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Abstract

Although many studies have shown that attention to a stimulus can enhance the responses of individual cortical sensory
neurons, little is known about how attention accomplishes this change in response. Here, we propose that attention-based
changes in neuronal responses depend on the same response normalization mechanism that adjusts sensory responses
whenever multiple stimuli are present. We have implemented a model of attention that assumes that attention works only
through this normalization mechanism, and show that it can replicate key effects of attention. The model successfully
explains how attention changes the gain of responses to individual stimuli and also why modulation by attention is more
robust and not a simple gain change when multiple stimuli are present inside a neuron’s receptive field. Additionally, the
model accounts well for physiological data that measure separately attentional modulation and sensory normalization of
the responses of individual neurons in area MT in visual cortex. The proposal that attention works through a normalization
mechanism sheds new light a broad range of observations on how attention alters the representation of sensory
information in cerebral cortex.

Citation: Lee J, Maunsell JHR (2009) A Normalization Model of Attentional Modulation of Single Unit Responses. PLoS ONE 4(2): e4651. doi:10.1371/
journal.pone.0004651

Editor: Jan Lauwereyns, Victoria University of Wellington, New Zealand

Received December 10, 2008; Accepted January 26, 2009; Published February 27, 2009

Copyright: � 2009 Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Supported by NIH R01EY05911. JHRM is an Investigator with the Howard Hughes Medical Institute. The funders had no direct role in study design, and
had no role in the data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: maunsell@hms.harvard.edu

Introduction

Attention to a visual stimulus can greatly influence the responses

of individual neurons in visual cortex (see [1–3]). Descriptive

models like the biased competition model and the feature

similarity model successfully describe various aspects of the effects

of attention on sensory responses, but provide little insight into the

mechanisms by which attention’s effects are mediated. Here we

propose a model that extends previous descriptions of attentional

modulation by linking attentional modulation to neuronal

mechanisms that have been described in mediating sensory

response normalization.

Sensory normalization is a form of gain control in which

neurons’ responses are reduced in proportion to the activity of

large pools of neighboring neurons. Because normalization has a

divisive effect on all of a neuron’s responses, it scales responses

without altering stimulus preference or stimulus selectivity,

providing a pure form of gain control. Normalization models

were introduced to explain nonlinearities in the responses of V1

simple cells, such as the sigmoidal shape of their contrast response

functions (CRFs) and the inhibitory effect of adding a second

stimulus to the receptive field at a non-preferred orientation [4–7].

Subsequent studies showed that a similar kind of normalization

could explain the nonlinear response properties of other visual

areas, including the middle temporal area (MT) [6,8,9] and

inferotemporal cortex (IT) [10]. Normalization has also been put

forth as a mechanism to reduce redundancy in the neuronal

representation of natural stimuli [11].

Certain findings from previous studies of attention suggest that

the neuronal mechanisms that underlie its effects on visual neurons

might be closely related to the type of gain control mediated by

response normalization. When attention is shifted toward or away

from a stimulus in the receptive field of a neuron, it causes a

multiplicative scaling of tuning curves for stimulus orientation,

direction, or contrast [12–15]. A normalization mechanism would

be well suited to mediate a multiplicative scaling. Additionally, the

modulation of a neuron’s responses is typically much stronger

when attention is shifted between two stimuli within its receptive

field, compared to shifting attention toward or away from a single

stimulus in the receptive field [16–18]. This difference would be

expected if normalization mechanisms were involved, because the

effects of normalization can be greatly reduced when only one

stimulus is present.

We propose that attention is not only related to neuronal

response normalization mechanisms, but may depend on them. We

suggest that the primary effect of attention in visual cortex is to

modulate the strength of normalization mechanisms. We refer to

this concept as ‘‘attentional normalization’’. We present here a

model of attentional normalization and show that it can readily

account for a wide variety of attentional effects described in visual

cortex. We demonstrate that this simple model can explain the way

neurons in monkey visual cortex respond to both stimulus

interactions and changes in attention. These observations have

the potential to help clarify a broad range of observations about

attentional effects on sensory responses in cerebral cortex. Some of

these findings have been previously presented in abstract form [19].
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Results

Attentional normalization model
Response normalization models (e.g., [4]) typically assume that

the response of a given cell depends on a linear receptive field,

divisive normalization, and non-linear spiking threshold. When a

stimulus falls on the receptive field of a neuron, the linear receptive

field produces a tuned output, which determines the neuron’s

selectivity for properties such as orientation, direction, spatial

frequency, or temporal frequency. Additionally, each stimulus

activates a pool of neurons whose receptive fields overlap with the

stimulus, and the summed activity of this pool acts to reduce the

activity of the neuron under consideration (and other neurons

driven by the stimulus) by dividing its response in proportion to the

pool’s summed activity. The normalized signal then passes

through the nonlinear threshold stage, producing an output rate

of firing. An important assumption is that the strength of the

divisive normalization signal is unaffected by stimulus properties

such as orientation or spatial frequency because it comes from a

population of cells of varying tuning properties [20], and a

stimulus of any value would activate a comparable number of

neurons. Thus, the strength of the normalization is typically

assumed to depend only on the contrast of the stimulus.

One of nonlinearities of neuronal responses in primary visual

cortex (area V1) is a phenomenon called ‘‘cross orientation

inhibition.’’ If a stimulus with a preferred orientation falls on the

receptive field of a V1 neuron, and a second stimulus with a non-

preferred orientation is superimposed, the response of the cell is

inhibited by the non-preferred stimulus. This happens even if the

non-preferred stimulus by itself causes no response or is somewhat

excitatory. Response normalization models explains this phenom-

enon because the second stimulus increases the amount of divisive

normalization. Carandini et al. [7] demonstrated the success of the

normalization model for explaining cross orientation inhibition.

