fourier transform. This
is why we do not have a universal scheme to obtain the Hilbert space representation of a
classical system modelled on some nontrivial symplectic space and why in having a Hilbert
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space representation of a nontrivial system, we may not be able to build its quantum phase
space counterpart. It is possible that there exist different phase spaces on which the same
quantum system is represented. An excellent illustration of this option is the description of
a particle with spin [50,51].

4. Algebra of Quantum Observables

Thus far, to establish relations between a phase space and a Hilbert space, we explored
the generalised Weyl correspondence/application and the generalised Stratonovich–Weyl
mappings only at the level of linear structures of sets of observables. However, the total
structures of the family of functions or family of operators used in quantum mechanics are
much more extensive. The current section is devoted to an analysis of that topic.

As we already mentioned, classical observables are smooth, real functions on the
phase spaceM of a system. Their multiplication is the usual pointwise product of func-
tions. Thus, observables are real elements of the ring of smooth, complex, valued functions
(C∞(M),+, ·), which is an algebra over the field of complex numbers C. Convergence
in this algebra is introduced in agreement with the notion of convergence of generalised
functions (see [52]). The sequence of functions {Ar(p1, . . . , qn)}∞

r=1, dimM = 2n is con-
vergent to a function A0(p1, . . . , qn) if, on every compact subset of the manifoldM, every

sequence of partial derivatives
{

∂m1+m2+...+m2n
∂m1 p1 ...∂m2n qn Ar(p1, . . . , qn)

}∞

r=1
is uniformly convergent

to the derivative ∂m1+m2+...+m2n
∂m1 p1 ...∂m2n qn A0(p1, . . . , qn). The definition may seem to be very restrictive

but it well represents the physical meaning of convergence for measurable quantities. We
present it in a local Darboux chart; however, of course it does not depend on the choice of
coordinates.

The ring (C∞(M),+, ·) in physics is equipped with a Lie algebra structure. This
structure known as the Poisson bracket is introduced by the symplectic structure and
locally in the Darboux chart

{A(p1, . . . , qn), B(p1, . . . , qn)}P

=
n

∑
l=1

(
∂A(p1, . . . , qn)

∂ql
∂B(p1, . . . , qn)

∂pl
− ∂A(p1, . . . , qn)

∂pl

∂B(p1, . . . , qn)

∂ql

)
. (28)

Analysing the relationship between the Hilbert space formulation of quantum mechan-
ics and its formulation on phase space R2n, we propose some universal postulates referring
to the more general case when the quantum phase space is a symplectic manifoldM.

Observables are again represented by smooth real functions on the phase spaceM. The
topology is as in the classical case. What is new, is the elements of the ring (C∞(M),+, ·),
may depend on the Planck constant h̄; although, in classical physics, this is not forbidden.

The fundamental difference between the sets of classical and of quantum observables
lies in their products. Since the multiplication of linear operators acting on a Hilbert space
H is associative but nonabelian, analogous properties are expected in the set of quantum
observables on the phase space.

Therefore, we are forced to introduce a new product, represented by the symbol ∗ and
called a ‘star’ product. Since its form depends on the structure of the manifoldM, we need
to, again, consider three options.

On a trivial phase space R2, an explicit form of the ∗- multiplication can be found with
the use of the generalised Weyl correspondence. As one proves

W−1
P (Â · B̂) = W−1

P (Â) ∗P W−1
P (B̂)(p, q) = A(p, q) ∗P B(p, q)

=
1

h̄2(2π)4

∫
R8

dλdµdp′dq′dp′′dq′′dp′′′dq′′′P−2(h̄λµ) exp{i[λ(p− p′) + µ(q− q′)]}

× A(p′′, q′′)Tr
{

Φ̂[P ](p′, q′) Φ̂[P ](p′′, q′′) Φ̂[P ](p′′′, q′′′)
}

B(p′′′, q′′′). (29)
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where A(p, q) = W−1
P (Â), B(p, q) = W−1

P (B̂). Equivalently ∗-multiplication of the func-
tions A(p, q), B(p, q) is represented by the integral

(A ∗P B)(p, q) =
∫
R2

dλdµP−1(h̄λµ) exp{i(λp + µq)}( ˜̃A � ˜̃B)(λ, µ). (30)

The �-product does not depend on kernel P .
Auxiliary objects ˜̃A(λ, µ), ˜̃B(λ, µ) are defined by

˜̃A(λ, µ) =
1

(2π)2 P(h̄λµ)
∫
R2

dpdq exp{−i(λp + µq)}A(p, q). (31)

The �-multiplication on phase space R2 one is calculated as (compare [49])(
˜̃A � ˜̃B

)
(λ, µ) =

∫
R4

dλ′dµ′dλ′′dµ′′ ˜̃A(λ ′, µ ′) exp
{

ih̄
2
(λ ′µ− λµ ′)

}
× δ(λ ′ + λ ′′ − λ)δ(µ ′ + µ ′′ − µ) ˜̃B(λ ′′, µ ′′). (32)

Since the ∗P -multiplication is based on the generalised Weyl correspondence, its explicit
form is known only on the phase spaces R2n. The ∗-product is nonlocal.

We indicated that the set of bounded operators B(H) is also a Lie algebra. Therefore,
a Lie algebra structure is mapped to the recently built algebra (C∞(R2),+, ∗P ). The Lie
structure is called the Moyal bracket

{A(p, q), B(p, q)}M :=
1
ih̄

(
A(p, q) ∗P B(p, q)− B(p, q) ∗P A(p, q)

)
. (33)

The Lie structure given by the Moyal bracket differs from the one determined by the Poisson
bracket. Therefore, we can conclude that the classical Poisson algebra (C∞(R2),+, ·, {·, ·}P)
of functions turns in the quantum case in a family of algebras (C̃∞(R2),+, ∗P , {·, ·}M). A
possible presence of the Planck constant h̄ does not change the class of functions C∞(R2).
However, being precise, not every two smooth functions from C∞(R2) can be multiplied in
the sense of the star product ∗P . This complicated issue was discussed in [40,53]. Therefore,
the vector space C̃∞(R2) is a subspace of C∞(R2).