They used a model with the following form to explain the

responses of V1 neurons to plaid stimuli made of two

superimposed sinusoidal gratings:

amplitude Rð Þ! amplitude c1L1zc2L2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s fð Þ2zc1

2zc2
2

q
2
64

3
75

n

ð1Þ

In the equation, c is the contrast of the gratings, L is the

response of the linear receptive field to each grating at unit

contrast, s fð Þ is the semi-saturation parameter as a function of

temporal frequency of the grating, and n is the exponent for the

nonlinear threshold stage. They assumed that the untuned

normalization was proportional to contrast of stimuli, so this

equation effectively computes a weighted average of the responses

to the two gratings, with each grating weighted by its contrast.

This implementation explains not only neuronal responses to a

single stimulus but also the effect of stimulus interactions when

multiple stimuli are present.

We adopted the general approach of Eq. 1 to implement a

model of how attention modifies neuronal responses. We

simplified the implementation somewhat, because our primary

goal was to model the effect of attention, but not to model details

of the neuronal responses to stimuli. We therefore took responses

to individual stimuli as a given from empirical observations, and

focused on stimulus interactions and effects of attention. We

followed the approach of Britten and Heuer [21] in modeling how

neurons response to pairs of stimuli. They modeled response

summation of neurons in area MT of rhesus monkeys using a

power-law equation:

R1,2! R1
uzR2

uð Þ1=u ð2Þ

R1 and R2 are the responses to two stimuli when they appear

individually in the receptive field of an MT neuron, and R1,2 is the

response expected when they appear together. A subsequent study

showed that a power-law of this kind is useful for explaining the

nonlinear response summation of neurons in area V4 [22].

We present here a model that explains responses when two

stimuli are present in a neuron’s receptive field, however, this

model can be easily extended to treat any number of stimuli. We

assume that a neuron with a receptive field containing two stimuli

receives a direct, tuned input with a strength that depends on how

well the stimulus matches the preferred stimulus for the cell

(Figure 1). The cell also receives divisive normalization inputs from

two populations of neurons, each activated by one of the stimuli.

The normalization terms associated with each stimulus contribute

to producing an overall response that is a weighted average of the

direct inputs, which is similar to Eq. 1. Equation 3 describes the

Figure 1. Attentional normalization model. The black dotted
ellipse shows the receptive field of the neuron being considered, and
the white dotted ellipses show receptive fields of neurons that provide
input to this neuron. Each set of input neurons constitutes one
normalization pool. Arrows overlapped with Gabors show the motion
direction of the drifting Gabors. See text for details.
doi:10.1371/journal.pone.0004651.g001
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response of a neuron with two stimuli in its receptive field.

R1,2~
N1
: I1ð ÞuzN2

: I2ð Þu

N1zN2

� �1=u

ð3Þ

In this equation, R1,2 is the response of the neuron, N is the

normalization term for each stimulus, I is the direct input driven

by each stimulus, and u is a power term that accommodates the

nonlinear summation of the two inputs (as in Eq. 2). Because the

magnitude of each normalization signal depends on the contrast of

the associated stimulus, we let the strength of the normalization be

an exponential function of the contrast of that stimulus.

N~ 1{sð Þ: 1{e{a:cð Þzs ð4Þ

This normalization signal takes values from 0 to 1 and has two

free parameters of a and s, where a is the slope of normalization, s

is the baseline level of normalization. The contrast of the stimulus

is given by c. The term s plays a role that is similar to the s term of

Eq. 1. It remains when the contrast of the stimulus is zero and

prevents the response from becoming infinite. Equation 4

describes the normalization contributed by each of the stimuli in

the receptive field. Heuer and Britten [23] developed a similar

model for explaining contrast dependent response summation of

neurons in area MT. Their normalization term was a hyperbolic

ratio function of contrast, which has been shown to do a good job

of describing how contrast affects the responses of cortical neurons

[23,24]. We instead used an exponential function for normaliza-

tion because it produced qualitatively indistinguishable results with

one fewer free parameter (explaining a 94.9% versus 95.3% of the

variance in the mean responses of neurons; see below).

Although the normalization functions for the two stimuli have

the same parameters, they take different values when the stimuli

have different contrasts. The direct inputs are each multiplied by

their respective normalization terms, following the form of Eq. 1.

This multiplication, coupled with a division by the summed

normalization inputs, has the effect of making the response of the

neuron a weighted average of the direct inputs.

The effect of attention is introduced by letting attention

modulate the normalization associated with the attended stimulus.

We extend Eq. 4 by adding an attention term, b, which is 1 for

unattended stimuli but can take other (typically larger) values for

attended stimuli:

Nattended~ 1{sð Þ: 1{e{b:a:c
� �

zs ð5Þ

In this way, attention acts only through the normalization

mechanism. We were motivated to take this approach because

attention frequently produces a multiplicative gain of neuronal

responses. With this approach, the effects of changing stimulus

contrast or of changing attention will be similar in that both affect

normalization mechanisms to modulate the neuronal response, but

they will differ in that changes in attention, unlike changes in

stimulus contrast, will not change the direct inputs (I1 and I2 in

Figure 1). Thus, the attentional normalization model dissociates

the effect of changing stimuli parameters from the effects of

changing the locus of attention.

In the following sections we show that the attentional

normalization model accounts for key observations about the

way that both attention and nonlinear stimulus summation

changes neuronal responses, using previously published data and

data from experiments we have performed.

Simulation for a response summation
We first tested whether the attentional normalization model can

replicate physiological data by simulating response summation and

comparing the result with physiological data obtained in area MT.

Figure 2A plots population data from a study by Heuer and

Figure 2. Data and simulations for contrast dependent response summation. A: Average responses of MT neurons to pairs of stimuli that
had independent contrasts. Reproduced with permission from Figure 9 of Hilary W. Heuer and Kenneth H. Britten, Contrast dependence of response
normalization in area MT of the rhesus monkey. J. Neurophysiol. 88:3398–3408, 2002. Each cell was normalized by its maximum firing rate, and
responses were averaged across 39 MT neurons. B: A contour surface showing a simulation of this test using the normalization model. The plot is
generated by averaging predicted responses of 100 model neurons.
doi:10.1371/journal.pone.0004651.g002
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Britten [23], in which they measured response summation by

placing two stimuli with preferred directions of motion at non-

overlapping locations in the receptive field of each neuron. The

axes show the contrast of each stimulus and contours follow iso-

response lines. On this plot, when the contrasts are relatively high

(.40%), the response contours are concave. However, when the

contrasts are low (,30%) they are convex.

We simulate responses to pairs of stimuli by vary the contrasts of

two stimuli independently in the attentional normalization model.

For the simulation, we assumed that two equally-effective stimuli

(e.g., preferred) fell on different locations in the receptive fields of

MT neurons. We simulated responses to individual stimuli and

paired stimuli at different locations in the receptive field, and used

parameters from physiological data for the simulation (see

Methods). Responses of each neuron were normalized by its

maximum firing rate, and they were averaged across neurons (see

Methods). Figure 2B is the contour surface resulting from the

simulation. It shows the same concavity and convexity as the MT

recordings. Thus, the attentional normalization model replicates

the effect of contrast dependent normalization on response

summations of MT neurons.

Simulation of attention with a single stimulus in the
receptive field

One property of attention is that it can change the magnitude of

a neuron’s response without appreciably affecting its selectivity.

When attention is directed toward or away from a single stimulus

in the receptive field, tuning curves for orientation, direction, and

contrast are scaled vertically, without appreciable changes in the

preferred stimulus or the breadth of tuning [13–15]. Thus, the

primary effect appears to be a change in the gain of a neuron’s

response to all stimuli. Because attention acts on a divisive

(multiplicative) term in the attentional normalization model, this

model appears well suited to explain this behavior.

We simulated a single stimulus by setting the contrast of the

second stimulus to zero in Eq. 3. This does not completely remove

the normalization term for this stimulus, because the normaliza-

tion has a non-zero baseline level of activity (Eq. 4). Consequently,

the normalization terms do not drop out of Eq 3, and attention

can affect responses. The remaining normalization allows

attention to modulate responses to the single stimulus because it

affects the relative weight of the remaining direct input. The form

of the model presented here considers only two stimuli, so when no

stimuli are present (0% contrast), two units of spontaneous activity

contribute to the normalization. This might appear arbitrary,

because there might be an infinite number of stimuli that do not

appear. Increasing the number of stimuli considered will change

the relative weight of the direct inputs and the normalization

inputs, such that the response to any number of zero-contrast

stimuli will be the same as the response to two zero-contrast

stimuli. Changing the number of receptive field stimuli considered

redefines the parameters of the model without changing its other

properties (see Methods).

Because responses to a single stimulus are needed as input for

the attentional normalization model, we simulated responses of

MT neurons to different directions of 100% contrast motion

stimuli (e.g., drifting Gabor or random dot patch) with a Gaussian

function (see Methods). We then simulated the effect of attention

on direction tuning functions. As expected, the attentional

normalization model readily accounts for the multiplicative scaling

effect of attention. Figure 3A shows the result of a simulation using

the attentional normalization model. The solid line is the tuning

function without attention, and the dashed line is the tuning

function when the attention is directed to the stimulus in the

receptive field.

The effect of attention shown in Figure 3A is a change in

response gain. Regardless of the stimulus direction, the response

(activity above spontaneous activity) is increased by the same

factor. However, when no stimulus is present, attention does not

affect spontaneous activity. A proportional scaling of all activity,

including spontaneous activity, is termed activity gain. Response

gain has been described in some experiments [25], but activity

Figure 3. Simulations of effects of attention. A: Simulation of an
attention effect on a direction tuning function. The solid black line is
the direction tuning function with attention directed away from the
stimulus, and the dotted black line is the tuning function with attention
directed toward the stimulus. The dashed-dotted line is the spontane-
ous activity of the model neuron. B: Simulation of the effects of
attention on responses to single and paired stimuli. The Gabor with the
up-arrow is the preferred stimulus and the Gabor with the down-arrow
is the non-preferred stimulus. The black dotted ellipse shows the
receptive field, and the black and white circles mean attention to the
preferred stimulus and non-preferred stimuli, respectively. Grey
histograms are the responses when attention is directed to a stimulus
outside the receptive field (not shown). Black and white histograms are
the responses when the attention is directed to the preferred stimulus
or the null stimulus in the receptive field, respectively. For simulations
here, we used parameters of u~1, s~0:05, a~0:1, and b~5.
doi:10.1371/journal.pone.0004651.g003
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gain is more commonly reported, especially for spatial attention

[15,26,27]. Failure to affect spontaneous activity is a known

limitation of the current model. Additional terms or reconfigura-

tion of the model could obviously fix this, but we have not pursued

this minor deficiency because spontaneous activity is typically a

very small component of neuronal activity so it has little effect on

the model’s overall performance. In the future we plan to collect

neurophysiological data that are sufficiently precise that they could

guide a specific modification of this aspect of the model.

Simulation with a pair of stimuli in the receptive field
Although the primary effect of attention has been described as a

gain change, stronger and more complicated effects are seen when

attention is shifted between two stimuli in a neuron’s receptive

field. Very strong modulations are typically seen when attention is

shifted between a preferred and a non-preferred stimulus that both

lie within the receptive field [16,17,22,26]. These effects have been

described as a shrinking or shifting of the receptive field that

weights its responses toward inputs corresponding to the attended

stimulus. This effect cannot be explained as a simple change in

neuronal sensitivity because it involves a change in the spatial

weighting of a receptive field: the neuron becomes more

responsive to one portion of visual space while becoming less

responsive to another.

The normalization that exists when more than one stimulus is in

the receptive field can explain this effect of attention. If attention is

directed to one of two (or more) stimuli in the receptive field, it will

adjust the weights of inputs from each stimulus by changing the

strength of their respective normalization signals. Therefore, the

response of the cell will increase or decrease depending on the

efficacy of the attended stimulus. In addition, the size of attentional

modulation with one stimulus in the receptive field will be smaller

than the modulation with two stimuli in the receptive field because

the strength of normalization that cell receives is proportional to

the number of stimuli in the receptive field (and the weights of

inputs are determined by the normalization, Eq. 3).