To introduce a ∗-product on an arbitrary symplectic manifold, we need a local form of
this multiplication. However, a universal method of calculating the ∗P -multiplication in
that manner does not exist. However, if we substitute convergent expressions by their series
in expansions in the Planck constant h̄, we are able to propose a calculus called deformation
quantisation, which is, in some cases, equivalent to the aforementioned considerations.
The price we pay for this operation is a general loss of convergence.

Thus, we introduce a vector space (C∞[h̄−1, h̄]](R2),C[h̄−1, h̄]],+, ·) of formal series
in h̄ over the field of complex numbers extended with respect to parameter h̄. Elements of
the field C[h̄−1, h̄]] are of the form

∞

∑
l=−r

h̄lcl , r ∈ N , ∀ l cl ∈ C

and the formal series belonging to C∞[h̄−1, h̄]](R2) can be written as

A(p, q) =
∞

∑
l=−s

h̄l Al(p, q), s ∈ N , ∀ l Al(p, q) ∈ C∞(R2). (34)

A detailed analysis of the structure of the vector space (C∞[h̄−1, h̄]](R2),C[h̄−1, h̄]],+, ·) is
presented in [54]. To introduce a ∗P -product of the formal series from C∞[h̄−1, h̄]](R2), first,
we build another formal series



Entropy 2021, 23, 581 11 of 26

P(h̄λµ) =
∞

∑
j=0
Pj · (h̄λµ)j, P0 = 1, ∀ j > 0 Pj ∈ R. (35)

The formal series P(h̄λµ) is responsible for the choice of ordering. We will discuss this
question in Section 5. As one can see, the series plays the same role as function P(h̄λµ) in
the former considerations. Thus, we denote both of them with the same symbol.

Element AP (p, q), constructed from the formal series (34), is equal to

AP (p, q) := P
(
−h̄

∂2

∂p∂q

)
A(p, q)

(34)
=

∞

∑
j=0

∞

∑
l=−s

(−1)j h̄j+lPj
∂2j Al(p, q)

∂p j∂q j . (36)

Multiplication of the formal series is then defined as

A(p, q) ∗P B(p, q) := P−1
(
−h̄

∂2

∂p∂q

)[
AP (p, q) exp

(
ih̄
←→
P

2

)
BP (p, q)

]
(37)

with the Poisson operator being given by the expression

←→
P :=

←−
∂

∂q

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂q
.

Function ’exp’ in formula (37) needs to be represented by its Taylor series.
The algebra (C∞[h̄−1, h̄]](R2),C[h̄−1, h̄]],+, ∗P ) can be equipped in a natural way with

a Lie structure. The Moyal bracket (33) in set (C∞[h̄−1, h̄]](R2),C[h̄−1, h̄]],+, ∗P ) is equal to

{A(p, q), B(p, q)}M =
2
h̄
P−1

(
−h̄

∂2

∂p∂q

)[
AP (p, q) sin

(
h̄
←→
P

2

)
BP (p, q)

]
. (38)

Although we stress that the formal series approach to algebra of functions on the symplectic
manifold R2 may destroy convergence, it also possesses some advantages compared to
the strict star calculus. First, it can be extended to all formal series of smooth functions on
R2. Secondly, calculations involving exclusively derivatives become easier compared to
integral expressions. Finally, for a wide class of objects, e.g., polynomials, the results of
∗P -multiplication achieved with the use of expression (37) and (30) are the same.

As an example of the aforementioned product, we calculate

p ∗P q = pq− ih̄
2
+ h̄P1.

The formal series version of phase space quantum mechanics is our chance to move to
nontrivial symplectic manifolds. Product (37) of the formal series is calculated locally. A
natural way to transform it into a form suitable to work on arbitrary symplectic manifold
appears to be the substitution of partial derivatives with covariant ones. This operation
ensures that the result of the multiplication would be again a scalar.

Let us discuss this option in the simplest case when kernel P(h̄λµ) = 1. The phase
space is a symplectic manifoldM, dimM = 2n. Assuming

∂A(φ1, . . . , φ2n)

∂h̄
=

∂B(φ1, . . . , φ2n)

∂h̄
= 0

in a local chart (U, {φ1, . . . , φ2n}) (not necessarily a Darboux one) on manifoldM, the term
standing at power h̄n in expression (37) is proportional to

ωi1 j1 . . . ωin jn∇i1 · · · ∇in A(φ1, . . . φ2n)∇j1 · · · ∇jn B(φ1, . . . φ2n). (39)
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By ωik jk , we denote components of the tensor inverse to the symplectic form ω. In the
chart (U, {φ1, . . . , φ2n}), represented by its components ωij, ∇i, symbolises the covariant
derivative with respect to the variable φi. The Einstein summation convention is used. The
presented idea requires the existence of a connection on the phase spaceM.

Unfortunately, as is known (e.g., [20]), the ∗-product consisting of terms, like (39), is
associative if and only if the connection onM is

1. symplectic ∇iω = 0 for i = 1, 2, . . . , 2n;
2. without torsion

∇ij A(φ1, . . . φ2n) = ∇ji A(φ1, . . . φ2n) for i, j = 1, 2, . . . , 2n

and every function A(φ1, . . . , φ2n); and
3. flat

∇ijk A(φ1, . . . φ2n) = ∇ikj A(φ1, . . . φ2n) for i, j, k = 1, 2, . . . , 2n

and every function A(φ1, . . . , φ2n).

These three constraints taken together are demanding. Despite the fact that every
symplectic manifold can be equipped with several symplectic connections, there are usually
some restrictions imposed on them. Indeed, most phase spaces are cotangent bundles with
the base spaces being configuration spaces. Those configuration spaces usually contain
a Riemannian connection. It is natural that the symplectic connection on M = T∗V
should be compatible with the Riemannian connection on the base manifold V . Although
‘compatibility’ can be realised in several ways (e.g., [55–58]), the final symplectic torsion-
free connection may still be curved. Thus, the programme of generalisation of product (37)
in the sense presented above fails.

There exists a constructive iterative method of building a ∗-product on an arbi-
trary symplectic manifold. This method was proposed by B. Fedosov in his outstand-
ing works [59,60]. We are not able to present the whole algorithm invented by Fedosov;
however, to give an idea, we will indicate its main steps.

The stage for the Fedosov calculus is a generalised Weyl bundle. The base manifold
of that bundle is the symplectic manifoldM at which we want to define the ∗-product.
The fibre is an algebra of a formal series in h̄ of symmetric powers of the cotangent bundle
T∗M. Therefore, for a fixed chart on the U ⊂M, elements of the fibre are formal series of
polynomials of coordinates in T∗M. The product ‘◦’ in the fibre of the generalised Weyl
bundle is given by a formula similar to (37).

In the next step, the generalised Weyl algebra bundle is equipped with a symplectic
torsion-free connection induced by the symplectic torsion-free connection from the base
spaceM. Thus, phase space quantum mechanics, in contrast to classical Hamilton physics,
require some connection. This connection on the Weyl bundle is then modified to an
Abelian connection.

Finally, the formal series on the manifold M to be multiplied in the sense of star
product is lifted to a flat section of the Weyl algebra bundle, then their ◦-product is
calculated, and the result is projected onM.

A great advantage of the Fedosov construction is its recurrent character. Therefore, it
can be easily implemented in the form of a computer programme [61,62]. However, we
have to remember that this calculus is formal, and some formulas can be divergent.

The Fedosov method, apart from its unquestionable applicable virtue, answers a
fundamental theoretical question. It shows that, on any symplectic manifold, one can
introduce a nontrivial deformation of the Poisson structure. That fact was proven first by
De Wilde and Lecomte [63]. Kontsevich [64] solved the problem of the existence of such a
deformation of Poisson algebra for any Poisson manifold.

Let us analyse some properties of the ∗-product on an arbitrary symplectic manifold
M. These properties can be deduced, e.g., from the Fedosov construction; however, here
we propose another, axiomatic, point of view. We consider any mapping fulfilling these
conditions as ∗-multiplication onM equivalent to the product of linear operators acting in
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the Hilbert spaceH. Thus, we look at the phase space representation of quantum mechanics
from another perspective. If we are able to introduce a mapping ‘∗’ satisfying the axioms
written below, we have a basis to construct quantum physics.

We postulate a ∗-product to be a two-argument multiplication in the linear space of
the formal series C∞[h̄−1, h̄]](M) on a manifoldM mapping every pair of formal series
into another formal series

∗ : C∞[h̄−1, h̄]](M)× C∞[h̄−1, h̄]](M)→ C∞[h̄−1, h̄]](M).

1. For the functions A(φ1, . . . , φ2n) and D(φ1, . . . , φ2n) ∈ C∞(M), i.e., not containing
the deformation parameter h̄, we write the ∗-product in the form

A ∗ D :=
∞

∑
k=0

h̄kBk(A, D), ∀ k Bk(A, D) ∈ C∞(M). (40)

To shorten the notation, we do not write the local coordinates in the arguments of
functions.

2. The operators Bk(·, ·), k = 0, 1, 2, . . . are C[λ−1, λ]]–bilinear.
3. Moreover, they are local, i.e.,

∀ A, D ∈ C∞(M) supp Bk(A, D) ⊂
(
supp A ∩ supp D

)
.

4. The ∗-product is associative. Thus, for every k ≥ 0 and every functions A, D, G ∈
C∞(M),

k

∑
l=0

Bl(A, Bk−l(D, G)) =
k

∑
l=0

Bl(Bk−l(A, D), G).

5. Next, for every A, D ∈ C∞(M), the equality holds

B0(A, D) = A · D.

This requirement physically means that the ∗-product is, indeed, a deformation of the
pointwise (classical) multiplication of functions.

6. For every k ≥ 1 and every function A ∈ C∞(M), there is

Bk(1, A) = Bk(A, 1) = 0.

Therefore, the constant function equal to 1 is the identity element with respect to the
∗-product.

7. For all A, D ∈ C∞(M),

B1(A, D)− B1(D, A) = i{A, D}P,

This condition ensures that, in the first approximation with respect to the deformation
parameter h̄, the difference

(A ∗ D− D ∗ A) ∼ ih̄{A, D}P.

The aforementioned relation explains why the ∗-multiplication leads to a deformation
of the Poisson structure.

8. The complex conjugation is an involution of the ∗–algebra, i.e., for every A, D ∈
C∞(M),

Bk(A, D) = Bk(D, A).

Thus, we say that the ∗-product is Hermitian.
There are two more supplementary assumptions about the ∗-product that are widely
used. The first says that
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9. The operators Bk(·, ·), k = 0, 1, 2, . . . are bidifferential. This condition assures a
convenient realisation of the previous requirements.

10. The second states that operator Bk(·, ·), k = 0, 1, 2, . . . is, at most, of the order k. In
this case, we call the ∗-product natural.

The set of series C∞[h̄−1, h̄]](M) with the ∗-product is a ring, which, in general, is
nonabelian. Moreover, it is an algebra over the field C[h̄−1, h̄]]. The ∗-product is continuous
in its arguments if all of the operators Bk(·, ·) are continuous. Thus, every natural ∗-
multiplication is continuous.

The discussed construction and the properties of ∗-products work only on differen-
tiable manifolds. Therefore, a phase space being a lattice requires a separate treatment.
Thus, at the end of the current section, we are going to investigate the structure of set of
observables on the (s + 1)× (s + 1) grid Γ(s+1) = {(ϕm, n)}m,n=0,...,s being the phase space
for the internal degrees of freedom, like spin.