To test whether the attentional normalization model explains

effects with two stimuli inside the receptive field, we simulated this

configuration and observed how the neuronal response changed as

the locus of attention changed. We simulated a pair of preferred

and the non-preferred stimuli at 100% contrast. Presented

individually, the responses to these stimuli corresponded to the

peak and trough of the tuning curve in Figure 3A. Figure 3B shows

the behavior of the model neuron. The first two bars show the

model predictions for a single preferred stimulus, with and without

attention. The second two bars show the predictions for a single

non-preferred stimulus, with and without attention. The final set

of bars shows responses with the preferred and non-preferred

stimuli both inside the receptive field. The gray bar show the

model’s response when the attention is directed outside the

receptive field, the black bar show the response when attention is

directed toward the preferred stimulus in the receptive field, and

the white bar show the response when attention is directed toward

the non-preferred stimulus in the receptive field. These predictions

of the attentional normalization model are consistent with

neurophysiological observations. Directing attention to the

preferred stimulus increases the response relative to when

attention is directed outside of the receptive field, and directing

attention to the non-preferred stimulus decreases the response.

The amount of attentional modulation resulting from shifting

attention between preferred and non-preferred stimuli in the

receptive field is greater than directing attention toward or away

from a single stimulus in the receptive field. The size of attentional

modulation when attention is switched between preferred and

non-preferred stimuli in the receptive field, was about 6 times

greater than it when attention is switched between single preferred

stimuli inside and outside of the receptive field under the given

parameters of the model (see Figure legends for parameters).

Attention and stimulus interaction
Additional support for the normalization model is provided by

quantitative assessment of its ability to simultaneously account for

neurophysiological responses to both changes in stimulus contrast

and changes in the focus of attention. This analysis was based on

responses that were recorded from MT neurons in a rhesus

monkey for a different purpose. The monkey did two tasks that

made it possible to measure attentional modulation and stimulus

interactions independently (Figure 4). To measure attentional

modulation, pairs of drifting Gabors were presented in the

receptive field. The Gabor in one location always drifted in the

neuron’s preferred direction and the Gabor in the other location

always drifted in the opposite (null) direction. The contrasts of the

two Gabors were always matched, but they varied from

presentation to presentation, and on different trials the animal’s

attention was directed to one or the other Gabor (see Methods). In

this way we could measure how the CRF of the cell varied as

attention was shifted from the preferred stimulus to the null

stimulus. To measure stimulus interactions, attention was kept

constant by adding drifting Gabors at a third location far outside

the receptive field and directing the animal’s attention to that

location on every trial. While the animal’s attention was directed

away from the receptive field, the preferred and null stimuli within

it were presented with a range of contrasts, but with the contrast of

the preferred and null stimuli always differing by a factor of two.

The panels in Figure 5A show the responses of two example MT

neurons to the attention experiment. In both attention conditions,

the example neurons had characteristic sigmoidal CRFs, but the

responses were stronger while the animal was paying attention to

the preferred direction (filled symbols, solid lines) relative to when

the same stimuli appeared but the animal’s attention was directed

toward the null stimulus (open symbols, dashed lines). The

responses of the cell in the left panel were strongly modulated

by the stimulus to which attention was directed, while the

responses of the cell at the right panel were weakly modulated by

attention. The effect of attention on the contrast tuning functions

is reasonably well described as a gain change, similar to the effect

seen with orientation or direction tuning [13,14]. The gain change

was response gain, in which only the driven portion of the activity

was modulated by attention, rather than an activity gain, in which

the spontaneous activity (0% contrast) is also modulated [see 15].

The spontaneous activity did not change between the two

conditions because in both cases the animal was attended to

(different) locations inside the receptive field. Changes in

spontaneous activity have only been reported when attention is

shifted from a location inside a neuron’s receptive field to a

location outside the receptive field studies[15,26]. The panels in

Figure 5B shows how the same cells responded when attention was

kept constant (toward the stimulus far outside the receptive field)

and the preferred stimulus was presented at either twice or half the

contrast of the null stimulus. The responses in Figure 5B are

plotted as a function of the null stimulus contrast. The filled

symbols show responses recorded when the preferred stimulus had

twice the contrast of the null stimulus (e.g., preferred 50%, null

25%). The open symbols show the responses recorded when the

preferred stimulus had half the contrast of the null stimulus (e.g.,

preferred 25%, null 50%). The horizontal offset between the two

sigmoid functions is expected because the preferred stimulus

dominates the response, and at any contrast of the null stimulus,

Attention and Normalization
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Figure 4. Task designs for the stimulus interactions and attention experiments. The top panels show the stimulus configurations for the
two experiments and the diagrams below show the structure of individual trials. The arrows overlapped the Gabors show the directions of their
motion. The height of the lines in the trial plots represents the contrast or speed of the Gabor in each stimulus location. In the stimulus interactions
experiment, the contrasts of the Gabor in one location are either twice or half the contrasts of the Gabor in the other location in the receptive field.
Grey digits show that the contrasts of the target stimulus are randomly selected from the contrasts of two distracters in the receptive field. In the
attention experiment, the contrasts of the two stimuli in the receptive field are matched with each other (see Methods).
doi:10.1371/journal.pone.0004651.g004

Figure 5. Contrast response functions for two example neurons from attention and stimulus interactions experiments. A: Responses
of each neuron in the attention experiment. Filled circles are responses when attention is directed to the preferred stimulus and open circles are
responses when attention is directed to the null stimulus. Solid and dotted lines are the best fitting functions of the attentional normalization model.
B: Responses of each neuron in the stimulus interactions experiment. Filled circles are responses when the preferred stimulus has a higher contrast
than the null stimulus (26), and open circles are responses when the null stimulus has a higher contrast than the preferred stimulus (26). Solid and
dotted lines are the best fitting functions of the model. Vertical lines are standard errors and the best fitting functions were obtained by fitting data
from the attention and stimulus interactions experiments simultaneously to the attentional normalization model.
doi:10.1371/journal.pone.0004651.g005
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the preferred stimulus had four times more contrast in one

condition compare to the other. Consistent with this, the

horizontal offset between the rising phases of the two curves is

close to a factor of four on the contrast axis (which has log scaling).