We assume that observables are real functions on Γ(s+1). They are elements of the
vector space (C(Γ(s+1)),C,+, ·) of complex valued functions over the field of complex
numbers C. Notions of continuity and smoothness are not defined there; however, we can
introduce topology in the set C(Γ(s+1)). We say that a sequence of functions {Aj(φm, n)}∞

j=1
is convergent to a function A(φm, n) if, for every fixed value of φm0 and n0, the sequence of
numbers {Aj(ϕm0 , n0)}∞

j=1 tends to the number A(φm0 , n0).

Our goal is to equip the set of functions C(Γ(s+1)) with a structure of noncommutative
but associative algebra. The multiplication should be a counterpart of the product of linear
operators acting in the finite dimensional Hilbert spaceH(s+1). Applying the discrete Weyl
correspondence (23), we obtain that the product of two functions A(φm, n), B(φm, n) ∈
C(Γ(s+1)) related to the operators Â, B̂ is determined by

(A ∗K B)(φm, n) =
1

s + 1

s

∑
k,l=0
K−1(k, l) exp

{
i
(

kφm +
2π

s + 1
ln
)}
× Tr

{
Â · B̂ D̂†(k, l)

}
. (41)

To obtain the product (41) in a form not referring to operators, we need to introduce
the auxiliary functions ˜̃A(k, l) and ˜̃B(k, l), defined on pairs of natural numbers {0, . . . , s} ×
{0, . . . , s} and calculated according to the rule

˜̃A(k, l) :=
1

(s + 1)2K(k, l)
s

∑
m,n=0

exp
{
−2πi(kφm + nφl)

s + 1

}
A(φm, n). (42)

Now, Equation (41) turns into

(A ∗K B)(ϕm, n) =
s

∑
k,l=0
K−1(k, l) exp

{
i
(

kφm +
2π

s + 1
ln
)}

×
s

∑
k′ ,k′′ ,l′ ,l′′=0

˜̃A(k′, l′)(−1)(k
′−k)Y(l′−l−1)+(l′−l)Y(k′−k−1)+(s+1)Y(k′−k−1)Y(l′−l−1)

× exp
{

iπ
s + 1

(k′l − kl′)
}

δk′+k′′−k,0 mod(s+1)δl′+l′′−l,0 mod(s+1)
˜̃B(k′′, l′′). (43)

By Y(k), k ∈ Z, we denote the discrete Heaviside step function

Y(k) :=
{

1, k ≥ 0,
0, k < 0.

The Planck constant h̄ does not appear in formula (43). The effect originates from the
fact that the internal degrees of freedom do not refer to any classical quantities and, thus,
operations on them are not a deformation of their classical counterparts.
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Set (C(Γ(s+1)),+, ∗K) is a ring with identity. Since this is also a vector space over C,
we have built an associative noncommutative algebra containing quantum observables. It
is also a Lie algebra with the Lie bracket given by the Moyal bracket

{A(ϕm, n), B(ϕm, n)}M := A(ϕm, n) ∗K B(ϕm, n)− B(ϕm, n) ∗K A(ϕm, n). (44)

By combining the results for a symplectic manifoldM and a grid Γ(s+1) one can derive a
phase space algebra of the functions for systems described by both classical and internal
degrees of freedom.

5. Physically Motivated Orderings

As it was explained in the preceding chapter, in both continuous and discrete cases,
we were able to construct several quantum algebras parametrised by functions: P(λ, µ)
or K(k, l), which are often called kernels. Before we start discussion of role of them in the
phase space version of quantum mechanics, we need to make the following comment.

Mathematicians divide the products of formal series into classes of equivalence. Thus,
in deformation quantisation built on a symplectic manifoldM, two products ∗P1 and ∗P2
are equivalent if there exists a differential operator

g : C∞(M)→ C∞(M) , g = 1 +
∞

∑
i=1

gi

such that
g(A ∗P1 D) = g(A) ∗P2 g(D). (45)

Thus, we see that most of our earlier considerations were devoted to star products from
the same class. However, the physical meaning of the equivalent ∗-products is different,
because they lead, e.g., to different eigenvalues and eigenvectors. Thus, from the point of
view of the experiment, we have to distinguish between them, and this is why it is worth
discussing several kernels.

Let us do that. The first observation, following from the analysis of units of arguments
says that P(λ, µ) and K(k, l) should be dimensionless. Since the parameters λ, µ appear
in the Fourier transform (10), the argument of function P(λ, µ) is the product h̄λµ. If the
phase space is R2n, then the argument equals h̄ ∑n

j=1 λjµj.

Moreover, comparing the expressions (16) and (81), we see that factor 1
1+s imitates h̄

2π .

This is why the argument h̄λµ
2 of function P turns into the argument πkl

1+s of the kernel K,

and we often write P
(

h̄λµ
2

)
and K

(
πkl
s+1

)
.

The next restriction follows from the fact that, in several formulas, the inverse elements
P−1( h̄λµ

2 ) and K−1
(

πkl
s+1

)
appear. Therefore, an essential property of every kernel is its

invertibility. In strict integral expressions, it is sufficient to assume that P( h̄λµ
2 ) is different

from 0 almost everywhere and that singularities do not lead to divergent integrals. For the
formal series, we see that there must be P0 6= 0. In the case of a discrete phase space Γ(s+1),
we simply demand that K

(
πkl
s+1

)
6= 0 for every k, l.

The presence of the functions P( h̄λµ
2 ) and K

(
πkl
s+1

)
in our considerations originates

from the noncommutativity of the operators p̂, q̂ on a continuous phase space R2 and of
the operators n̂, φ̂ on the grid Γ(s+1). Thus, it is natural that kernels should not interfere
in systems depending exclusively on the momentum or the position and, analogously,
exclusively on n or φm. This expectation means that P(0) = 1 and K(0) = 1. For the formal
series P( h̄λµ

2 ), the condition P(0) = 1 assures the existence of the series P−1( h̄λµ
2 ).