In addition to this horizontal offset, there is a vertical offset

between the upper saturation of the two functions for the responses

in the left panel. This vertical offset arises from response

normalization, as will be explained later.

The capability of the attentional normalization model to

account for both the attentional modulations and the stimulus

interactions was demonstrated by fitting the responses of each

neuron to the attentional measurements and the stimulus

interaction measurements simultaneously to the model. The

model has four free parameters (Eqs. 3, 4, and 5: u, s, a, and b)

and the number of data points for each cell used here was 30 (8

contrast62 attention conditions = 16 from attention experiment,

and 8 contrast62 stimulus conditions22 spontaneous activity = 14

from stimulus interaction experiment). The solid and dashed lines

in Figure 5A and B show the fits the model provides for the two

example neurons. Using a single set of parameters for each cell,

the attentional normalization model does an excellent job of

accounting for the effects of both varying attention when relative

contrast is fixed and of varying relative contrast when attention is

fixed. The model explains 97% and 96% of the variance of the

mean responses of these two cells. Across all the cells tested

(n = 25), the median of the variance explained by the fit was 95%.

One of the example cells (Figure 5, left panels) was strongly

modulated by attention and also showed a pronounced vertical

offset in the upper saturations of the CRFs during the stimulus

interaction measurements. The other cell (Figure 5, right panels)

was weakly modulated by attention and showed little vertical offset

in the upper saturation of the CRFs during the stimulus

interaction measurements. A vertical offset is expected during

stimulus interaction measurements because normalization causes

the higher contrast stimulus to be given more weight (Eq. 3).

Responses will be stronger when the preferred stimulus is given

more weight owing to greater contrast (e.g., 100% preferred, 50%

null) and weaker when the null stimulus is given more weight (e.g.,

50% preferred, 100% null). An offset of this sort will not happen,

however, if the normalization is saturated and does not vary over

the range of higher contrasts. We believe that this is the

explanation for the failure to see a vertical offset for the neuron

in the right panels of Figure 5.

An important feature of the attentional normalization model is

that because attentional modulation is constrained to act through

the normalization mechanism (Figure 1), there can be no

attentional modulation if the normalization is saturated and does

not vary. For this reason, we expect to see little attentional

modulation in those neurons that evince little response normal-

ization. We tested whether a correlation between the strength of

attentional modulation and sensory normalization exists for MT

neurons. For each neuron we measured the strength of attentional

modulation by taking the Rmax parameters from the best fitting

functions (the maximum attainable responses, see Methods) and

used them to compute a modulation index. We similarly took the

Rmax parameters for the model’s fit to the stimulus interaction

measurements and computed an analogous index. Figure 6 is a

scatter plot of the indices, with each point corresponding to one

neuron. Vertical and horizontal lines on each point are 95%

confidence intervals from a bootstrap analysis (see Methods). The

regression line was obtained by fitting the values to a linear

equation, using a weighted least squares method (the confidence

intervals from the bootstrap analysis served as weight). There was

a strong correlation between the two values. Notably, the best

fitting line goes through the origin (intercept of the fit: 20.01), as

predicted by the attentional normalization model. If normalization

cannot modulate responses, attention should be unable to produce

any effect (see Figure 1). This observation would not be expected if

attention could operate independently of the normalization

mechanism, for example by directly changing the overall gain of

all responses or by directly modulating the excitatory drive

associated with inputs driven by one stimulus or the other.

It is important to note that this correlation might rise spuriously

from the directionality differences (i.e., differences between

responses to the preferred stimulus and responses to the null

stimulus). For example, if a cell were not tuned for direction of

motion such that the responses to the preferred direction and the

null direction are the same, then we would expect no modulation

either from shifting attention or from changing stimulus contrast,

because the two stimuli would be equivalent. Thus, the correlation

in Figure 6 could arise from a sample of neurons with different

degrees of direction selectivity. However the correlation reported

here cannot be explained this way. First, almost every MT cell

shows strong direction tuning (average 11:1, [28]), which was true

for the current data (mean directionality of 15:1). Many of the cells

with strong direction tuning had little or no modulation in the

stimulus interactions and attention experiments. Second, analysis

of the correlations among stimulus interaction, attention, and

directionality showed that directionality was not an important

factor (see Methods). The relationship between sensory interaction

and attention yielded the strongest pairwise correlation (r~0:76,

p,0.0001), and it alone remained significant when we compen-

sated for the effect of the third variable by using partial

correlations (r~0:69, p,0.001).

Figure 6. Correlations between response modulations from
attention and sensory normalization. Each value in the scatter plot
shows the modulation indices of individual neurons for attention and
sensory normalization. Vertical and horizontal lines are 95% confidence
intervals from bootstrap analyses. The regression line is the best fitting
function of a linear equation (see Methods). The rho is a Pearson’s
correlation coefficient.
doi:10.1371/journal.pone.0004651.g006
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Discussion

We propose that attentional modulations in visual cortex

depend on response normalization mechanisms, and have

presented a basic attentional normalization model to demonstrate

the feasibility of this idea. The model accounts for key observations

on the effects of attention in visual cerebral cortex. Additional

support for the normalization model comes from neurophysiolog-

ical data showing a close relationship between the strength of

stimulus interactions that are likely to be mediated by normali-

zation and the strength of attentional modulations.

A role for normalization mechanisms in attentional modulation

has been suggested by earlier studies of attention. In a

psychophysical study, Lee and colleagues [29] proposed that

response normalization was involved in attention-mediated

changes in discrimination thresholds for luminance contrast,

orientation, and spatial frequency. They found that they only

could explain their results by assuming that attention changed

nonlinear interactions between populations of overlapping filters,

where nonlinear interactions carry out the normalization. A recent

neurophysiological study found a correlation similar to the one

described here, in which attentional effects were correlated with

the strength of border-ownership preferences in area V2 [30]. This

study is consistent with our observation in that attention uses a

sensory mechanism that determines response properties of V2

neurons through indirect pathways, for example, lateral or

feedback connections. Reynolds and Heeger have recently

proposed a model to explain attentional modulation of responses

of neurons in visual cortex that depends on normalization

mechanisms [31].

Relationship to other models of attention
While the attentional normalization model suggests a specific

mechanism for how attention modulates the neuronal responses, it

is not inconsistent with previous models. The most widely

recognized model addressing attention is the biased competition

model [1,16]. This model suggested that when multiple stimuli are

present they compete for dominance of a neuron’s response, and

attention biases that competition in favor of the attended stimulus.

The biased competition model, as originally presented, is

descriptive and does not propose a specific mechanism. While

many studies have described their results as consistent with biased

competition (e.g., [32–38]), such statements amount to a

confirmation that when multiple stimuli are presented, attention

to one of those stimuli brings a neuron’s response closer to what it

would be if that stimulus were presented alone. Because the

attentional normalization model presented here is also consistent

with previous observations on attentional modulations, it is

consistent with biased competition, and but goes beyond to

provide a mechanism that explains how attention might alter the

relative influence of two or more stimuli.

Subsequent reports [3,17] describing experiments on attention

presented a specific model in the context of biased competition

(although it was not presented as definitive model for biased

competition). That model has some properties in common with

our attentional normalization model. In particular, it implements a

form of divisive normalization because inputs are divided by the

sum of all inputs. However, it did not discuss sensory normaliza-

tion or include normalization as a central component. Moreover,

this biased competition model makes several predictions that differ

from those of the attentional normalization model, and which are

inconsistent with physiological data. First, it equates the effect of

attention to the effect of increasing stimulus contrast, although

attention and changes in contrast have distinct effects on the

contrast response functions of neurons (Lee and Maunsell,

submitted). Second, this biased competition model predicts that

attention will not affect the upper saturation of contrast response

functions for a single stimulus in the receptive field, an effect that

has been shown to occur in many studies [15]. Third, this biased

competition model cannot explain a correlation between sensory

normalization and attentional modulation (Figure 6).

The feature similarity model of attention is another important

model of attention [25,39,40]. It suggests that attention adjusts the

gain of each neuron in proportion to the similarity between the

attended feature and the neuron’s preference for that feature.

Spatial location is viewed as a feature, so spatial attention is simply

a subset of feature attention. This model is consistent with

physiological data, but it does not address mechanisms. The

attentional normalization model is consistent with the feature

similarity model because its mechanism predicts the effects

described by feature similarity. Although we have described

attentional normalization in terms of spatially-separated stimuli, it

could apply equally well to attention to stimulus features, such as

color or orientation. The critical requirement is that attention

should be able to modulate the activity of a normalization pool

that captures the attended feature, whether spatial or otherwise.

This may be more of a challenge for non-spatial features. For

example, if attention is directed to one of two co-extensive patches

of random dots that move in different directions, the attentional

normalization model can produce the expected changes in

neuronal responses as long as there is a separate normalization

pool for each of the different directions of motion. Whether that is

the case is an empirical question that will provide an important test

of the attentional normalization model.

Underlying biophysical mechanisms
In the original model of response normalization, a shunting type

of inhibition was suggested for the biophysical mechanism of

normalization because it acts as a divisive factor. Previous studies

have reported how shunting inhibition explains gain modulation.

Some emphasize the importance of balanced excitatory and

inhibitory inputs [41,42], while others emphasize the importance

of synaptic noise [43,44] or short-term synaptic depression [12].

The current study makes no claims about underlying biophysical

mechanisms for attentional modulation except that it requires

some type of mechanism (biophysical or circuit) that implements

divisive normalization.

Given that normalization is mediated by a pooled inhibitory

mechanism, it may depend on inhibitory interneurons [45], which

mainly acts as ‘‘modulator’’ [46]. The attentional normalization

model makes no assumptions about specific cell types, however.

Because the attentional normalization model affects neuronal

responses through normalization, attention is expected to

modulate the activity of neurons in the normalization mechanism

as well as the neurons that are affected by normalization.

Consistent with this idea, a study that examined the effects of

attention on narrow-spiking neurons (putative interneurons) and

broad-spiking neurons (putative pyramidal cells) found that

attention modulated both cell types proportionately [47].

Implications for understanding attentional modulation
The attentional normalization model could represent a valuable

advance in understanding several attributes of attentional

modulation. First, it explains why the primary effect of attention

appears to be a gain change that does not affect the breadth of

tuning curves. Because attention acts primarily through divisive

normalization, its effects primarily take the form of a multiplicative

scaling of tuning curves. Second, it explains why modulation can
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be so much stronger when attention is shifted between two stimuli

in the receptive field, compared to shifting attention between a

stimulus in the receptive field and a distant stimulus. Although the

normalization model can produce some modulation with a single

stimulus in the receptive field, the effects of attention are much

more potent when it acts differentially on the normalization of

different stimuli in the same receptive field.

Another aspect of attentional modulation that attentional

normalization may help to explain is the variability between

neurons in the amount of attentional modulation they express,

both within and between areas. It is a common observation that

different neurons show more or less attentional modulation,

even when task demands are kept as constant as possible [48].

The source of this variance has not been explained. If

attentional modulation depends on response normalization

mechanisms, it is possible that the variance in attentional

modulation is a consequence of variance in normalization,

arising either from inherent variations in the strength of

normalization from cell to cell, or subtle differences in stimulus

configurations that cause normalization to vary for tests of

different neurons [49]. Similarly, it is a common observation

that attentional modulation grows stronger in later stages of

visual cortex. The source of this variance is similarly unknown.

The attentional normalization model suggests that it may

depend more on changes related to sensory normalization, such

as differences in receptive field size or the need to remove

redundancy in sensory coding [11], than on differences in the

strengths of inputs from higher centers.