Last, but not least, we expect that real functions correspond to the Hermitian operators.
On symplectic manifolds, that requirement implies P( h̄λµ

2 ) to be real. On the lattice
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Γ(s+1), the fact that real valued functions are mapped in Hermitian operators leads to the
requirement

K
(

πkl
s + 1

)
= (−1)s+1−k−lK

(
π(s + 1− k)(s + 1− l)

s + 1

)
, 1 ≤ k, l ≤ s, K(0) = K(0). (46)

Likely, the best known realisation of ordering on the phase space R2 is the Weyl
ordering. It holds for

P
(

h̄λµ

2

)
= 1.

One of the distinguishing features of the Weyl ordering is the fact that P( h̄λµ
2 ) = 1 is the

only kernel assuring compatibility for an arbitrary monomial prqs, r, s ∈ N between the
Poisson brackets and the respective commutators up to the second order, i.e.,

W1({q2, prqs}P) =
1
ih̄
[q̂2, W1(prqs)] , W1({p2, prqs}P) =

1
ih̄
[ p̂2, W1(prqs)]

and
W1({pq, prqs}P) =

1
ih̄
[W1(pq), W1(prqs)].

What is amazing, because of the requirement (46) in the discrete case, one cannot put
K
(

πkl
s+1

)
= 1 for every 1 ≤ k, l ≤ s. A possible choice for s + 1 = odd number, is

K
(

πkl
s + 1

)
= (−1)kl .

If s + 1 is an even number, the situation becomes more complicated. A partial answer to
the question about a possible kernel on a grid of even dimensions can be found in [48].
However, one can always choose K

(
πkl
s+1

)
, which is real and

∣∣∣K( πkl
s+1

)∣∣∣ = 1.
Another degree of freedom with respect to a choice of ordering appears in the Fedosov

quantisation. As we mentioned, in the Fedosov construction, a symplectic torsion-free
connection on the phase spaceM is required, and a given phase space may be equipped
with different symplectic connections. Thus, we may build several ∗-products changing
the differential structure of the manifoldM. Moreover, every fibre in the Weyl bundle
admits several ◦-products leading also to different ∗-products. Considerations devoted to
this aspect of phase space quantum mechanics can be found in [58,65].

6. Representation of States on a Quantum Phase Space

The question of representing states on a quantum phase space should be discussed in
three aspects. First, we need a phase space counterpart of a density operator. In the second
step, a functional action equivalent to a trace in the Hilbert space has to be introduced.
These two structures plus a ∗-product are sufficient to deal with calculating the mean
values and the time evolution.

However, in quantum mechanics, we are also interested in the possible results of a
single measurement. To gain this information, we solve an eigenvalue equation for a fixed
observable. Thus, a phase space analogue is required.

As we said before, the density operator $̂ acting in the Hilbert space H is a linear,
self-adjoint, positive, and normalised operator defined on the whole Hilbert space.

Since the density operator is self-adjoint and its domain is the whole spaceH, then it
is bounded. Eigenvalues of the density operator are nonnegative, and they do not exceed 1.
Thus, its norm satisfies the inequality ||$̂|| ≤ 1.

The interpretation of the eigenvalues and eigenstates of this operator is clearly ex-
pressed in the von Neumann definition [66] stating that the density operator is of the form
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$̂ := u− lim
n→dimH

n

∑
j=1

pj|ϕj
〉〈

ϕj|, ∀ j pj ≥ 0 ,
dimH
∑
j=1

pj = 1.

Each number pj, j = 1, 2, . . . , dimH is the probability of observing the system in the state
represented by a ket |ϕj

〉
. If one of these numbers equals 1, we say that the system is in a

pure state. Otherwise, the system is in a mixed state. The symbol u− denotes the uniform
convergence of a sequence of operators.

Thus, we see that every pure state is represented by an operator of the projection on a
1-D subspace of the Hilbert spaceH.

The functional action of the density operator $̂ on an observable represented by the
operator Â is calculated with the use of trace. For any bounded and positive operator Â,
its trace is defined as [67]

TrÂ :=
dimH
∑
i=1

〈
ϕi|Â|ϕi

〉
, (47)

where {|ϕi
〉
}dimH

i=1 constitutes a basis of the Hilbert spaceH. The trace (47) is independent
of the basis chosen. Because of the equalities

Tr(Â + B̂) = Tr Â + Tr B̂

∀ b ∈ C Tr(bÂ) = b · TrÂ,

we see that the trace actually realises a linear functional. The trace is invariant under any
unitary transformation.

For every density operator $̂,

Tr
√

$̂+$̂ = Tr|$̂| = Tr$̂ = 1.

Thus, the density operator is a trace class operator. Therefore, for every bounded operator
Â ∈ B(H), the trace of the product $̂Â is abelian

Tr($̂Â) = Tr(Â$̂).

Since states are represented by density operators, we have to redefine the eigenvalue
equation. Instead of formula

Â|ϕi
〉
= ai|ϕi

〉
, (48)

where ai denotes an eigenvalue assigned to eigenvector
∣∣ϕi
〉
, we look for an equation

determining the projection operator
∣∣ϕi
〉〈

ϕi
∣∣ as the density operator for the state

∣∣ϕi
〉
. If

the state is degenerated, we focus on one fixed vector
∣∣ϕi
〉

from the subspace related to the
eigenvalue ai.

Thus, the eigenvalue equation (48) turns into

Â$̂i = ai $̂i. (49)

However, there are several operators fulfilling (49) that are different from the projection
operator |ϕi

〉〈
ϕi|. To extract the exact one referring to the state |ϕi

〉
, we need to use the

following requirements:

1. The operator $̂i is self-adjoint, i.e., $̂i = $̂†
i .

2. $̂i is an operator of the projection. Therefore, the equality $̂i = $̂2
i holds.

3. Its trace satisfies the formula Tr$̂i = 1.

If the state referring to eigenvalue ai is degenerated, Equation (49) possesses more
solutions satisfying the preceding conditions.
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Density operators referring to different eigenvalues of the same self-adjoint operator
satisfy the equality

$̂i $̂j = 0̂.

There exist states that are not represented by density operators fulfilling the definitions
presented at the beginning of this chapter, e.g., density operators assigned to the eigenstates
of unbounded operators with continuous spectra.They usually do not fulfil the trace
condition (3).

In the phase space formulation of quantum mechanics, a state given by the density
operator $̂ is represented by an image of $̂ in the generalised Stratonovich–Weyl correspon-
dence. For systems that are classically modelled on R2, we know the explicit form of this
mapping presented as the relation (13). By definition, an object

WP (p, q) := W−1
P

(
1

2πh̄
$̂

)
=

1
(2π)2

∫
R4
P−1

(
h̄λ′µ′

2

)

× exp
(
− ih̄λ′µ′

2

)
exp

[
iλ′(p− p′) + iµ′(q− q′)

] 〈q′|$̂|p′〉
(2πh̄)1/2 exp

(
− ip′q′

h̄

)
dp′dq′ (50)

is called a Wigner function. It depends on the choice of function P
(

h̄λµ
2

)
. The role of factor

1
2πh̄ in front of the density operator $̂ will become clear later. Since the Wigner function is
defined on the phase space and it represents the state of the system, it should be similar
to the density of probability. This analogy is, however, misleading, because the function
WP (p, q), although real, usually take both positive and negative values. Even at a spatial
point from the interval (q0, q1), at which the density of the probability of detection of the
system is 0, the Wigner function WP (p, q) for q ∈ (q0, q1) may be different from 0 [68].

Information about probability in the Wigner function is contained in an indirect way.
One can check that, for every physically motivated ordering P

(
h̄λµ

2

)
,

∫
R

WP (p, q)dp = Tr
(∣∣q〉〈q∣∣$̂), (51)

which is the probability of detecting the system under consideration at a spatial interval dq.
Analogously, ∫

R
WP (p, q)dq = Tr

(∣∣p〉〈p
∣∣$̂) (52)

represents the density of probability with respect to momentum p.
For a pure state given in the Hilbert space formulation by the density operator

$̂ =
∣∣ψ〉〈ψ∣∣, the respective Wigner function equals

WP (p, q) =
1

(2π)2

∫
R4

dp′dq′dλ′dµ′ P−1
(

h̄λ′µ′

2

)
exp

(
− ih̄λ′µ′

2

)

× exp
[
iλ′(p− p′) + iµ′(q− q′)

]ψ(q′)ψ(p′)
(2πh̄)1/2 exp

(
− ip′q′

h̄

)
. (53)

For the Weyl ordering when P
(

h̄λ′µ′

2

)
= 1, one can calculate integrals with respect to dλ′

and dµ′. Then, the expression (54) reduces to (see [26]) a simple form,

W1(p, q) =
1

2πh̄

∫
R

dξ exp
(

ipξ

h̄

)
ψ

(
q +

ξ

2

)
ψ

(
q− ξ

2

)
.

This Wigner function WP (p, q) representing a pure state, fulfils the condition

WP (p, q) ∗P WP (p, q) =
1

2πh̄
WP (p, q). (54)
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The relation (54) is a straightforward consequence of observation, in that the density
operator representing a pure state is a projection operator |ϕi

〉〈
ϕi|.

For two Wigner functions Wi P (p, q), Wj P (p, q) representing mutually orthogonal
states

∣∣ψi
〉

and
∣∣ψj
〉
, their product

Wi P (p, q) ∗P Wj P (p, q) = 0. (55)

Thus, from the von Neumann definition of a density operator, we see that, if the Wigner
functions Wi P (p, q), i = 1, 2, . . . represent projections on mutually orthogonal states
spanning the Hilbert spaceH, then

WP (p, q) =
dimH
∑
i=1

piWi P (p, q) (56)

where ∀ i pi ≥ 0 and ∑dimH
i=1 pi = 1.

To prove the relations (54), (55), and (56), it is sufficient to assume the existence of the
generalised Stratonovich–Weyl correspondence. Therefore, the aforementioned properties
hold on any quantum phase space that is a symplectic manifold.

Another question is how the functional action of the Wigner function is realised. Using
the generalised Weyl correspondence (13), we see that on the manifold R2, the trace of the
operator Â is represented by the integral

1
2πh̄

∫
R2

dpdqW−1
P (Â). (57)

This observation is not a surprise because integration, like taking the trace, introduces a
linear functional. When one calculates the integral of a ∗P -product of functions, the result
of the integration is independent from the order of the multiplied functions

1
2πh̄

∫
R2

dpdqA(p, q) ∗P B(p, q) =
1

2πh̄

∫
R2

dpdqB(p, q) ∗P A(p, q). (58)

Therefore, we conclude that, at phase space R2, every ∗-product of (30) type is closed [69].
For the Weyl ordering, when P

(
h̄λµ

2

)
= 1, the integral of the ∗1-product of two

functions is equal to the integral of the pointwise multiplication of those functions

1
2πh̄

∫
R2

dpdqA(p, q) ∗1 B(p, q) =
1

2πh̄

∫
R2

dpdqA(p, q) · B(p, q). (59)

For an arbitrary ordering P
(

h̄λµ
2

)
, the mean value of an observable A(p, q) in a state

represented by a Wigner function WP (p, q) is calculated according to the rule

〈
A(p, q)

〉
=
∫
R2

dpdqA(p, q) ∗P WP (p, q) =
∫
R2

dpdqWP (p, q) ∗P A(p, q). (60)

Now, one can see that we have included the factor 1
2πh̄ into our definition of the Wigner

function in order to avoid this coefficient in the expression for the average value.
The Weyl ordering formula (60) takes exactly the form known from classical statistical

physics 〈
A(p, q)

〉
=
∫
R2

dpdqA(p, q)W1(p, q). (61)

The Wigner function W1(p, q), on the contrary to the classical density of probability, is not
a positive function.