Limitations of the current model
Although the attentional normalization model explains many

aspects of attentional modulation, it remains incomplete. In the

current version, attention modulates normalization by changing

the slope of the contrast response function of the normalization

(attention term was applied to the slope of the exponential

function), but a multiplicative scaling of the normalization contrast

function could explain the data virtually as well. Existing data

cannot distinguish between variants such as these. Future

experiments should provide data that reveal the precise relation-

ship between attention and the normalization. Similarly, the

current formulation does not allow attention to affect spontaneous

activity, although this effect has been observed in many

experiments [15,26,27]. Existing neurophysiological data do not

require the model to include this component, because spontaneous

activity is weak comparing to evoked response. It is difficult to

obtain precise data on modulations of spontaneous activity owing

to the low rates of firing involved, but it may be possible to refine

the model with experimental data in the future.

Concluding comments
While the simulations and neurophysiology presented here show

that the attentional normalization model can help explain how

attention operates in visual neurons, many questions remain to be

addressed. It will be important to see if it can survive more

extensive neurophysiological tests, in particular including data

from neurons in the ventral pathway in visual cortex, such as those

in area V4, as well as neurons in other sensory modalities and

higher cortical areas. Also, it will be important to see if a

correlation between response normalization and attention can be

seen not only across neurons but also within individual neurons

across different stimulus conditions. Finally, it will be important to

see how readily the attentional normalization model can account

for the effects of feature attention. While the attentional

normalization model will undoubtedly need to be extended and

refined, its success in explaining the range of phenomena

described here suggest that it will prove useful in exploring and

understanding the neuronal mechanisms of attention.

Methods

All the procedures we used involving animals were approved by

the Institutions Animal Care and Use Committees of Harvard

Medical School or Baylor College of Medicine. Some of the

neurophysiological data presented here have been described

previously in the context of different observations (Lee and

Maunsell, submitted).

Animal preparation and behavioral task
We implanted a head post and scleral search coil on a rhesus

monkey (Macaca mulatta, male, 8 kg) under general anesthesia.

After recovery from the surgery, the animal was trained on a

speed change detection task. During each trial the animal was

required to hold its gaze within 61u of a small spot at the center

of a video display (44u634u, 10246768 pixels, 85 Hz, gamma-

corrected), while series of achromatic Gabor stimuli were

flashed synchronously in two or three locations on a gray

background (42 cd/m2). Each set of Gabors was presented for

200 ms and successive sets were separated by intervals that

varied randomly between 141 and 294 ms. The animal’s task

was to detect when a Gabor with a faster drift rate (the target)

appeared in the cued location and to make a saccade to that

location within 600 ms of its appearance. Correct responses

were rewarded with a drop of water or juice. Speed changes also

occurred in uncued locations (distractors), but responses to those

changes terminated the trial without reward. The target location

was cued at the start of each trial by a yellow annulus presented

at that location for 300 ms. During recording from each neuron,

the Gabors in all locations had the same standard deviation (s),

spatial frequency, and temporal frequency (except for targets

and distractors).

The time in the trial when the target stimulus appeared followed

an exponential distribution (a flat hazard function for speed

change) in order to encourage the animal to keep its vigilance

constant throughout each trial. However, if a trial reached 5 s

without a target appearing (,10% of trials) it was terminated and

the animal was given a reward.

Attentional modulation
To measure the effects of attention on neuronal responses, the

task was performed using two series of Gabors. Pairs of Gabors

were flashed in the receptive field of the neuron being recorded,

and oriented so that Gabors in one position always drifted in the

neuron’s preferred direction while Gabors in the other position

always drifted in the opposite, null direction. The two locations

were equally eccentric from the fixation point. The positions and

directions for the Gabors were determined using a separate

quantitative receptive field mapping (see below). In this version of

the task, pairs of Gabors always had the same contrast, but the

contrast used for each presentation was randomly selected from 8

values (0, 1.56, 3.13, 6.25, 12.5, 25, 50, 100%). This allowed us to

measure responses over a range of contrasts with attention directed

either to a preferred- or a non-preferred stimulus in the receptive

field.

Stimulus interactions
To measure stimulus interactions, the same task was performed

using three series of Gabors. Two were the Gabors used in the

attentional modulation experiment, which were in the neuron’s
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receptive field and moved in the preferred- and non-preferred

directions. A third series was located at the same eccentricity in the

opposite hemifield and moved in an orthogonal direction. In this

task the animal’s attention was always directed to the location

outside the receptive field. The two Gabors in each pair in the

receptive field always had contrasts that differed by a factor of two.

In half of the presentations the Gabor drifting in the preferred

direction had higher contrast, and in half of the presentations the

null Gabor had higher contrast. The contrasts for each pair were

randomly selected from 8 pair of values (0,0; 0.78,1.6; 1.6,3.1;

3.1,6.3; 6.3,12.5; 12.5,25; 25,50; 50,100%). The contrast of the

Gabor outside the receptive field was randomly selected to match

the contrast of one of the stimuli in the receptive field.

Neurophysiological recording and analysis
After training was completed, we implanted a recording

chamber over MT. We recorded the activity in single units using

conventional extracellular techniques, which have been described

in detail previously [15]. Once we isolated the action potentials of

a neuron, we plotted the receptive field using hand-controlled

visual stimuli. We then used computer-controlled presentations of

Gabors to measure the neuron’s tuning for direction of motion (12

directions), spatial frequency (10 frequencies), and temporal

frequency (10 frequencies). We also mapped the receptive field

quantitatively using a Gabor stimulus with the preferred direction

of motion, spatial frequency, and temporal frequency (3

eccentricities by 8 polar angles). This mapping was used to select

two isoeccentric receptive field locations that gave approximately

equal responses.