Entropy 2021, 23, 581 20 of 26

Once we introduce a classical counterpart of trace of operators, we can present more
properties of the Wigner function. Thus, the integral∫

R2
dpdqWP (p, q) = 1. (62)

Formula (62) is the condition of normalisation for the Wigner function WP (p, q). Moreover,∫
R2

dpdqWP (p, q) ∗P WP (p, q) ≤ 1
2πh̄

. (63)

Equality in formula (63) holds exclusively for pure states.
Although a Wigner function is not positive as a function, it represents a positive

functional. Thus, for every two Wigner functions Wa P (p, q), Wb P (p, q),∫
R2

dpdqWa P (p, q) ∗P Wb P (p, q) ≥ 0. (64)

Alternatively, one can say that, for every function A(q, p) and every Wigner function
WP (p, q) for which the integral exists,∫

R2
dpdqWP (p, q) ∗P

(
A(q, p) ∗P A(q, p)

)
≥ 0. (65)

The transition probability between two pure states represented by density matrices
$̂i , $̂j is given by integral

∣∣〈ψi
∣∣ψj
〉∣∣2 = Tr

(
$̂i $̂j

)
= 2πh̄

∫
R2

dpdqWi P (p, q) ∗P Wj P (p, q). (66)

Wigner functions Wi P (p, q) , Wj P (p, q) refer to the pure states
∣∣ψi
〉
,
∣∣ψj
〉
, respectively.

In the case where the phase space is a symplectic manifoldM, but an explicit form of
the generalised Stratonovich–Weyl correspondence is not known, we ought to understand
a Wigner function as a phase space counterpart of the density operator $̂. Thus, W is a real,
positively defined, and normalised generalised function. Below, we present a realisation of
these postulates.

1. For every real, smooth function A(φ1, . . . , φ2n) from a proper test class of functions〈
W(φ1, . . . , φ2n), A(φ1, . . . , φ2n)

〉
∗ ∈ R. (67)

The choice of class of test function may be performed according to several criteria.
We discussed this question in [54]. By φ1, . . . , φ2n, we denote the local coordinates
(not necessarily canonical) on the manifold M, n = 1

2 dimM. The symbol
〈
·, ·
〉
∗

represents a functional linear action. Its possible form will be discussed later. We
omit the index P at the star product, because, as we know, on an arbitrary symplectic
manifold depends not only on a choice of ordering but also on the geometry of the
symplectic space.

2. For every test function,〈
W(φ1, . . . , φ2n), A(φ1, . . . , φ2n) ∗ A(φ1, . . . , φ2n)

〉
∗ ≥ 0. (68)

3. The functional action on a constant function〈
W(φ1, . . . , φ2n), 1

〉
∗ = 1. (69)

In the practical realisation of the preceding postulates, one has to overcome two serious
obstacles—the introduction a ∗-product on a symplectic manifoldM and the implemen-
tation of the functional action

〈
·, ·
〉
∗. As we remember from Section 4, a star product on
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an arbitrary symplectic manifold can be calculated in frames of the formal series calculus.
Thus, the expressions (67), (68), and (69) need to be adapted to that calculus (compare [54]).
In particular, we have to be extremely careful in dealing with Wigner functions. Analysis
of the solutions of eigenvalue equations in that situation show [70] that Wigner functions
may be represented as a formal series in h̄, in which the terms are the Dirac delta and its
derivatives. From that point of view, e.g., the sense of properties (54) and (55) is obscure.

Another question, intimately related to the definition of the functional action
〈
·, ·
〉
∗, is

a phase space representation of a trace of operators. Due to the linearity, it has to be, up to
a constant, a kind of integral on the symplectic manifoldM. However, the most natural
integral ∫

M
A(φ1, . . . , φ2n)ω

n

does not ensure that∫
M

A(φ1, . . . , φ2n) ∗ B(φ1, . . . , φ2n)ω
n =

∫
M

B(φ1, . . . , φ2n) ∗ A(φ1, . . . , φ2n)ω
n

for the arbitrary functions A(φ1, . . . , φ2n), B(φ1, . . . , φ2n), for which integrals make sense.
Therefore, it is necessary to introduce the so-called trace density. The existence of the trace
density was proven in [71,72]. Its construction for the Weyl-like Fedosov star product was
proposed by Boris Fedosov himself [73]. The trace density denoted as t(φ1, . . . , φ2n) is a
formal series in nonnegative powers of h̄ and was determined by a symplectic curvature
tensor on the manifold M and its covariant derivatives with respect to a symplectic
connection onM. Now,∫

M

(
A(φ1, . . . , φ2n) ∗ B(φ1, . . . , φ2n)

)
t(φ1, . . . , φ2n)ω

n

=
∫
M

(
B(φ1, . . . , φ2n) ∗ A(φ1, . . . , φ2n)

)
t(φ1, . . . , φ2n)ω

n (70)

as expected.
Now, we see that the functional action

〈
f (φ1, . . . , φ2n), A(φ1, . . . , φ2n)

〉
∗ is a generali-

sation of the integral

1
(2πh̄)n

∫
M

f (φ1, . . . , φ2n) ∗ A(φ1, . . . , φ2n)t(φ1, . . . , φ2n)ω
n. (71)

Factor 1
(2πh̄)n appears to assure compatibility with the case of R2n. Its origin is a relation

between the trace of operators and the integration on the quantum phase space.
Therefore, for an observable A(φ1, . . . , φ2n), its average value is determined by the

relation 〈
A(φ1, . . . , φ2n)

〉
=
∫
M

(
A(p1, . . . , qn) ∗W(φ1, . . . , φ2n)

)
t(φ1, . . . , φ2n)ω

n. (72)

The scheme of dealing with the states described above is based on an assumption that the
Wigner function represents the density operator in the Stratonovich–Weyl correspondence.
This can be also applied to discrete problems.

However, on the phase space R2n and on the discrete phase space, the presented way
of building the Wigner function is not unique. As an illustration of an alternative approach,
we construct a Wigner function for the nonclassical degrees of freedom on a grid Γ(s+1).