Some parameters were estimated by fitting functions to the

neuronal responses. For fitting data, we used a weighted-least

square fit, where the variance of the measurement served as the

weight. We used a von Mises distribution [50,51] to estimate the

direction tuning of each neuron:

Tuning hð Þ~ A

2pI0 kð Þ e
k cos h{cð ÞzB ð6Þ

In this equation, A is a scaling factor, I0 kð Þ is the zeroth order

Bessel function, h is the direction of motion, c is the preferred

direction of motion, and B is spontaneous activity. We calculated

half-width at half-height (h0:5) [50,51] as:

h0:5~0:5 arccos ln 0:5zkð Þ=k½ �, kw{0:5 ln 0:5 ð7Þ

To measure normalization in stimulus interaction experiment

and attention experiment, we estimated the CRFs of each neuron

using a hyperbolic-ratio function [24]:

R~Rmax
: cn

cnzc50
n

� �
zm ð8Þ

In this equation, R is the response of a cell, Rmax is the

maximum attainable response of the cell (above spontaneous

activity), m is the spontaneous activity, c50 is the contrast where the

response is half maximal, n is the steepness of the function, and c is

the contrast of stimulus. When fitting data from the two attentional

states in the attention experiments (attend preferred or attend null)

or the two stimulus conditions in the stimulus interaction

experiment (higher contrast on preferred or null), we used the

same values of n and m for both conditions and let Rmax and c50

vary between conditions. The effect of task conditions on the

responses at the upper saturation of the CRFs was calculated using

a modulation index for Rmax:

Modulation Index~
Rmax

z{Rmax
{

Rmax
zzRmax

{

� �
ð9Þ

where Rmax
z is Rmax of one experimental condition (attend to

preferred or higher contrast on preferred), and Rmax
{ is Rmax of

the other (attend to null or higher contrast on null). This

modulation index was used for all correlation analyses. We

calculated 95% confidence intervals for these modulation indices

using a bootstrap analysis (1000 resamplings). For the direction-

ality calculation, we took a peak (the response to the preferred) and

an offset (the response to the null) from the direction tuning

function (Eq. 6) to compute the modulation index. Here,

Rmax
z and Rmax

{ of Eq. 9 are replaced by the peak and offset.

In some cases we used the response to the preferred stimulus from

receptive field mapping testing instead of the peak of the direction

tuning function.

Attentional normalization model
We estimated the direct inputs to a cell using Eq. 3 and setting

the contrast of the second stimulus to zero, which reduced the

activity associated with that stimulus to spontaneous activity. This

reduced Eq. 3 to following equation:

R1~
N1
: I1ð Þuzs: mð Þu

N1zs

� �1=u

ð10Þ

in which s is the spontaneous activity of the normalization (Eq. 4)

and m is the spontaneous activity of the neuron. The two direct

inputs where therefore:

I1~ R1
uz

s

N1

: R1
u{muð Þ

� �1=u

ð11Þ

I2~ R2
uz

s

N2

: R2
u{muð Þ

� �1=u

ð12Þ

These direct inputs were established in the no-attention

condition, so the normalization term N has b fixed to 1.

In the attentional normalization model, responses to individual

stimuli could be determined from empirical observation. However,

we did not directly measure R1 and R2. Instead, we approximated

them by estimating the CRF for each neuron. For this, we used a

hyperbolic ratio function (Eq. 8). The spontaneous activity of each

neuron, m, was taken from the response to zero contrast stimuli in

stimulus interaction measurements. Rmax for the preferred and

null stimulus was based on response from direction tuning

functions (Eq. 6). The slope, n, and c50 of the CRF were taken

from the CRFs from the attention experiment. We used n and c50

from the attention experiment because 1) contrast of stimuli at a

given contrast were the same here and 2) the previous study

reported that attention does not effectively shift the CRF of MT

neuron (Lee and Maunsell, submitted). Errors introduced by the

indirect determination of R1 and R2 should not bias the outcome

of the model fits.

Attention and Normalization

PLoS ONE | www.plosone.org 11 February 2009 | Volume 4 | Issue 2 | e4651



Simulation for response summation
We simulated contrast dependent response summation using

the attentional normalization model. We used a hyperbolic ratio

function (Eq. 8) to make CRFs for 100 neurons with a single

stimulus in the receptive field. For each simulated neuron, we

drew two values of Rmax, one for a central receptive field location

and one for a flanking location in the receptive field. Each Rmax

was drawn from a Gaussian distribution, using a mean and SD of

100 and 20 spikes/s for the central location and 30 and 6 spikes/s

for the flanking location. Similarly, we drew n and c50 from

second order Gamma distributions with means of 3.6 and 0.21,

which are median values of measured values for MT neurons

[23].

To make pair responses, we used the attentional normaliza-

tion model (Eq. 3) and drew the three parameters of the model

(u,s, and a) from second order Gamma distributions with means

of 3.4, 0.05, and 0.2, which were the mean values estimated by

fitting the physiological data from the attention and stimulus

interaction experiments. For each neuron we produced four sets

of responses to pair and individual stimuli, in which the sets

were obtained by varying location of stimuli in the receptive

field (two central locations, two flank locations, a central

location for stimulus 1 and a flank location for stimulus 2, and

a central location for stimulus 2 and a flank location for

stimulus 1).

Simulations for attention
We simulated single or paired stimuli by setting the contrast of

the second stimulus to zero or one (Eq. 3). To make direction

tuning functions, we used 90 spikes/s for the response to the

preferred stimulus, 15 spikes/s for the response to the null

stimulus, and 60 degrees for the half-width at half-height of the

tuning function. The tuning function was made from a Gaussian

function, where the scaling factor and the offset of the function

were the preferred and the null responses respectively:

G hð Þ~ C

s
ffiffiffiffiffiffi
2p
p e

{
h{cð Þ2

2s2 zB ð13Þ

where C is a scaling factor, s is the standard deviation of the

function, h is the direction of motion, c is the preferred direction of

motion, and B is the offset of the function. Here we made c zero

and calculated s from the half-width of the tuning:

h0:5~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2ð Þ

p
s ð14Þ

where h0:5 is half-width at half-height.

We simulated the effect of attention on the direction tuning

function using the attentional normalization model. We used each

response at each direction of motion for deriving direct inputs (I ),

and simulated the tuning function when attention was directed to

the stimulus in the receptive field. The simulation for the responses

to a pair of stimuli was done using the same model parameters.

Here, we only used the scaling factor (the preferred response) and

the offset (the null response) of the direction tuning function (Eq.

13) for deriving direct inputs, and simulated a pair response to the

two stimuli and the effect of attention.
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