We introduce the discrete Wigner function as

WK(ϕm, n) := Tr
(

1
s + 1

$̂ Ω̂[K](ϕm, n)
)

. (73)
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Thus, 〈
A(ϕm, n)

〉
=

s

∑
m,n=0

A(ϕm, n) · WK(ϕm, n). (74)

In contrast to the Wigner function based on the Stratonovich–Weyl correspondence, in
the expression for the mean value of the function A(ϕm, n), we apply the usual pointwise
multiplication between A(ϕm, n) andWK(ϕm, n).

The Wigner function defined by (73) satisfies the following properties:

1. It is a real function
WK(ϕm, n) =WK(ϕm, n). (75)

2. The trace ofWK(ϕm, n) is equal to one

s

∑
m,n=0

WK(ϕm, n) = 1. (76)

Thus, we see that the Wigner function is normalised as expected.
3. WK(ϕm, n) is positively defined, i.e., for every function A(ϕm, n) on grid Γ(s+1),

s

∑
m,n=0

WK(ϕm, n)
(

A ∗K A
)
(ϕm, n) ≥ 0.

4. It gives the marginal distributions

s

∑
m=0
WK(ϕm, n) = Tr{ρ̂ |n〉〈n|} (77)

s

∑
n=0
WK(ϕm, n) = Tr{ρ̂ |ϕm〉〈ϕm|}. (78)

Thus, we can conclude that the Wigner functionWK(ϕm, n) has no direct probabilistic
interpretation, but the sums in one of its arguments (77) or (78) are probabilities with
respect to the fixed value n of the observable n or fixed value ϕm for the function ϕ.

In both cases, the discrete and continuous, the crucial advantage of the Wigner function
WK(ϕm, n) over WK(ϕm, n) and, respectively,WP (p, q) over WP (p, q) is that, in formu-
las for the average values of the functions A(ϕm, n), A(p, q), the ∗K-multiplication or
∗P -product, respectively, is substituted by the usual commutative product of functions.
However, when one discusses an eigenvalue equation, the pure states, or the time evolution,
it is more convenient to deal with Wigner functions obtained via the Stratonovich–Weyl
correspondence. Therefore, in further considerations, we will use the Wigner functions
WP (p, q), WK(ϕm, n) and W(φ1, . . . , φ2n).

For
∣∣∣P( h̄λµ

2

)∣∣∣ = 1, almost everywhere or
∣∣∣K( πkl

s+1

)∣∣∣ = 1, these two discussed ap-
proaches coincide.

We consider the representation of states in the case of the quantum phase space being a
symplectic manifold and a grid separately. However, as it was shown in formula (27), there
is a natural way to combine these two variants at least for the symplectic space R2n and
an arbitrary grid Γ(s+1). One needs only to treat the continuous and discrete components
of the Wigner function on equal footing, i.e., to use the Wigner function derived via the
Stratonovich–Weyl correspondence or via the trace.

The last paragraphs of the current section are devoted to issues in which the formula-
tion is universal in all considered options: on the manifold R2, on an arbitrary symplectic
manifoldM, on the grid Γ(s+1), and on the Cartesian products R2 × Γ(s+1) orM× Γ(s+1).
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The time evolution of a Wigner function built with the use of the Stratonovich–Weyl
correspondence or the generalised Stratonovich–Weyl correspondence is given by the
Liouville–von Neumann–Wigner equation

∂W
∂t

+ {W, H}M = 0. (79)

This formula is a phase space counterpart of the time dependence for the density operator
$̂ in the Schrödinger picture. By H, a Hamilton function is denoted. To avoid complicated
notation, we omit the variables.

The eigenvalue equation for an observable A, on an arbitrary phase space takes the
form

A ∗Wi = aiWi. (80)

The relation (80) refers to Wigner functions built with the use of the Stratonovich–Weyl
correspondence or the generalised Stratonovich–Weyl correspondence. By ai, an eigenvalue
of quantity A is denoted. Wi refers to a Wigner eigenfunction of A related with the
eigenvalue ai. The conditions imposed on the Wigner function Wi are the following. First,
it is a real function. Secondly, as a counterpart of a projection operator, every Wigner
eigenfunction satisfies the equality

Wi ∗Wi =
1

(2πh̄)n(s + 1)
Wi. (81)

The coefficient 1
(2πh̄)n(s+1) follows from considerations related to the traces.

Finally, since Wi represents a pure state, its action on a constant function equal to 1
everywhere gives 1. Symbolically,

s

∑
m,l=0

∫
M

Wi(φ1, . . . , φ2n, ϕm, l)t(φ1, . . . , φ2n)ω
n = 1. (82)

Every Wigner eigenfunction Wi commutes with the function A, i.e.,

{A, Wi}M = 0 (83)

their Moyal bracket vanishes.
A detailed analysis of the application of the Wigner function to represent the states of

a spin 1
2 nonrelativistic particle in a classical electromagnetic field can be seen in [49]. The

quantum phase space in that example is R3 ×R3 × {(φm, n)}m,n=0,1.

7. Conclusions

The phase space version of quantum mechanics appears to be an interesting attempt to
describe quantum phenomena. In several cases, we modelled on differentiable manifolds;
therefore, we were able to apply the methods of differential geometry. Thus, the fact that
the phase space is different from R2n, is not a real obstacle.

However, there are also serious disadvantages of this formalism. The most acute ones
follow from the fact that the quantum phase space may be different from the phase space
of the classical counterpart of the system under consideration. We should also be aware
of technical problems. Calculations performed in phase space quantum mechanics are
typically very complicated. When formal series are in use, problems with the interpretation
of the results appear.

It is also somewhat disappointing that the realisation of the classical limit in phase
space quantum mechanics is not so straightforward. The naive definition of that limit, i.e.,
tending with the Planck constant to 0, works for the ∗-product and quantities containing
positive powers of h̄. However, the same simple mathematical operation for Wigner func-
tions fails. Therefore, the phase space quantum mechanics cannot be treated directly as
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one of the approximated methods of the quantum formalism. An interpretation of the
manipulations performed in phase space quantum mechanics require much deliberation.
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